低温燃料电池用纳米催化剂新型制备技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池是一种不经过燃烧直接以电化学反应方式将燃料的化学能转变为电能的发电装置,是一种绿色能源技术。对解决目前世界面临的“能源短缺”和“环境污染”这两大难题具有重要意义,被认为是21世纪的最为重要的能源动力之一。其中,低温燃料电池如质子交换膜燃料电池(PEMFC)、直接甲醇燃料电池(DMFC),具有工作温度低,启动快,能量转化率高等特点,是未来电动汽车、野外电站、便携式电源的理想替代电源,是燃料电池优先发展的类型之一。电催化剂、质子导电膜、电极为低温燃料电池的关键材料。价格昂贵是目前低温燃料电池商业化最大的问题,这主要是电池的关键材料成本过高所引起,其中电催化剂占有很大的比重。因此发展新型催化剂制备技术,制备高活性催化剂,提高其利用率,降低用量,对降低燃料电池成本具有重要意义。
     本文研究了一种利用微波介电加热技术,制备负载型贵金属催化剂的新方法,其在快速性、方便性、经济性、设备简易性等方面与其他方法相比具有突出的优势,是一种快速制备高活性纳米催化剂的全新方法。本研究利用此方法,制备了不同负载量的Pt/C(VulcanXC-72)、Pt/多壁碳纳米管(MCNTs)催化剂,采用XRD、TEM、XPS、EDX以及循环伏安法、计时电流法、计时电位法等方法进行了表征,同时以此催化剂,采用低粘度醇为预分散剂,高粘度醇为稳定剂的催化剂浆料制备技术,进行了PEMFC、DMFC研究。
     TEM和XRD分析表明,Pt在碳载体上的固定沉积过程所用的微波加热程序,对最终Pt粒径大小和分布的控制具有显著地影响,其中分别采用微波加热10s停留90s和100s的微波加热程序制备的40%Pt/C催化剂IMH-90s和IMH-100s的Pt粒径为3.2nm和3.0nm,并且具有非常均匀的分布。SEM和UV研究表明此方法制备的催化剂的粉体颗粒在10μm左右,与E-TEK公司催化剂相比具有更小的粉体粒径和更容易的分散特性;通过电化学活性面积的测定和对甲醇氧化性能的研究表明IMH-90s和IMH-100s与E-TEK催化剂相比具有更大的电化学活性面积和更高的甲醇氧化电流密度。同时通过调整微波加热程序制备的60%Pt/C催化剂与同类E-TEK相比,其具有更均匀的分布,Pt粒径为4nm左右,并且拥有更高的电化学活性。
     采用XRD、TEM、XPS等表征方法研究了微波调控法制备Pt/MCNTs催化剂的制备机制及影响因素,发现Pt以二价和四价Pt的氧化物沉积在MCNTs表面,进一步还原后,Pt大部以零价Pt的形式存在;Pt的粒径
Fuel cell is a device that can turn chemical energy into electrical energy through electrochemical reaction without combustion and is of great importance in solving the scarcity of energy sources and environmental pollution, so it is regarded as one of the most important power resources in the 21 century. Low temperature fuel cells such as PEMFC DMFC can work at low temperature with the advantages of quick start and high energy efficiency. They can be potentially used for electric car field power plant and potable equipment. The most difficult problem in the commercialization of low temperature fuel cells is the high cost. Effective solutions to this problem include developing catalyst preparation technique, preparing highly active catalyst, increasing the utilization of catalyst and decreasing the amount of catalyst used.This thesis investigates a new method to prepare carbon supported precious metal catalyst with intermittent microwave heating (IMH) process. This new method has the advantages of rapid, convenient, economic and easy comparing with other methods. Based on this method Pt/C (VulcanXC-72) and Pt/multi-walled carbon nanotubes (MCNTs) catalysts with different loadings were prepared. The catalysts were characterized by XRD, TEM, XPS, EDX, Cyclic voltammograms(CV) method, chrono-amperometric method, chronopotentiometric method and their application in PEMFC and DMFC were studied at the different conditions.TEM and XRD results showed that in the preparation of Pt/C the intermittent microwave heating procedure of Pt deposition had an obvious influence on the size and distribution of Pt particle. The average particle size of Pt in IMH-90 and IMH-100s (prepared by the procedure of 10s heating and 90s or100s intermission) were 3.2nm and 3.0nm respectively and Pt particles were uniformly dispersed on carbon. SEM and UV results showed that the as-prepared catalyst had an uniform diameter of 10 μm. Compared with E-TEK catalyst our catalyst powder size is smaller and is easier to be dispersed in solvents. Catalysts prepared by IMH-90s and IMH-100s had bigger electrochemical active area (EAA) and higher methanol oxidation activity. The 60%Pt/C catalyst with the Pt diameter of 4
    nm that was prepared by adjusting microwave heating procedure had more uniformly dispersed diameter and higher electrochemical activity compared with E-TEK catalyst.XRD, TEM and XPS were used to characterize the mechanism and influencing factors of the preparation of Pt/MCNTs catalysts with IMH method. Pt existed on the surface of MCNTs in the state of Pt( II) and Pt(IV) oxide, before the reduction and most of transferred to after reduction. The diameter and dispersion of Pt were influenced by the pretreatment of MCNTs, microwave heating procedure and the structure of MCNTs. Methanol oxidation on these catalysts were studied with CV and current-potential polarization. The results showed that catalysts supported on MCNTs pretreated with H2SO4+HNO3 and prepared with the heating procedure IMH-lOOs have highest electrochemical activity and best methanol oxidation performance.The dispersion of the catalysts in different solvents was studied with Zeta potential method. The results showed that the dispersion of the agglomerate Pt/C catalysts depended on the property of the solvent. In this work the catalyst was most uniformly dispersed when isopropanol was used as solvent with the smallest size. Membrane electrode assembly(MEA) was fabricated with isopropanol as disperser and 1,2-propanediol as stabilizing reagent. The performance of H2/O2 single cell reached 0.58V, 1A cm"2 using O2 as cathode. 40W PEMFC stack was fabricated with the performance of 43W at 35°C and 74W at 50"C at atmosphere pressure.DMFC was studied with the current-potential polarization curve. It was found that its performance was largely influenced by the catalyst loading of the anode. Optimized loading was PtRu(l:l):3.4 mg cm"2, DMFC could reach the power density of 115.8 mW cm"2 at 90°C, 2 mol dm'3 methanol,O2 pressure 0.2MPa and 95.8 mW cm"2 at atmosphere pressure, The performance was largely influenced by methanol concentration, 02/air pressure, 02/air flux, and temperature. The DMFC with the self-breathing cathode can discharge steadily.
引文
[1] 沈培康,加快燃料电池产业化进程的建议,电池,2002,32(3):183-186
    [2] Scott K, Taama W M, Argyropoulos P, Engineering aspects of the direct methanol fuel cell system, J. Power Sources, 1999,79:43-59
    [3] Takeshi Kobayashi,Junichiro Otomo, Ching-ju Wen, et al. Direct alcohol fuel cell-relation between the cell performance and the adsorption of inter- mediate originating in the catalyst-fuel combinations, J. Power Sources, 2003,124: 34-39
    [4] Rice C, Ha S, Masel R I, etal. Direct formic acid fuel cells, J. Power Sources, 2002,111:83-89
    [5] Liu Jiang, Barnett, Scott A, Operation of anode-supported solid oxide fuel cells on methane and natural gas, Solid State Ionics, 2003,158:11-16
    [6] Yuan Xiao-Zi, Ma Zi-Feng, He Qing-Gang, et al. Electrogenerative hydrogenation of allyl alcohol applying PEM fuel cell reactor, Electrochem. Commun.2003, 5:189-193
    [7] Zhang J, Wilkinson D P, Electro-oxidation of dimethyl ether in a polymer-electrolyte-membrane fuel cell, J. Electrochem. Soc., 2000,147: 4058-4060
    [8] Peled E, Livshits V, Duvdevani T, High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NPPCM), J. Power Sources, 2002,106:245-248
    [9] Carrette L, Friedrich K A, Stimming U, Fuel Cells-Fundamentals and Applications, Fuel cell,2001,1:5-39
    [10] Urban P M, Funke A, Muller J T, et al. Catalytic processes in solid polymer electrolyte fuel cell systems, Applied Catalysis A: General, 2001, 221:459-470
    [11] Chunshan Song. Fuel processing for low-temperature and igh-temperature fuel cells Challenges, and opportunities for sustainable develop -ment in the 21st century Catalysis Today, 2002,77:17-49
    [12] Nakayama T, Fuel Cell Seminar Abstracts, Vol.9,30 October-2 Novem- ber, Portland, Oregon, 2000.
    [13] Baujura R A, Fuel cells: simple solutions in a complicated world, in: Proceedings of the Joint DOE/EPRI/GRI Review Conference on Fuel Cell Technology, Chicago, IL, 3-5 August 1999
    [14] Hirschenhofer J H, Stauffer D B, Engleman R R, et al. Fuel Cell Handbook, 5th Edition, US Department of Energy, Morgantown,PA, 2000.
    [15] G.J.K. Acres Recent advances in fuel cell technology and its applications, J. Power Sources,2001, 100:60-66
    [16]Prater K B ,Solid polymer Fuel cell for transport and stationary applica tions, J. Power Sources,1996,61:105-109
    [17]Panik F , Fuel cells for vehicle applications in cars-bringing the future close, J.power Sources,1998,71:36-38
    [18]Shige Yuki Kawasu, Advanced PEFC dewelopment for fell powered vehicle, J.Power Sources,1998,71:150-155
    [19]Fuel cell bulletin, News, 4 November,2003
    [20] Ralph T R ,Hogarth M P , Catalysis for Low Temperature Fuel Cells Part Ⅰ: the cathode challenges , Platinum Metals Rev., 2002, 46,: 3-14
    [21] Li Wenzhen, ZhouWeijiang, Li Huanqiao, et al. Nano-stuctured Pt-Fe / C as cathode catalyst in direct methanol fuel cell ,Electrochimica Acta 2004, 49:1045-1055
    [22] Xiong L , Kannan A M , Mantihiram A , Pt-M(M=Fe, Co Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells ,Electrochem. Commun., 2002,4: 898-903
    [23]Takako Toda, Hiroshi Igarashi, Hiroyuki Uchida, et al. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co J. Electrochem,.Soc, 1999,146: 3750-3756
    [24]Tamizhmani G, Capuanoga I ,Improved electrocatalytic oxygen reduction performance of platinum ternary alloy oxide in solid polymer electrolyte fuel cells, J. Electrochem. Soc,1994,141:41-45
    [25] Mukeriee S , Srinivasan S, Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells,J.Electroanal.Chem, 1993, 357, 201-224
    [26]AricoAA.S., A. Shukl K. , Kim H., et al., An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electro-reduction of oxygen, Appl. Surf. Sci.,2001, 172: 33-40
    [27]Myoung-ki Min, Jihoon Cho, Kyuwoong Cho, et al. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications, Electrochimica Acta ,2000,45: 4211-4217
    [28]Takako Toda, Hiroshi Igarashi, Masahiro Watanabe, Enhancement of the electrocatalytic 02 reduction on Pt-Fe alloy, J. Electroanal. Chem.,
     1999,460: 258-262
    [29]Joongpyo Shim, Duck-Young Yoo, Ju-Seong Lee, Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell ,Electrochimica Acta, 2000,45:1943-1951
    [30]Manoharan R ,Goodnough J B ,Oxygen Reduction On CrO_2 Bonded to A proton-Exchange Membrane, Electrochimi.Acta.,1995,40:303-307
    [31]Shim J ,Lee Chang-Rae, Lee Hong-ki, Electrochemical characteristics of Pt-WO_3/C and Pt-TiO_2/C electrocatalysts in a polymer electrolyte fuel cell, J. Power Sources,2001,102:172-177
    [32]Sun Z ,Chiu H C ,Tseung C C ,Oxygen reduction on teflon bonded Pt/ WO_3 in acidic media, Electrochem.Solid-State Lett.,2001, 4:E9- E12
    [33] Seeliger W , Hamnett A , Novel electrocatalsyts for oxygen reduction, Electrochemic. Acta., 1992,37:763-765
    [34]Faubert G ,Cote R , Dodelet J P , et al. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysi of Fe~Ⅱ acetate adsorbed on 3,4,9,10-perylene-tetracarboxylic-dianhydride,Electrochimi. Acta., 1999,44: 2589- 2603
    [35]Sun G Q , Wang J T , Savinell R F , Iron(Ⅲ) tetramethoxy- phenylporphyrin (FeTMPP) as methanol tolerant electrocatalyst for oxygen reduction in direct methanol fuel cells, J. Appl. Electrochem.,1998 28: 1087-1093
    [36]Convert P ,Coutanceau C ,Crouigneau P ,et al. Electrodes modified by electrodeposition of CoTAA complexes as selective oxygen cathodes in a direct methanol fuel cell, J. Appl. Electochem., 2001, 31:945-952
    [37]Tatsuhiro Okada, Satoshi Gotou, Masaya Yoshida, et al. A Comparative Study of Organic Cobalt Complex Catalysts for Oxygen Reduction in Polymer Electrolyte Fuel Cells,J.Inorg.Organometallic Polymers, 1999, 9:199-219
    [38]Tamizhmani G, dodelet J P, Electrocatalyst Activity of Nafion- Impregnated Pyrolyzed Cobalt Phthalocyanine, J.Electrochem.Soc,1994, 141: 41-45
    [39]Faubert G , Cote R , Guay D , et al. Activation and characterization of Fe-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells, Electrochimica Acta, 1998,43, :1969-1984
    [40] Gojkovic'S. L j , Gupta S., Savinell R.F , Heat-treated iron(Ⅲ) tetra-methoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction Part Ⅱ. Kinetics of oxygen reduction, J. Electroanal. Chem. 1999,462: 63-72
    [41]RodriguezF J, Sebastian P J , Solorza O ,et al. Mo-Ru-W chalcogenide electrodes prepared by chemical synthesis and careen prining for fuel cell applications,Int. J. Hydrogen Energy 1998, 23:1031-1035
    [42] Romero T , Rivera R , Solorza O , et al. Fabrication and testing of a H_2-O_2 fuel cell using Mo_xRu_ySe_z, Int. J. Hydrogen Energy, 1998,23:1041-1044
    [43] Fischcher C ,Alonso Vante N , Fiechter S , Electrocatalytic properties of mixed transition metal tellurides (Chevrel-phases) for oxygen reduction, J. Appl. Electrochem., 1995,25:1004-1008
    [44] Solorza-feria O , Ellmer K , Giersig M , Novel low-temperature synthe- sis of Se micronducting transition metal chalcogenide elelctrocatalsyt for multielectron charge transfer: molecular oxygen reduction, Electrochi mica. Acta., 1994,39:1647-1653
    [45] Pattabi M , Castellanos R H , Castillo R , et al. Electrochemical characterization of tungsten carbonyl compound for oxygen reduction reaction, Int. J. Hydrogen Energy,2001,26:171- 174
    [46] Sebastian P J , Chemical synthesis and characterization of Mo_xRu_ySe_z - (CO)_n electrocatalysts, Int. J. Hydrogen Energy, 2000, 25:255-259
    [47]Gasteiger H A , MarkoviC N M, Ross P N, et al. CO electrooxidation on well-characterized Pt-Ru alloys, J. Phys. Chem. 1994,98: 617-625
    [48]Gasteiger H A , Markovic N M , Ross P N , et al. H_2 and CO electro oxidation on well-characterized Pt,Ru, and Pt-Ru. 1. rotating disk electrode studies of the pure gases including temperature effects, J. Phys. Chem., 1995, 99: 8290-8301
    [49]Gasteiger H A , Markovic N M , Ross P N, et al. Methanol electro-oxidation on well-characterized Pt-Ru alloys ,J. Phys. Chem. 1993,97: 12020-12029
    [50]Gasteiger H A , Markovic N M , Ross P N , H_2 and CO electro-oxidation on well-characterized Pt, Ru, and Pt-Ru. 2. rotating disk electrode studies of CO/H_2 mixtures at 62℃, J. Phys. Chem. 1995, 99: 16757-16767
    [51]Kabbabi A , Faure R , Durand R , et al. In situ FTIRS study of the electro-catalytic oxidation of carbonmonoxide and methanol at platinum-ruthenium bulk alloy electrodes,J.Electroanal. Chem. 1998,444: 41-53
    [52]Shen P. K., Tseung A. C. C, Anodic oxidation of methanol on Pt/WO_3 in acidic media, J. Electrochem. Soc.,1994 ,141(11):3082-3090
    [53]Tesung A C C .,Chen K Y , Hydrogen spill-over effect on Pt/WO_3 electrode, Catalysis Today, 1997,38:439-445
    [54]Grgur B. N., Zhuang G., Markovic N. M., et al. Electrooxidation of H_2/CO mixtures on a well-characterized Pt_(75)Mo_(25) alloy surface, J. Phys. Chem. B ,1997, 101:3910-3913
    [55]Grgur B N , Markovic N M , Ross P N , Electrooxidation of H_2, CO, and H_2 /CO mixtures on a well-characterized Pt_(70)Mo_(30) bulk alloy electrode, J.Phys. Chem. B 1998, 102, 2494-2501
    [56]Grgur B N , Markovic N M , Ross P N , The Electro-oxidation of H_2 and H_2/CO mixtures on carbon-supported Pt_xMo_y Alloy Catalysts, J. Electro- chem. Soc,1999,146:1613-1619
    [57]Gasteiger H A , Markovic N M , Ross P N , Electrooxidation of CO and H_2 mixtures on a well-characterized Pt_3Sn electrode surface, J. Phys. Chem. 1995, 99: 8945-8949
    [58]Lee S J , Mukerjee S , Ticianelli E A , et al. Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells, Electrochimica Acta, 1999, 44: 3283-3291
    [59]GoEtz M , Wendt H , Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas, Electrochimica Acta, 1998,43: 3637—3644 [60]Shen P K , Chen K Y , Tesung A C C, CO oxidation onPt-Ru/WO3, J. Electrochem. Soc, 1995,142:L85-L86
    [61]Chen K Y , Shen P K , Tseung A C C, Anodic oxidation of impure H_2 on teflon-bonded PtRu/WO3/C electrodes, J. Electrochem. Soc,1995,142: L185-L186
    [62]Ley K L , Liu R , Pu C ,et al. Methanol oxidation on single-phase Pt-Ru-Os ternary alloys, J. Electrochem.Soc, 1997, 144:1543-1548
    [63] Z. Jusys ,T.J. Schmidt , L. Dubay , K. Lasch, et al. Activity of PtRu MeO_x (Me = W, Mo, V) catalyst towards methanol oxidation and their characterization, J.Power Sources, 2002,105:297-304.
    [64]Lima A , Coutanceau C , Leager J M ,et al. Investigation of ternary catalysts for methanol electrooxidation, J. Appl. Electrochem., 2001, 31: 379-386
    [65]Kyung-Won Park, Jong-Ho Choi, Boo-Kil Kwon, et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation, J. Phys. Chem. B, 2002, 106: 1869-1877
    [66]Venkataraman R, Kunz H R , Fenton J M , Development of new CO tolerant ternary anode catalysts for proton exchange membrane fuel cells, J. Electrochem.Soc, 2003,150: A278-A284
    [67]Arico A S, Poltarzewski Z, Kim H,et al. Investigation of a carbon supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells, J. Power Sources,1995,55:159-166
    [68]Reddington Erik, Sapienza Anthony, Gurau Bogdan, et al. Combinatorial electrochemistry: a highly parallel, optical screen method for discovery of better electrocatalsyt, Science, 1998,280:1735-1737
    [69]Won Choon Choi, Ju Dam Kim,Scong Ih1 Woo, Quaternary Pt-based elcetrocatalsyt for methanol oxidation by combinatorial electrochemisty, Catalysis Today,2002,74:235-240
    [70] Raghuveer V , Ravindranathan K , Xanthopoulosc N , et al. A rare earth cuprates as electrocatalysts for methanol oxidation, Solid State Ionics, 2001, 140:263-274.
    [71]Shobba T , S. Mayann M , C.A. Sequeir C , Preparation and characterization of Co-W alloys as anode materials for methanol fuel cells, J. Power Sources, 2002,108: 261-264.
    [72]McIntyre D R , Vossen A , Wilde J R , et al. Electrocatalytic properties of a nickel-tantalum-carbon alloy in an acidic electrolyte, J.Power Sources, 2002,108:1-7
    [73] Burstein G T , McIntyre D R , Vossen A , Relative activity of a base catalyst toward electro-oxidation of hydrogen and methanol, Electrochem.. Solid-State Lett., 2002,5:A80-A83
    [74]Koji Hashimoto, Recent advances in the catalytic properties of metastabel materials, Mater. Sci. Eng., 1997,A226-228: 891-899.
    [75] Brunelli K, Dabala M , M. Magrini, Cu-based amorphous alloy electrodes for fuel cells, J. Appl. Electrochem., 2002, 32: 145- 148
    [76] Sistiaga M , Pierna A R , Application of amorphous materials for fuel
     cells, J. Non-Cryst. Solids, 2003, 329:184-187
    [77]Deng Jingfa, Li Hexing, Wang Weijiang, Progress in design of new amorphous alloy catalysts, Catalysis Today, 1999, 51:113-125
    [78]Ralph T R , Hogarth M P ,Catalysis for low temperature fuel cells Part Ⅱ: the anode challenges, Platinum Metals Rev., 2002, 46: 117-135
    [79]Hogarth M P , Ralph T R ,Catalysis for low temperature fuel cells part Ⅲ: challenges for the direct methanol fuel cell,Platinum Metals Rev., 2002,46:146-164
    [80]Vandan H E,Bekkum H V,Preparation of platinum on activated carbon, J. Catalysis,1991,131:335—349
    [81] Jia Nengyou , Martin Rex B., Qi Zhigang , et al.,Modification of carbon supported catalysts to improve erformance in gas diffusion electrodes Electrochimica Acta ,200146: 2863-2869。
    [82] Tamizhmani G,Dodelet J P ,Guay D. Crystallite sizes effects of carbon-supported Platinum on oxygen reduction in liquid acids, J . Electrochem.Soc.,1996 ,143(1) :18-34
    [83] Antolini E , Cardellini F , Formation of carbon supported PtRu alloys: an XRD analysi s, J. Alloys Comp., 2001,315:118-122
    [84] Santiago Elisabete I., Camara Giuseppe A., Ticianelli Edson A. CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method Electrochimica Acta 2003,48: 3527- 3534
    [85] Yang Bo, Lu Qingye, Wang Yang, Zhuang Lin, Lu Juntao, Peifang Liu Simple and Low-Cost Preparation Method for Highly dispersed PtRu/C Catalysts, Chem. Mater. 2003, 15:552-3557
    [86] Takasu Y., Kawaguchi T., Sugimoto W., et al., Effects of the surface area of carbon support on the characteristics of highly-dispersed Pt-Ru particles as catalysts for methanol oxidation, Electrochimica Acta, 2003,48: 3861- 3868
    [87] Perow, Henry G, Allen ,Robert J Finelyparticulated colloidal platinum compound and sol for producing the same ,and method of preparation ,US patent ,4044193,1977
    [88] Hyuk Kim, Jin-Nam Park, Won-Ho Lee, Preparation of platinum-based electrode catalysts for low temperature fuel cell,Catalysis Today 2003,87: 237-245
    [89]Masahiro Watanabe, Makoto Uchida ,Satoshi Motoo, Preparation of
     highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol, J.Electroanal. Chem., 1987, 229: 395-406.
    [90] Prabhuram J., Wang X., C. Hui L., Hsing I-Ming, Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications, J. Phys. Chem. B 2003, 107, 11057-11064
    [91] Wang Xin, Hsing I-Ming, Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells, Electrochimica Acta 2002 47: 2981-2987
    [92] Zhou Zhenhu, Wang Suli, Zhou Weijiang, et al.,Novel synthesis of highly active Pt/C cathode electrocatalsyt for direct methanol fuel cell, Chem. Commun., 2003, 394-395.
    [93] Li Wenzhen, Liang Changhai, Qiu Jieshan, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell,Carbon,2002, 40: 787-803
    [94] Li Wenzhen, Liang Changhai, Weijiang Zhou, et al. Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells,, J. Phys. Chem. B, 2003, 107, 6292-6299
    [95] Li Wenzhen, Liang Changhai, Zhou Weijiang, et al. Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells, Carbon 2004, 42:423-460
    [96] Gratiet B. L, Remita H., Picq G., et al. CO-Stabilized Supported Pt Catalysts for Fuel Cells: Radiolytic Synthesis, J.catalysis 1996,164:36-43
    [97] Deborah L. Boxall, Lukehart C. M., Rapid synthesis of Pt or Pd/ Carbon nanocomposites using microwave irradiation, Chem. Mater. 2001, 13:806-810
    [98] Deborah L., Boxall, Gregg A, et al., Rapid synthesis of a Pt_1Ru_1/carbon nanocomposite using microwave irradiation: A DMFC anode catalyst of high relative performance, Chem. Mater. 2001, 13:891-900
    [99] Chen Weixiang, Lee J Y, Liu Zhaolin, Microwave-assisted synthesisof carbon supported Pt nanoparticles for fuel cell applications, Chem. Commun., 2002:2588-2589
    [100] 陈卫祥,韩贵,LEE Jim Yang,刘昭林,Pt on CNTs纳米催化剂的微波快速合成及其对甲醇电化学氧化的电催化性能,高等学校化学学报,2003,12:2285-2287
    [101] Liu haolin, Lee Jim Yang,Chen Weixiang, Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon- supported PtRu nanoparticles, Langmuir, 2004, 20:181-187
    [102] Zhang Xin, Chan Kwong- Yu, Water-in-Oil microemulsion synthesis of Platinum- Ruthenium nanoparticles their characterization and electrocatalytic properties, Chem. Mater. 2003, 15:451-459
    [103] Escudero M.J.a, Hontanon E., Schwartz S,et al., Development and performance characterisation of new electrocatalysts for PEMFC, J.Power Sources, 2002,106:206-214
    [104] Schmidt T. J., Noeske M., Gasteiger H. A.,et al., PtRu alloy colloids as precursors for fuel cell catalysts,J.Electrochem.Soc.,1998,145:925-931
    [105] Vogel W., Britz P., Bonnemann H., Structure and chemical composition of surfactant-stabilized PtRu alloy colloid,J. Phys. Chem. B 1997, 101:11029-11036
    [106] Schmidt T. J., Noeske M., Gasteiger H. A.,et al., Electrocatalytic activity of PtRu alloy colloids for CO and CO/H_2 electrooxidation: stripping voltammetry and rotating disk measurements, Langmuir, 1997,13: 2591-2595
    [107] Fuente A M, Pulgar G, Gonzalez F, Activated carbon supported Pt catalyst: effect of support texture and metal precursor on activity of acetone hydrogenation,Applied CatalysisA:General,2001,208:35-46
    [108] Amine K, Yansuda K, Takenaka H, New process for loading highly active platinum on carbon black surface for application in polymer electrolyte fuel cell, Ann. Chim. Sci. Mat.,1998,23:331-335
    [109] Gameza A,Richard D, GallEZot P, Oxyen reduction on well defined platinum nanoparticles inside recast ionomer,Electrochemica Acta, 1996, 41:307-314.
    [110] 金钦汉,微波化学,科学出版社,1999
    [111] Hansson L., Antti A.L, The effect of microwave drying on Norway spruce woods strength:a comparison with conventional drying, J. Mater. Processing Technol., 2003,141:41-50
    [112] Medeni Maskan, Kinetics of colour change of kiwifruits during hot air and microwave drying, J. Food Eng., 2001,48:169-175
    [113] Kocakusak S., Koroglu H.J., Tolun R., Drying of wet boric acid by microwave heating, Chem. Eng.Processing, 1998,37:197-201
    [114]Idris A, Khalid K., Omar W. , Drying of silica sludge using microwave heating, Appl.Therm. Eng., 2004,24: 905-918
    [115]Maghar S. Manhas, Bimal K. Banik, Arvind Mathur, et al. Vinyl-β -lactams as Effcient Synthons. Eco-friendly Approaches via Microwave Assisted Reactionsl,Tetrahedron,2000,56: 5587-5601
    [116]Smith F E,Arsenault E A,Microwave-assitsted sample preparation in analytical chemistry,Talanta, 1996,43:1207-1268
    [117]Agazzia A, Pirolab C,Fundamentals, methods and future trends of Environ-mental microwave sample preparation, Microchem. J., 2000, 67: 337-341
    [118]Cheng Jiping, Agrawal Dinesh, Zhang Yunjin, et al. Microwave sintering of transparent alumina, Mater. Lett., 2002,56: 587- 592
    [119]Ramakrishnan K.N. Powder particle size relationship in microwave synthesised ceramic powders, Mater.Sci.Eng. A, 1999, 259: 120-125
    [120]Masanobu Nakayama, Kyouhei Watanabe, Hiromasa Ikuta, et al. Grain size control of LiMn2O4 cathode material using microwave synthesis method ,Solid State Ionics,2003,164: 35- 42
    [121] Park Sang-Eon, Kim Dae Sung, Chang Jong-San, et al. Synthesis of MCM-41 using microwave heating with ethyleneglycol, Catalysis Today, 1998,44:301-308
    [123] Yu Weiyong, Tu Weixia, Liu Hanfan, Sythesi of nanoscale platinum colloids by microwave dielectric heating, Langmuir, 1999,15:6-9
    [124] Yu Weiyong, Liu Hanfan, Contiunous synthesis of colloidal metal nanoclusters by microwave irradiation, J. Mater. Chem., 2000,12:564-567
    [125]Tu Weixia, Liu Hanfan, Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation, J. Mater. Chem., 2000, 10:2207-2211
    [126]Komarneni S , Li D , Newalkar B ,et al.Microwave polyol process for Pt and Ag nanoparticles, Langmuir, 2002,18:5959-5962
    [127] Liao Xue-Hong, Wang Hui, Zhu Jun-Jie, er al.Preparation of Bi2S3 nanorods by microwave irradiation,Materials Research Bulletin 2001,36: 2339-2346
    [128] Zhu Jun-Jie , Wang Hui, Zhu Jian-Ming, et al.A rapid synthesis route for the preparation of CdS nanoribbons by microwave irradiation, Mater. Sci. Eng., 2002,B94:136-140
    [130]Wang Hui, Zhang Jian-Rong, Zhu Jun-Jie, A microwave assisted
     heating method for the rapid synthesis of sphalrite-type mercury sulfide nanocrystals with different sizes, J.Crystal Growth, 2001, 233:829-836
    [131] Xue-HongLiao, Nian-You Chena, Shu Xub, et al. A microwave assisted heating method for the preparation of copper sulfide nanorods, J. Crystal Growth,2003,252:593-598
    [132] Wang Hui, Xu Jin-Zhong, Zhu Jun-Jie, et al. Preparation of CuO nanoparticles by microwave irradiation J. Crystal Growth 2002, 244:88-94
    [133] Cirera A.,Vila A., Cornet A., Morante J.R, Properties of nanocrystalline SnO obtained by means of a microwave process,Mater. Sci.. Eng. C, 2001,15:203-205
    [134] Sridhar Komarneni, Maria Bruno, Emilia Mariani, Synthesis of ZnO with and without microwaves,Materials Research Bulletin,2000,35:1843-1847
    [135] Zhu Jun-Jie, Zhu Jian-Min, Liao Xue-Hong, et al. Rapid synthesis of nanocrystalline SnO powders by microwave heating method, Mater.Lett., 2002,53:12-19
    [136] Das Bharat. P., Panneerselvam M., Rao K.J A novel microwave route for the preparation of ZrC-SiC composites, J. Solid State Chem., 2003, 173:196-202
    [137] Gamez A, R ichard D, Gallezo t P, Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer,Electrochimica Acta, 1994, 41: 307-314
    [138] Schmidt T. J., Paulus U. A., Gasteiger H. A., et al. The oxygen reduction reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions J. Electroanal. Chem., 2001,508:41-47
    [139] 张立德,牟季美,纳米材料与纳米结构,北京科学出版社,2001
    [140] Howard G. Barth, Shao-Tang Sun, Robyn M. Nickol, Particle Size Analysis, Anal. Chem. 1987, 59: 142R-162R
    [141] A.J. Bard, L.R. Faulkner, Electrochemical Methods, 2nd ed (Chapter 13), Wiley, New York, 2001
    [142] Pozio A, De Francesco M, Cemmi A., et al. Comparison of high surface Pt/C catalysts by cyclic voltammetry, J. Power Sources, 2002, 105: 13-19
    [143] Minoru Umeda, Mitsuhiro Kokubo, Mohamed Mohamedi, et al., Porous-microelectrode study on Pt/C catalysts for methanol electro- oxidation, Electrochimica Acta, 2003,48:1367-1374
    [144]Iwasita T. Electrocatalysis of methanol oxidation .Electrochimica Acta, 2002, 47: 3663-3674
    [145] Kauranen P S, Skou E, Munk J, Kinetics of methanol oxidation on carbon-supported Pt and Pt+Ru catalysts,J.Electroanal.Chem., 1996,404:1 -13
    [146] Wasmus S., Kuver A., Methanol oxidation and direct methanol fuel cells: a selective review, J. Electroanal. Chem. 1999,461: 14-31
    [147]Hao Tang, Jinhua Chen, Lihua Nie, et al.High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs), J.Colloid Interface Sci. 2004,269:26-31
    [148]Gloauguen F,Leger J.-M, Lamy C, Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates, J. Appl. Electrochem, 1997,27:1052-1060
    [149]Watanabe M, Saegusa S. High platinum electrocatalsyt utilizations for direct methanol oxidation , J Electroanal. Chem. 1989,271:213-220.
    [150]Frelink T, Visscher W, Veen J.A.R. van. Particle size effect of carbon- supported platinum catalysts for the elcetrooxidation of methanol, J. Electroanal. Chem.1995, 382:65-72.
    [151]Stoyanova A., Naidenov V., Petrov K., et al. Effect of preparation conditions on the structure and catalytic activity of carbon-supported platinum for the electrooxidation of methanol, J. Appl. Electrochem.1999, 29:1197-1203
    [152]Hirohito Ogasawara, Masatoki Ito, Electro-oxidation of methanol on Pt(111) in acid solutions: effects of electrolyte anions during electro catalytic reactions, Chem. Phys. Lett.s ,1995,245:304-310
    [153]Vidal F, Busson B, Six C, Pluchery O, Tadjeddine A,SFG study of methanol dissociative adsorption at Pt(110), Pt(110)andPt(111) electrodes surfaces, Surface Science, 2002,502-503: 485-489
    [154] WangHongsen, Wingender Christoph, Baltruschat Helmut, et al. Methanol oxidation on Pt, PtRu, and colloidal Pt electro- catalysts: a DEMS study of product formation, J.Electroanal.Chem.,2001,509: 163-169
    [155]Jaeyoung Lee, Christian Eickes, Markus Eiswirth, et al. Electrochemical oscillations in the methanol oxidation on Pt, Electrochimica Acta, 2002,47:2297-2301
    [156]Krausa M.,Vieltich W., Potential oscillations during methanol oxidation at Pt-electrodes Part1:experimental conditions, J. Electroanal. Chem.,1995, 399:7-12
    [157] Sumio Iijima, Carbon nanotubes: past, present, and future, Physica B 2002, 323:1-5
    [158] Hongjie Dai Carbon nanotubes:opportunities and challenges, Surf. Sci., 2002, 500: 218-241
    [159]Niu C, Sichel E K, Hoch R, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett.,1997, 7:1480- 1482
    [160]Ma R Z, Liang J, Wei B Q, Study of electrochemical capacitors utilizing carbon nanotube electrodes, J.Power Sources,1999,84:126-129
    [161]Wang Q H, Setlur A A, Lauerhaas J M, A nanotube-based field emission flat panel display, Appl. Phys. Lett., 1998, 72: 2912-2913
    [162]Fan S, Chapline M G, Franklin N R, Self-oriented regular arrays of carbon nanotubes and their field mission properties, Science, 1999,283: 215 -514
    [163]Cheng Hui-Ming , Yang Quan-Hong, Liu Chang, Hydrogen storage in carbon nanotubes, Carbon ,2001,39: 1447-1454
    [164]Wang Qinyu, Karl Johnson J, Optimization of carbon nanotube arrays for hydrogen adsorption, J. Phys. Chem. B,1999, 103, 4809-4813
    [165] Nugent J. M., Santhanam K. S. V., Rubio A., et al. Fast electron transfer dinetics on multiwalled carbon nanotube microbundle electrodes, Nano Letters, 2001, 1 (2):87-91
    [166] Dai H, Wong EW, Lieber C M , Probing electrical transport in nano-materials: conductivity of individual carbon nanotubes, Science 1996,227: 523-526.
    [167]Steigerwalt Eve S, Deluga Gregg A, Cliffel David E, et al. A Pt-Ru / Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst, J. Phys. Chem. B, 2001, 105:8097-8101
    [168] E Steigerwalt ve S., Deluga Gregg A., Lukehart C. M., Pt-Ru/Carbon Fiber Nanocomposites: Synthesis, Characterization, and Performance as Anode Catalysts of Direct Methanol Fuel Cells. A Search for Exceptional Performance,!. Phys. Chem. B, 2002, 106:760-766
    [169] Rajesh B., Karthik V., Karthikeyana S., Thampi K.Ravindranathan,et
     al. Pt-WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells, Fuel , 2002, 81:177-2190
    [170] Carol A. Bessel, Kate Laubernds, Nelly M. Rodriguez,et al.,Graphite Nanofibers as an Electrode for Fuel Cell Applications,!. Phys. Chem. B, 2001, 105:1115-1118
    [171] Tang H., Chen J.H , Huang Z.P., et al. High dispersion and electro-catalytic properties of platinum on well-aligned carbon nanotube arrays, Carbon 2004,42:191-197
    [172]E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki, Capillarity and wetting of carbon nanotubes, Science 1994, 265: 1850-1852
    [173]Yu Rongqing, Chen Luwei, Liu Qiping, et al. Platinum Deposition on Carbon Nanotubes via Chemical Modification, Chem. Mater. 1998, 10:718 - 722
    [174]Vincenzo Lordi, Nan Yao, James Wei, Method for Supporting Platinum on Single-Carbon Nanotubes for a Selective Hydrogenation Catalyst, Chem. Mater. 2001, 13: 733-737
    [175] Liu Zhaolin, Lin Xuanhao, Lee Jim Yang, et al. Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes forProton Exchange Membrane Fuel Cells,Langmuir 2002, 18:4054-4060
    [176] Ang Li-Ming, Hor T. S. Andy, Xu Guo-Qin, et al.Electroless plating of metals onto carbon nanotubes activated by a single-step activation method, Chem. Mater. 1999,11: 2115- 2118
    [177]Cao Anyuan, Xu Cailu, Liang Ji, et al. X-ray diffraction characterization on the alignment degree of carbon nanotubes, Chem.phys. lett.,2001, 334:13-17
    [178]A.K. Shukla, M. Neergat, Parthasarathi Bera, et al. An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells,J. Electroanal. Chem.,2001,504: 111-119
    [179]Alderucci V, Pino L, Antonucci P L,et all.,,XPS study of surface oxidation of carbon-supported Pt catalysts, Mater. Chemi. Phys., 1995, 41: 9-14
    [180]Muoulder J F , Stickle W F, Sobol P E ,et al., Handbook of X-ray photoelectron spectroscopy,Ed.,Perkin-Elmer Corp.,Eden Prairie, MN,
     1992:181
    [181] Aksoylu Erhan A., Freitas Madalena M. A., Figueiredo Jose L., Bimetallic Pt-Sn catalysts supported on activated carbon I. The effects of support modify cation and impregnation strategy, Applied Catalysis A: General, 2000,192: 29-42
    [182]Takashi Kyotani, Li-fu Tsai ,Akira Tomita, Formation of platinum nanorods and nanoparticles in uniform carbon nanotubes prepared by a template carbonization method, Chem. Comraun., 1997:701-702
    [183]Andrew Chu, Jessica Cook, Rufus J. R. Heesom, et al. Filling of carbon nanotubes with silver, gold, and gold chloride,Chem. Mater. 1996, 8:2751-2754
    [184]Liu Suwen, Zhu Junjie, Mastai Yizhak, Preparation and Chartecteristics of Carbon Nanotubes Filled with Cobalt, Chem. Mater. 2000,12: 2205-2211
    [185]Keitaro Matsui, Bhabendra K Pradhan, Takashi Kyotani,et al. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes, J. Phys. Chem. B 2001, 105: 5682-5688
    [186]Guangli Che, Brinda B. Lakshmi, Charles R. Martin, et al. Metal- Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production, Langmuir, 1999, 15: 750-758
    [187]Paola Costamagna, Supramaniam Srinivasan, Quantum jumps in the PEM FC science and technology from the 1960s to the year 2000 Part Ⅰ.Fundamental scientific aspects, J. Power Sources 2001,102:242-252
    [188]Paola Costamagna, Supramaniam Srinivasan, Quantum jumps in the PEM FC science and technology from the 1960s to the year 2000 Part Ⅱ.Engineering, technology development and application aspects, J.Power Sources 2001, 102:253-269
    [189]Prater K., The renaissance of the solid polymer fuel cell, J Power Sources, 1990,29:239-250
    [190]Raistrick, Ian D, Electrode assembly for use in a solid polymer electrolyte fuel cells,US patent, 4876115, 1989
    [191] Lim, Chan, Chang, Hyuk, Method of forming catalyst layer for fuel cell, US patent 6344428, 2002
    [192]Wilson, Mahlon S, Membrane catalyst layer for fuel cells, US patent
     5211984, 1993
    [193]Wilson M S, Gottesfeld S, High performance catalyzed membrane of ultra-low Pt loading for PEMFCs, J. Electrochem. Soc, 1992,139:L28-L32
    [194]Wilson M S, Gottesfeld S, Thin-fim catalysts for polymerelectrolyte fuel cell electrodes, J.Appl.Electrochem., 1992,22:1-7
    [195]Swathirajan, Sundararajan,Mikhail, Youssef M, Method of making mem- brane electrode assemblies for electrochemical cells and assemblies made thereby, US patent, 5316871, 1994
    [196]Hulett, Jay S, Method of making MEA for PEM/SPE fuel cell, US patent ,674692, 2000
    [197]Hsu,Cheng Hsien,Wan, Chi Chao,et al., Method for manufacturing membrane electrode assembly of fuel cell, US patent ,6475249, 2002
    [198]Sergei Gamburzev, John Appleby A , Recent progress in performance im provement of the proton exchange membrane fuel cell (PEMFC), J. Power Sources 2002,107: 5-12
    [199]Song J M, Cha S Y, Lee W M, Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method, J. Power Sources, 2001,94:78-84
    [200]Morira J, Ocampo A L, Sebastian P J, et al. Influence of the hydrophobic material content in the gas diffusion electrodes on the performance of a PEM fuel cell,Inter. J. Hydrogen Energy,2003,28:625-627
    [201]Uchida M, Aoyama Y, Eda N, New method for polymer electrolyte fuel cells. J Electrochem Soc,1995, 142(2):463-469
    [202]Shin S J, Lee J K, Ha H Y, et al., Effect of the catalyst ink preparation method on the performance of polymer electrolyte membrane fuel cells, J. Power Sources, 2002, 106: 146-152
    [203]Tadros Th F, Industrial applications of dispersions, advances in colloid and interface, Science, 1993,46:1-3
    [204]Donet J. B., Structure and reactivity of carbons from carbon black to carbon composites, Carbon, 1982,20:266-271
    [205]Marek K., Zeta potentials in nonaqueous media: how to measure and control them, Colloids Surf.A:Physcochem. Eng.Aspects,1999,159:277-281
    [206]E1-Gholabzouri O , Cabrerizo M A ,Hidalgo-Alvarez R , The surface charge density influence on the electrokinetic properties of model colloids:solvent composition Effect, J Colloid Interface Sci.,1999,214:243
     243-250
    [207] Jiang L.Q.,Liao G., Effect Tiron adsorption on the colloidal stability of nano-sized alumina suspension, Mater. Chem. and Phys., 2003,80: 157-161
    [208] (捷) 瓦茨拉夫.谢迪维奇扬.夫列克,有机溶剂分析手册,化学工业出版社 1984
    [209] Hohlein B, Biedermann P, Grube T, et al. Fuel cell power trains for road traffic, J. Power Sources, 1999, 84:203-213
    [210] Antonucci Vicenzon, Direct methanol fuel cells for mobile applications applications: A strategy for the future, Fuel cell Bulletin 1999,7:6-8
    [211] Dohle H., Divisek J, Jung R, Process engineering of the direct methanl fuel cell, J. Power Sources 2000,86:469-477
    [212] Blum A, Duvdevani T, Philosoph M, et al. Water-neutral micro direct-methanol fuel cell(DMFC) for portable applications, J. Power Sources, 2003,117:22-25
    [213] Dillon R, Srinivasan S, Antonucci V, International activities in DMFC R&D: status of technologies and potential applications, J. Power Sources 2004,127:112-126
    [214] Jeffrey W Long, Rhonda M. Stroud, Karen E. Swider-Lyons, et al. How To Make Electrocatalysts More Active for Direct Methanol OxidationsAvoid PtRu Bimetallic Alloys, J. Phys. Chem. B 2000, 104: 9772-9776
    [215] Guo Q H , Pintauro N , Tang P , et al. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes, J.Membr. Sci., 1999, 154:175-181
    [216] Pivovar Bryan S , Wang Y X , Cussler E L , Pervaporation membranes in direct methanol fuel cells,J.Membr.Sci.,1999,154:155-162
    [217] Kuver A, Potjek K, Comparative study of methanol crossover across electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell, Electrochimica Acta, 1998, 43:2527-2535
    [218] Carretta N , Tricoli V , Picchioni F , Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation, J. Membr. Sci., 2000,166:189-197
    [219] Ma Z Q, Cheng P, Zhao T S, A palladium-alloy deposited Nafion mem brane for direct methanol fuel cells J. Membr. Sci., 2003, 215: 327-336
    [220]Yoon S R ,Hwang G H , Cho W I , et al. Modification of polymer electrolyte memebrens for DMFCs using Pd films formed by sputtering, J. Power Sources,2002,106:215-223
    [221]D H Jung, Cho S Y, Peck D H,et al. Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell, J. Power Sources, 2002,106:173-177
    [222]Staiti P, Srico A S, Baglio V,et al. Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells, Solid State Inoics,2001,145:101-107
    [223]Shao Zhi-gang, Wang Xin, Hsing I.-Ming, Composite Nafion/ polyvinyl alcohl membranes for the direct methanol fuel cell, J. Membr. Sci., 2002, 210:147-153
    [224]Li Liu, Cong Pu, Rameshkrishnan Viswanathan, et al.Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells, Electrochimica Acta, 1998, 43: 3657- 3663
    [225]Nobuyoshi Nakagawa, Yikun Xiu, Performance of a direct methanol fuel cell operated at atmospheric pressure, J. Power Sources, 2003, 118: 248-255
    [226]Neergat M , Shkla A K, Effect of diffusion-layer morphology on the perfor- mance of solid-plymer-elctrolyte direct methanol fuel cells, J. Power Sources, 2001, 104: 289-294
    [227]Gulzow E , Kaz T , Reissner R, et al. Study of membrane electrode assembilies of direct methanol fuel cells, J Power Sources, 2002, 105: 261-266
    [228]Doo Hwan Jung, Chang Hyeong Lee, Chang Soo Kim, et al. Performance of a direct methanol polymer electrolyte fuel cell, J. Power Sources, 1998,71:169-173
    [229]Scott K, Taama W, Performance of a direct methanol fuel cell, J. appl. Electrochem., 1998,28: 289-297
    [230]Scott K , Taama W M , Kramer S , et al, Limiting current behaviour of the direct methanol fuel cell, Electrochimica Acta, 1999,45:945-957
    [231]Satoru Hikita, Kimitaka Yamane, Yasuo Nakajima,Influence of cell pressure and amount of electrode catalyst in MEA on methanol crossover
     of direct methanol fuel cell, JSAE Review, 2002,23:133-135
    [232]Arico A.S., Cret(?) P., Baglio V., et al. Influence of flow field design on the performance of a direct methanol fuel cell, J.Power Sources, 2000, 91:202-209
    [233]Zhigang Qi, Arthur Kaufman, Open circuit voltage and methanol cross- over in DMFCs, J. Power Sources, 2002,110: 177-185
    [234]Huber A Gasteiger, Nenad Markovic, Philip N Ross, et al. Methanol Electrooxidation on well-characterized Pt-Ru alloys, J Phys. Chem., 1993, 97: 12020-12029
    [235] Tripkovic A V , Popovic K.D., Grgur B.N., et al. Methanol electro-oxidation on supported Pt and PtRu catalysts in acid and alkaline solutions, Electrochimica Acta, 2002,47: 3707-3714
    [236]Kauranen P S , Skou E , Munk J , Kinetcis of methanol oxidation on carbon-supported Pt and Pt+Ru catalysts, J. Electroanl. Chem., 1996, 404: 1-13
    [237]William H. Lizcano-Valbuena, Valdecir A. Paganin, Ernesto R. Gonzalez, Methanol electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C catalysts, Electrochimica Acta 2002, 47: 3715-3722
    [238]Ramya K , Dhathathreyan K S, Direct methanol fuel cells:determina-tion of fuel crossover in a polymer electrolyte membrane J. Electroanal. Chem., 2003,542:109-115
    [239] Chu Deryn, Gilmen Sol, Methanol electro-oxidation on unsupported Pt-Ru alloys at diffent temperatures, J. Electrochem. Sco.,1996,143: 1685-1689
    [240] Arico A. S., Creti P., Kim H., et al. Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt-Ru/C anode catalyst, J. Electrochem. Soc, 1996, 143: 3950-3959
    [241] Heinzel A , Barragan V M, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, J. Power Sources , 1999, 84:70-74
    [242]Chen C Y, Yang P, Performance of an air-breathing direct methanol fuel cell, J. Power Sources ,2003,123:37-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700