化学沉淀法脱除焦化废水中的氨氮
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了现有氨氮废水处理技术,针对现有的焦化废水处理工艺和氨氮不达标的现状,开发了化学沉淀法作为焦化废水处理系统的一个有益的补充,以解决氨氮超标的问题。
     采用武钢焦化公司不同部位的废水,研究了化学沉淀剂、pH值、反应温度、试剂投加量等因素对氨氮脱除效果的影响。探讨了在工业上应用的可能性。
     实验结果表明:三组化学沉淀剂(MgCl_2·6H_2O和Na_2HPO_4·12H_2O、MgO和H_3PO_4、Mg(OH)_2和H_3PO_4)都能有效地脱除焦化废水中的氨氮,而以MgCl_2·6H_2O和Na_2HPO_4·12H_2O脱除效果最好。
     理论分析和计算表明,脱除氨氮沉淀反应的最佳pH值为8.89,且与氨氮初始浓度无关;而适宜范围随着氨氮初始浓度的增加而增大。试验结果表明,脱除氨氮沉淀反应的最佳pH值范围为8.5~9.5。
     反应温度对氨氮脱除效果有较大的影响,反应温度升高,氨氮脱除率降低。
     化学沉淀剂投加量以按化学计量系数n(Mg~(2+)):n(NH_4~+):n(PO_4~(3-))=1:1:1时脱除氨氮的效果最好。增加投加量不但不会提高氨氮脱除率,反而增加操作费用和造成P的二次污染。
     当试验条件控制在pH值为8.5~9.5、常温、化学沉淀剂摩尔比为n(Mg~(2+)):n(NH_4~+):n(PO_4~(3-))=1:1:1时,可将氨氮浓度在500mg/L以下的混沉池水与均合池水脱至15mg/L以下,从而达标排放,氨氮脱除率达95%以上。而蒸氨废水的氨氮脱除率只有75%左右。
     实验和探讨表明,化学沉淀法可以作为焦化废水现有一段曝气法焦化污水处理工艺的一个有效补充,可在均合池或混沉池投加化学沉淀剂使氨氮指标达到排放标准。
Existing technologies for treating with wastewater containing ammonia nitrogen are reviewed in the paper. According to existing technologies for treating with coking wastewater and present situation on which ammonia nitrogen can' t meet the need of discharging standard, chemical precipitation used to improve the technology and solve the ammonia nitrogen problem is developed.
    Using coking wastewater from WISCO, various factors affecting on ammonia nitrogen removal rate such as chemical precipitators, pH value, reaction temperature, dosages etc. are researched. The possibility of application the chemical precipitation to industry production is investigated.
    Research results have shown that, three sets of chemical precipitators (MgCl2 6H20 and Na2HP04 12H20,MgO and H3P04, Mg(OH)2 and H3P04)can be used to remove the ammonia nitrogen effectively, but when MgCl2 6H20 and Na2HP04 12H20 are used, removal rate of ammonia nitrogen is highest.
    Theoretical analyses and calculation show that, optimum pH for removing ammonia nitrogen is 8. 89, besides the pH is independent of original concentration of ammonia nitrogen, but applicable range of the PH become broader with increase of original concentration of ammonia nitrogen. Experimentation shows that the range of optimum pH for removing ammonia nitrogen is 8. 5-9. 5.
    Reaction temperature has effect on removal of ammonia nitrogen. The reaction temperature rises, removal rate of ammonia nitrogen lowers.
    When the dosage of chemical precipitators is according to stoichiometric coefficient n(Mg2+) : n(NH4+) : n (P043-) =1 : 1 : 1, removal rate of ammonia nitrogen is highest. If increasing the dosage, operation cost would increase and secondary contamination of phosphorus would be produced.
    On the condition of pH 8.5-9.5, dosage n(Mg2+) : n(NH4+) : n (P043-) =1 : 1 : 1 and room temperature, ammonia nitrogen of coking wastewater from settling pond and from regulating pond with concentration less than 500mg/L can be lowered to less than 15mg/L and discharged on meeting the discharge standard, and the removal rate of ammonia nitrogen is up to more than 95%. But the removal rate of wastewater from distillation of ammonia is only 75%.
    Investigation and discussion show that the chemical precipitation is an effective means to improve the existing technologies for treating with coking wastewater, the chemical precipitators are added into regulating pond or settling
    
    
    pond to cause the index of ammonia nitrogen to meet the discharge standard.
引文
[1] 钱易等,环境保护与可持续发展,北京:高等教育出版社,2000,50~51
    [2] 周彤,污水的零费用脱氨,给水排水,2000,26(2):37~39
    [3] 汪大翚等,废水生物处理新技术,北京:中国环境科学出版社,1999,196~221
    [4] 郑学娟等,吹脱法去除垃圾渗滤液中的氨氮,浙江水利水电专科学校学报,2001,13(2):55~56
    [5] 郑林树、徐雪峰,AC废水的氨氮脱除,化工生产与技术,2001,8(6):34~35
    [6] 林奇,吹脱法处理中低浓度氨氮废水,福建环境,2000,17(6):35~37
    [7] 王有乐等,超声波吹脱技术处理高浓度氨氮废水试验研究,环境污染治理技术与设备,2001,2(2):59~63
    [8] 陈肇栋,焦化废水氨氮治理技术,1996,10(6):34~35
    [9] 泰裕等译,美国梅卡夫和埃迪公司,废水工程处理、处置及回用,北京化学工业出版社,1986,506~507
    [10] 中科院大连化物所分子筛组,沸石分子筛[M],北京:科学出版社,1978
    [11] 孙宝岐等,非金属矿深加工[M],北京:冶金出版社,1995
    [12] J. R. Klieve, M.J. Semmens. An Evaluation of Pretreated Natural Zeolites for Ammonium Removal [J]. Water Research, 1980,2(14): 161~168
    [13] O. Reyes, E. Sanchez, et al. A Comparative Study of Sand and Natural Zeolite Filtering Media in Teriary treatment of Wastewaters from Tourist Area[J]. J. ENVIRON. SCI. HEALTH, 1997, A32(g&10):2486~2496
    [14] 李晔等,沸石改性及其对氨氮废水处理效果的研究,非金属矿,2003,26(2):53~55
    [15] 袁俊生等,沸石法工业污水氨氮治理技术研究,环境污染治理技术与设备,2002,3(12):60~63
    [16] 刘宝敏,强酸性阳离子交换树脂对焦化废水中氨氮的去除作用,郑州工程学院学报,2003,24(1):46~48
    [17] 黄骏、陈建中,氨氮废水处理技术研究进展,环境污染治理技术与没备,2002,3(1):65~68
    [18] 张希衡,水污染控制工程,北京:冶金工业出版社,1993,282~286
    [19] 钱易,米祥友,现代废水处理新技术[M],北京:中国科技出版社,1993:109~111
    [20] 杜鸿章等,焦化污水催化湿式氧化净化技术[J],工业水处理,1996,16(6):11~13
    [21] 孙佩石,净化处理高浓度有机废水的催化湿式氧化法技术[J],云南化工,1996(4):53~57
    [22] 郝玉昆、孙佩石,湿式催化氧化法(CWO)处理高浓度有机废水研究,云南环境科学(增刊),2003,20卷:131~134
    [23] D F Ollis. Contaminant Degradation in Water[J]. Environ. Sci&Technol, 1985,19(6): 480
    [24] R W Mattews. PHotoxidation of Organix Material in Aqueous Suspensions of Titanium
    
    Dioxide[J]. Water Res, 1986, 20(5): 569~578
    [25] 孙振世、陈英旭,非均相光催化氧化研究进展[J].环境开发,1999,14(1):3~5
    [26] 徐锐、尹卫平,光催化氧化法处理氨氮废水的研究,郑州工程学院学报,2003,24(3):84~87
    [27] Kenichi Ebata. Karoru Ichimaru, Kyoji Ton. Ammonia removal from wastewaters. Japan. Kokai 77 04, 649.1997
    [28] Hiroshi Ono. Naoki Okada. Removal of ammonical nitrogen from wastewaters. Japan. Kokai 77 155.860.1997
    [29] Katsuyuki Kataoka. Treatment of waste regeneration solutions ion exchange of wastewaters. Japan. Kokai 78 67,675.1978
    [30] Mieczysla Biskupski, Miezyalaw Borowik, Marianna Tatareki. Recovery of ammonium and nitrate ions from wastewater and their conversion to mineral fertilizers. CA. 1990.113:190339q
    [31] R. Schulze—Rettmer, Koresp. Abwasser, 1992.39(4):550~554,557~559
    [32] R. Schulze—Rettmer, Vom Waster, 1988.71,41~53
    [33] P.H Liao. Biomass Bioenergy, 1993.4(5):365~71
    [34] 谢炜平,废水中氨氮的去除与利用,环境导报,1999,1:14~15
    [35] 钟理等,化学沉淀法除去废水中的氨氮及其反应的探讨,重庆环境科学,2000,22(6):54~56,71
    [36] 潘终胜等,化学沉淀法去除垃圾渗滤液中氨氮的试验研究,桂林工学院学报,2003,23(1):89~92
    [37] 黄稳水等,磷酸铰镁法预处理高浓度氨氮废水的研究,工业水处理,2003,23(10):34~36
    [38] 刘刚、丁雪红等,化学沉淀法处理氨氮废水技术[J].环境工程,1998,16(5):24~27
    [39] 李锋等,序批式反应器中运用固定化细胞技术处理氨氮废水[J].给水排水,2000,26(1):63~65
    [40] Jetten M S M. Towards a more sustainable municipal wastewater treatment system[J]. Water Sci Techi, 1997,35(9):171~180
    [41] Hellinga C, schellen A A J C, Mulder J W. The sharon process: an innovative method for nitrogen removal from ammonium—rich wastewater[J]. War Res, 1998,37:135~142
    [42] Christine Helmet, Sabine Kunset. Simultaneous nitrification/denitrification in an aerobic biofilm system[J]. War Sci Tech, 1998,37(4—5):183~187
    [43] 刘鹤年,厌氧好氧生物脱氮一紫凝法处理焦化废水[J].化工环保,1995,15(6):151~158
    [44] 马雁林,焦化废水生物脱氮处理开工调试[J].给水排水,2000,26(12):50~53
    [45] 戴树桂,环境化学[M],北京:高等教育出版社,1997
    [46] 王玮,焦化废水治理技术现状及进展[J].冶金环境保护,1999,4:16
    [47] 赵庆良、李湘中,化学沉淀法去除垃圾渗滤液中的氨氮[J].环境科学,1999,20(5):90~92
    [48] 仝武刚、王继徽,磷酸铵镁除磷脱氮技术,工业用水与废水,2002,33(5):4~6
    
    
    [49] 张力军,中国环境保护手册[S],海洋出版社。
    [50] 王九思等编著,水处理化学,北京,化学工业出版社,2002
    [51] R. Schulze—Rettmer. wat. Sci. tech, 1991, 23 (4) :659~667
    [52] 王莲清,化学世界,1963,4(1):46
    [53] 周娟贞,化学沉淀法治理高浓度氨氮废水研究[J].净水技术,1992,11(4):13~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700