用户名: 密码: 验证码:
拟南芥微管去稳定蛋白MDP25调控花粉管生长机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花粉萌发和花粉管生长是植物有性生殖的重要环节。花粉粒在柱头上萌发并产生花粉管,花粉管沿着花柱快速生长到达珠孔,而后花粉管停止生长并破裂,释放精子进入胚珠完成双受精。因此,从正、负两个方面调控花粉管的生长有着重要的生理学意义。微丝骨架在花粉管生长过程中起着重要的作用,其组织排列及动态变化受到很多信号分子(如Ca2+,pH值等)的调控,但具体的机制仍需要进一步的研究。
     本文以拟南芥花粉管为研究对象,对花粉管中微丝骨架的组织及动态进行研究,探讨了具有Ca2+结合活性的微管去稳定蛋白MICROTUBULE-DESTABILIZING PROTEIN25(MDP25)在抑制花粉管生长过程中的作用及调控花粉管内微丝骨架的分子机制。
     Genevestigator (http://www.genevestigator.ethz.ch)数据库中基因芯片数据显示MDP25在花粉中有表达;GUS染色结果也表明MDP25在花粉粒和花粉管中均有表达。对花粉体外的萌发和生长进行分析及苯胺蓝染色实验均发现MDP25功能缺失突变体(mdp25-1)的花粉管的生长速率比野生型的高。
     在本研究中,首先利用原核表达系统,从大肠杆菌中纯化出具有生物学活性的MDP25的融合蛋白。共沉淀分析结果表明MDP25可以在体外直接结合微丝。体外荧光观察和TIRFM实验结果表明MDP25可以切割微丝,而且MDP25切割微丝的功能可能不依赖于Ca2+,但能被Ca2+增强。
     进一步对MDP25亚细胞定位进行分析,发现MDP25在花粉管内亚细胞定位受Ca2+调控,花粉管顶端和亚顶端区域中较高浓度的Ca2+使MDP25从细胞膜上脱离下来进入了细胞质中。对花粉管内微丝进行分析发现,与野生型花粉管内的微丝相比,mdp25-1花粉管亚顶端的微丝束更大,密度更高;实时动态观察进一步表明mdp25-1花粉管亚顶端微丝的切割频率明显降低。
     此外,体外生化分析结果表明MDP25氨基酸序列中的微管解聚位点突变蛋白(MDP25K7A和MDP25K18A)对微丝的结合能力和切割活性没有明显的变化;而微丝切割位点突变蛋白(MDP25N5A)的微丝结合能力及切割活性显著降低,但其对微管的去稳定能力没有明显变化。遗传学分析表明PMDP25:MDP25,PMDP25:MDP25K7A和PMDP25:MDP25K18A能将mdp25-1花粉管的表型恢复到野生型水平,而PMDP25:MDP25N5A却不能互(?)mdp25-1花粉管的表型,说明MDP25对花粉管生长的影响是通过调控微丝骨架而不是通过调控微管骨架实现的。
     综上所述,本论文的研究结果表明MDP25是一个新的受Ca2+调控的微丝结合蛋白,MDP25通过切割微丝调控花粉管亚顶端微丝的组织和动态,进而影响花粉管的生长。
The germination and growth of pollen tube play a crucial role in plant gamogenesis. Pollen grains germinate and produce pollen tubes on the stigma of the pistil, which grow through the style and are guided to the micropylar. Then the growth of pollen tubes is arrested and the tube tips rupture to release the sperm cells. Therefore, the positive and negative regulation of pollen tube growth have important physiological significances. Actin filaments play critical roles in regulation of pollen tube growth. The organization and dynamics of actin fimaments are regulated by many developmental signals and environmental cues. However, the regulation mechanisms of actin filament organization and dynamics are poorly understood.
     In this study, we investigated the actin filament orgnization and dynamics in Arabidopsis pollen tubes and the role of a calcium-binding and microtubule-destabilizing protein (MDP25) in negative regulation of pollen tube growth by modulating the actin cytoskeleton in the subapical region.
     The data from the Affymetrix AG and ATH1GeneChip arrays in the Genevestigator database (http://www.genevestigator.ethz.ch) indicate that MDP25is expressed in pollen. GUS staining aslo revealed that MDP25was expressed in the pollen and pollen tubes. Statistical analysis indicated that the growth rate of mdp25-1pollen tubes was significantly higher than that of wild-type. Furthermore, aniline blue staining showed that mdp25-1pollen tube grow faster than wild-type pollen tube.
     Recombinant MDP25was expressed and purified from Escherichia coli. Cosedimentation assay showed that recombinant MDP25directly binds F-actin in vitro. Confocal observation and TIRFM assay revealed that MDP25is capable of severing actin filaments and the severing activity of MDP25is significantly enhanced in the presence of Ca2+in vitro.
     Sub-cellular localization assay showed that MDP25-GFP was mainly localized in the plasma membrane at the shank region of the pollen tube, but was absent at the membrane of the subapical and apex regions. A fluorescence microscopy assay showed that the mutated MDP25protein (Ca2+-binding site) is predominantly localized to the plasma membrane along the whole length of the pollen tube. The F-actin-severing frequency was significantly decreased and high density of actin filaments was observed in the subapical region of pollen tubes from the mdp25-1mutant.
     MDP25K7A and MDP25K18A exhibited similar actin filament binding and severing activity as wild-type MDP25. MDP25N5A maintained normal function on microtubules, however lost its actin filament binding and severing activity. Genetic evidence demonstrates that MDP25regulates pollen tube elongation by regulating actin filaments, but not by its microtubule-destabilizing activity.
     Our study suggests that Arabidopsis MDP25is a novel actin binding protein (ABP) regulated by Ca2+and MDP25is involved in negative regulation of pollen tube growth by modulating the actin cytoskeleton in the subapical region via its F-actin-severing activity.
引文
Andrianantoandro, E., and Pollard, T.D. (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol. Cell 24,13-23.
    Berger, F., and Twell, D. (2011). Germline specification and function in plants. Annu. Rev. Plant Biol. 62,461-484.
    Blanchoin, L., and Staiger, C.J. (2010). Plant formins:diverse isoforms and unique molecular mechanism. Biochim. Biophys. Acta.1803,201-206.
    Boevink, P., Oparka, K., Cruz, S.S., Martin, B., Betteridge, A., and Hawes, C. (1998). Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J.15,441-447.
    Borg, M., Brownfield, L., and Twell, D. (2009). Male gametophyte development:a molecular perspective. J. Exp. Bot.60,1465-1478.
    Bove, J., Vaillancourt, B., Kroeger, J., Hepler, P.K., Wiseman, P.W., and Geitmann, A. (2008). Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol.147, 1646-1658.
    Cai, G., and Cresti, M. (2009). Organelle motility in the pollen tube:a tale of 20 years. J. Exp. Bot.60, 495-508.
    Cai, G., and Cresti, M. (2010). Microtubule motors and pollen tube growth--still an open question. Protoplasma 247,131-143.
    Cardenas, L., Lovy-Wheeler, A., Kunkel, J.G., and Hepler, P.K. (2008). Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol. 146,1611-1621.
    Carlier, M.F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.X., Hong, Y., Chua, N.H., and Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover:implication in actin-based motility. J. Cell Biol.136,1307-1322.
    Chaudhry, F., Guerin, C., von Witsch, M., Blanchoin, L., and Staiger, C.J. (2007). Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin. Mol. Biol. Cell 18,3002-3014.
    Chebli, Y., Kaneda, M., Zerzour, R., and Geitmann, A. (2012). The cell wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol.160, 1940-1955.
    Chebli, Y., Kroeger, J., and Geitmann, A. (2013). Transport logistics in pollen tubes. Mol. Plant 6, 1037-1052.
    Chen, C.Y., Wong, E.I., Vidali, L., Estavillo, A., Hepler, P.K., Wu, H.M., and Cheung, A.Y. (2002). The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14,2175-2190.
    Chen, N., Qu, X., Wu, Y., and Huang, S. (2009). Regulation of actin dynamics in pollen tubes:control of actin polymer level. J. Integr. Plant Biol.51,740-750.
    Cheung, A.Y., Duan, Q.H., Costa, S.S., de Graaf, B.H., Di Stilio, VS., Feijo, J., and Wu, H.M. (2008). The dynamic pollen tube cytoskeleton:live cell studies using actin-binding and microtubule-binding reporter proteins. Mol. Plant 1,686-702.
    Cheung, A.Y., Niroomand, S., Zou, Y., and Wu, H.M. (2010). A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc. Natl. Acad. Sci. USA 107,16390-16395.
    Cheung, A.Y., and Wu, H.M. (2004). Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16,257-269.
    Cheung, A.Y., and Wu, H.M. (2008). Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu. Rev. Plant Biol.59,547-572.
    Cole, R.A., and Fowler, J.E. (2006). Polarized growth:maintaining focus on the tip. Curr. Opin. Plant Biol.9,579-588.
    Cooper, J.A., and Sept, D. (2008). New insights into mechanism and regulation of actin capping protein. Int. Rev. Cell Mol. Biol.267,183-206.
    Deeks, M.J., Fendrych, M., Smertenko, A., Bell, K.S., Oparka, K., Cvrckova, F., Zarsky, V., and Hussey, P.J. (2010). The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J. Cell Sci.123,1209-1215.
    Deeks, M.J., Rodrigues, C., Dimmock, S., Ketelaar, T., Maciver, S.K., Malho, R., and Hussey, P.J. (2007). Arabidopsis CAP1-a key regulator of actin organisation and development. J. Cell Sci.120, 2609-2618.
    Del Casino, C., Li, Y.-Q., Moscatelli, A., Scali, M., Tiezzi, A., and Cresti, M. (1993). Distribution of microtubules during the growth of tobacco pollen tubes. Biol. Cell 79,125-132.
    Dos Remedios, C., Chhabra, D., Kekic, M., Dedova, I., Tsubakihara, M., Berry, D., and Nosworthy, N. (2003). Actin binding proteins:regulation of cytoskeletal microfilaments. Physiol. Rev.83, 433-473.
    Dresselhaus, T. (2006). Cell-cell communication during double fertilization. Curr. Opin. Plant Biol.9, 41-47.
    Dresselhaus, T., and Franklin-Tong, N. (2013). Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6,1018-1036.
    Estes, J.E., Selden, L.A., Kinosian, H.J., and Gershman, L.C. (1992). Tightly-bound divalent cation of actin. J. Muscle Res. Cell M.13,272-284.
    Fan, X., Hou, J., Chen, X., Chaudhry, F., Staiger, C.J., and Ren, H. (2004). Identification and characterization of a Ca2+-dependent actin filament-severing protein from lily pollen. Plant Physiol. 136,3979-3989.
    Fayant, P.. Girlanda, O., Chebli, Y., Aubin, C.E., Villemure, I., and Geitmann, A. (2010). Finite element model of polar growth in pollen tubes. Plant Cell 22,2579-2593.
    Fleurat-Lessard, P., Roblin, G., Bonmort, J., and Besse, C. (1988). Effects of colchicine, vinblastine, cytochalasin B and phalloidin on the seismonastic movement of Mimosa pudica leaf and on motor cell ultrastructure. J. Exp. Bot.39,209-221.
    Fu, Y., Wu, G., and Yang, Z. (2001). Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J. Cell Biol.152,1019-1032.
    Gibbon, B.C., Kovar, D.R., and Staiger, C.J. (1999). Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11,2349-2363.
    Gibbon, B.C., Zonia, L.E., Kovar, D.R., Hussey, P.J., and Staiger, C.J. (1998). Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell 10,981-993.
    Gossot, O., and Geitmann, A. (2007). Pollen tube growth:coping with mechanical obstacles involves the cytoskeleton. Planta 226,405-416.
    Gu, Y, Fu, Y, Dowd, P., Li, S., Vernoud, V., Gilroy, S., and Yang, Z. (2005). A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J. Cell Biol.169,127-138.
    Guan, Y., Guo, J., Li, H., and Yang, Z. (2013). Signaling in pollen tube growth:crosstalk, feedback, and missing links. Mol. Plant 6,1053-1064.
    Gungabissoon, R.A., Jiang, C.J., Drobak, B.K., Maciver, S.K., and Hussey, P.J. (1998). Interaction of maize actin depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J.16,689-696.
    Harholt, J., Suttangkakul, A., and Vibe Scheller, H. (2010). Biosynthesis of pectin. Plant Physiol.153, 384-395.
    Helling, D., Possart, A., Cottier, S., Klahre, U., and Kost, B. (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18,3519-3534.
    Henty, J.L., Bledsoe, S.W., Khurana, P., Meagher, R.B., Day, B., Blanchoin, L., and Staiger, C.J. (2011). Arabidopsis actin depolymerizing factor4 modulates the stochastic dynamic behavior of actin filaments in the cortical array of epidermal cells. Plant Cell 23,3711-3726.
    Hepler, P.K., Vidali, L., and Cheung, A.Y. (2001). Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol.17,159-187.
    Holdaway-Clarke, T.L., Feijo, J.A., Hackett, G.R., Kunkel, J.G., and Hepler, P.K. (1997). Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9,1999-2010.
    Huang, S., Blanchoin, L., Chaudhry, F., Franklin-Tong, V.E., and Staiger, C.J. (2004). A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J. Biol. Chem.279,23364-23375.
    Huang, S., Blanchoin, L., Kovar, D.R., and Staiger, C.J. (2003). Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J. Biol. Chem.278, 44832-44842.
    Huang, S., Gao, L., Blanchoin, L., and Staiger, C.J. (2006). Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol. Biol. Cell 17,1946-1958.
    Huang, S., Jin, L., Du, J., Li, H., Zhao, Q., Ou, G., Ao, G., and Yuan, M. (2007). SB401, a pollen-specific protein from Solanum berthaultii, binds to and bundles microtubules and F-actin. Plant J.51,406-418.
    Huang, S., Robinson, R.C., Gao, L.Y., Matsumoto, T., Brunet, A., Blanchoin, L., and Staiger, C.J. (2005). Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization. Plant Cell 17,486-501.
    Hussey, P.J., Ketelaar, T., and Deeks, M.J. (2006). Control of the actin cytoskeleton in plant cell growth. Annu. Rev. Plant Biol.57,109-125.
    Hwang, J.U., Gu, Y., Lee, Y.J., and Yang, Z. (2005). Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol. Biol. Cell 16,5385-5399.
    Hwang, J.U., Wu, G., Yan, A., Lee, Y.J., Grierson, C.S., and Yang, Z. (2010). Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity. J. Cell Sci.123,340-350.
    Ide, Y., Nagasaki, N., Tomioka, R., Suito, M., Kamiya, T., and Maeshima, M. (2007). Molecular properties of a novel, hydrophilic cation-binding protein associated with the plasma membrane. J. Exp. Bot.58,1173-1183.
    Ischebeck, T., Seiler, S., and Heilmann, I. (2010). At the poles across kingdoms:phosphoinositides and polar tip growth. Protoplasma 240,13-31.
    Ischebeck, T., Stenzel. I., Hempel, F., Jin, X., Mosblech, A., and Heilmann. I. (2011). Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J.65,453-468.
    Iwano, M., Entani, T., Shiba, H., Kakita, M., Nagai, T., Mizuno, H., Miyawaki, A., Shoji, T., Kubo, K., Isogai, A., et al. (2009). Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol.150,1322-1334.
    Kadota, A., Yamada, N., Suetsugu, N., Hirose, M., Saito, C., Shoda, K., Ichikawa, S., Kagawa, T., Nakano, A., and Wada, M. (2009). Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc. Natl. Acad. Sci. USA 106,13106-13111.
    Kandasamy, M.K., McKinney, E.C., and Meagher, R.B. (2009). A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 21,701-718.
    Kandasamy, M.K., and Meagher, R.B. (1999). Actin-organelle interaction:Association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil. Cytoskeleton 44,110-118.
    Kanzawa, N., Hoshino, Y., Chiba, M., Hoshino, D., Kobayashi, H., Kamasawa, N., Kishi, Y., Osumi, M., Sameshima, M., and Tsuchiya, T. (2006). Change in the actin cytoskeleton during seismonastic movement of Mimosa pudica. Plant Cell Physiol.47,531-539.
    Karpova, T.S., Tatchell, K., and Cooper, J.A. (1995). Actin filaments in yeast are unstable in the absence of capping protein or fimbrin. J. Cell Biol.131,1483-1493.
    Kato, M., Nagasaki, N., Ide, Y., and Maeshima, M. (2010). An Arabidopsis hydrophilic Ca2+-binding protein with a PEVK-Rich domain, PCaP2, is associated with the plasma membrane and interacts with calmodulin and phosphatidylinositol phosphates. Plant Cell Physiol.51,366-379.
    Khurana, S., and George, S.P. (2008). Regulation of cell structure and function by actin-binding proteins: villin's perspective. FEBS Lett.582,2128-2139.
    Kinosian, H., Selden, L., Estes, J., and Gershman, L. (1993). Nucleotide binding to actin. Cation dependence of nucleotide dissociation and exchange rates. J. Biol. Chem.268,8683-8691.
    Kohno, T., and Shimmen, T. (1987). Ca2+-induced fragmentation of actin filaments in pollen tubes. Protoplasma 141,177-179.
    Kong, S.G., Arai, Y., Suetsugu, N., Yanagida, T., and Wada, M. (2013). Rapid severing and motility of chloroplast-actin filaments are required for the chloroplast avoidance response in Arabidopsis. Plant Cell 25,572-590.
    Kost, B., Spielhofer, P., and Chua, N.H. (1998). A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J.16, 393-401.
    Kotchoni, S.O., Zakharova, T., Mallery, E.L., Le, J., El-Assal Sel, D., and Szymanski, D.B. (2009). The association of the Arabidopsis actin-related protein2/3 complex with cell membranes is linked to its assembly status but not its activation. Plant Physiol.151,2095-2109.
    Kovar, D.R., Staiger, C.J., Weaver, E.A., and McCurdy, D.W. (2000). AtFiml is an actin filament crosslinking protein from Arabidopsis thaliana. Plant J.24,625-636.
    Laitiainen, E., Nieminen, K., Vihinen, H., and Raudaskoski, M. (2002). Movement of generative cell and vegetative nucleus in tobacco pollen tubes is dependent on microtubule cytoskeleton but independent of the synthesis of callose plugs. Sex Plant Reprod.15,195-204.
    Lee, Y.J., Szumlanski, A., Nielsen, E., and Yang, Z. (2008). Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J. Cell Biol.181, 1155-1168.
    Lee, Y.J., and Yang, Z. (2008). Tip growth:signaling in the apical dome. Curr. Opin. Plant Biol.11, 662-671.
    Li, H., Lin, Y., Heath, R.M., Zhu, M.X., and Yang, Z. (1999). Control of pollen tube tip growth by a ROP GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11, 1731-1742.
    Li, H., Wu, G., Ware, D., Davis, K.R., and Yang, Z. (1998). Arabidopsis Rho-related GTPases: differential gene expression in pollen and polar localization in fission yeast. Plant Physiol.118, 407-417.
    Li, J., Wang, X., Qin, T., Zhang, Y., Liu, X., Sun, J., Zhou, Y., Zhu, L., Zhang, Z., Yuan, M., et al. (2011). MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. Plant Cell 23,4411-4427.
    Li, S., Gu, Y., Yan, A., Lord, E., and Yang, Z. (2008). RIP1 (ROP Interactive Partner 1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth. Mol. Plant 1,1021-1035.
    Lin, Y., and Yang, Z. (1997). Inhibition of pollen tube elongation by microinjected anti-Rop1Ps antibodies suggests a crucial role for Rho-type GTPases in the control of tip growth. Plant Cell 9, 1647-1659.
    Lovy-Wheeler, A., Cardenas, L., Kunkel, J.G., and Hepler, P.K. (2007). Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil. Cytoskeleton 64,217-232.
    Lovy-Wheeler, A., Kunkel, J.G., Allwood, E.G., Hussey, P.J., and Hepler, P.K. (2006). Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell 18,2182-2193.
    Lovy-Wheeler, A., Wilsen, K.L., Baskin, T.I., and Hepler, P.K. (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221, 95-104.
    Mathur, J., Mathur, N., Kernebeck, B., and Hulskamp, M. (2003a). Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15,1632-1645.
    Mathur, J., Mathur, N., Kirik, V, Kernebeck, B., Srinivas, B.P., and Hulskamp, M. (2003b). Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130,3137-3146.
    Meijer, H.J., and Munnik, T. (2003). Phospholipid-based signaling in plants. Annu. Rev. Plant Biol.54, 265-306.
    Messerli, M.A., Creton, R., Jaffe, L.F., and Robinson, K.R. (2000). Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev. Biol.222,84-98.
    Michard, E., Lima, P.T., Borges, F., Silva, A.C., Portes, M.T., Carvalho, J.E., Gilliham, M., Liu, L.H., Obermeyer, G., and Feijo, J.A. (2011). Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332,434-437.
    Michelot, A., Guerin, C., Huang, S., Ingouff, M., Richard, S., Rodiuc. N., Staiger, C.J., and Blanchoin, L. (2005). The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell 17,2296-2313.
    Moscatelli, A. (2008). Endocytic pathways in pollen tube. Plant Signal Behav.3,325-327.
    Nagasaki, N.. Tomioka, R., and Maeshima, M. (2008). A hydrophilic cation-binding protein of Arabidopsis thaliana, AtPCaPl, is localized to plasma membrane via N-myristoylation and interacts with calmodulin and the phosphatidylinositol phosphates PtdIns(3,4,5)P3 and PtdIns(3,5)P2. FEBS J.275,2267-2282.
    Oikawa, K., Kasahara, M., Kiyosue, T., Kagawa, T., Suetsugu, N., Takahashi, F., Kanegae, T., Niwa, Y., Kadota, A., and Wada, M. (2003). Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15,2805-2815.
    Ono, S., Minami, N., Abe, H., and Obinata, T. (1994). Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle. J. Biol. Chem.269,15280-15286.
    Palanivelu, R., and Tsukamoto, T. (2012). Pathfinding in angiosperm reproduction:pollen tube guidance by pistils ensures successful double fertilization. Wiley Interdiscip Rev. Dev. Biol.1,96-113.
    Park, S.K., Howden, R., and Twell, D. (1998). The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Develop.125, 3789-3799.
    Pierson, E.S., Miller, D.D., Callaham, D.A., Shipley, A.M., Rivers, B.A., Cresti, M., and Hepler, P.K. (1994). Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient:effect of BAPTA-type buffers and hypertonic media. Plant Cell 6,1815-1828.
    Pierson, E.S., Miller, D.D., Callaham, D.A., van Aken, J., Hackett, G., and Hepler, P.K. (1996). Tip-localized calcium entry fluctuates during pollen tube growth. Dev. Biol.174,160-173.
    Pollard, T.D., Blanchoin, L., and Mullins, R.D. (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomolec. Struct.29,545-576.
    Qin, T., Li, J., Yuan, M., and Mao, T. (2012). Characterization of the role of calcium in regulating the microtubule-destabilizing activity of MDP25. Plant Signal Behav.7,708-710.
    Qin, Y., and Yang, Z. (2011). Rapid tip growth:insights from pollen tubes. Semin. Cell Dev. Biol.22, 816-824.
    Qu, X., Zhang, H., Xie, Y., Wang, J., Chen, N., and Huang, S. (2013). Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25, 1803-1817.
    Rato, C., Monteiro, D., Hepler, P.K., and Malho, R. (2004). Calmodulin activity and cAMP signalling modulate growth and apical secretion in pollen tubes. Plant J.38,887-897.
    Rockel, N., Wolf, S., Kost, B., Rausch, T., and Greiner, S. (2008). Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J.53,133-143.
    Romagnoli, S., Cai, G., and Cresti, M. (2003). In vitro assays demonstrate that pollen tube organelles use kinesin-related motor proteins to move along microtubules. Plant Cell 15,251-269.
    Romagnoli, S., Cai, G., Faleri, C., Yokota, E., Shimmen, T., and Cresti, M. (2007). Microtubule-and actin filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement. Plant Cell Physiol.48,345-361.
    Ruzicka, D.R., Kandasamy, M.K., McKinney, E.C., Burgos-Rivera, B., and Meagher, R.B. (2007). The ancient subclasses of Arabidopsis ACTIN DEPOLYMERIZING FACTOR genes exhibit novel and differential expression. Plant J.52,460-472.
    Sanati Nezhad, A., Naghavi, M., Packirisamy, M., Bhat, R., and Geitmann, A. (2013). Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. Proc. Natl. Acad. Sci. USA 110,8093-8098.
    Scott, R.J., Spielman, M., and Dickinson, H.G. (2004). Stamen structure and function. Plant Cell 16 Suppl, S46-60.
    Shimizu, K.K., and Okada, K. (2000). Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Develop.127,4511-4518.
    Shimmen, T., and Yokota, E. (2004). Cytoplasmic streaming in plants. Curr. Opin. Cell Biol.16,68-72.
    Small, J.V. (1995). Getting the actin filaments straight:nucleation-release or treadmilling? Trends Cell Biol.5,52-55.
    Smertenko, A.P., Allwood, E.G., Khan, S., Jiang, C.J., Maciver, S.K., Weeds, A.G., and Hussey, P.J. (2001). Interaction of pollen-specific actin-depolymerizing factor with actin. Plant J.25,203-212.
    Snowman, B.N., Kovar, D.R., Shevchenko, G., Franklin-Tong, V.E., and Staiger, C.J. (2002). Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell 14,2613-2626.
    Staiger, C.J., and Blanchoin, L. (2006). Actin dynamics:old friends with new stories. Curr. Opin. Plant Biol.9,554-562.
    Staiger, C.J., Poulter, N.S., Henty, J.L., Franklin-Tong, V.E., and Blanchoin, L. (2010). Regulation of actin dynamics by actin-binding proteins in pollen. J. Exp. Bot.61,1969-1986.
    Steinhorst, L., and Kudla, J. (2013). Calcium-a central regulator of pollen germination and tube growth. Biochim. Biophys. Acta.1833,1573-1581.
    Strome, S., and Lehmann, R. (2007). Germ versus soma decisions:lessons from flies and worms. Science 316,392-393.
    Su, S., Liu, Z., Chen, C., Zhang, Y., Wang, X., Zhu, L., Miao, L., Wang, X.C., and Yuan, M. (2010). Cucumber Mosaic Virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22,1373-1387.
    Suetsugu, N., Yamada, N., Kagawa, T., Yonekura, H., Uyeda, T.Q., Kadota, A., and Wada, M. (2010). Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107,8860-8865.
    Svitkina, T.M., and Borisy, G.G. (1999). Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol.145, 1009-1026.
    Szymanski, D.B. (2009). Plant cells taking shape:new insights into cytoplasmic control. Curr. Opin. Plant Biol.12,735-744.
    Szymanski, D.B., and Cosgrove, D.J. (2009). Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr. Biol.19, R800-811.
    Takagi, S., Takamatsu, H., and Sakurai-Ozato, N. (2009). Chloroplast anchoring:its implications for the regulation of intracellular chloroplast distribution. J. Exp. Bot.60,3301-3310.
    Takayama, S., Shiba, H., Iwano, M., Asano, K., Hara, M., Che, F.S., Watanabe, M., Hinata, K., and Isogai, A. (2000). Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen-stigma adhesion. Proc. Natl. Acad. Sci. USA 97,3765-3770.
    Tang, X.J., Hepler, P.K., and Scordilis, S.P. (1989). Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide in Nicotiana pollen tubes. J. Cell Sci.92, 569-574.
    Thomas, C., Hoffmann, C., Dieterle, M., Van Troys, M., Ampe, C., and Steinmetz, A. (2006). Tobacco WLIM1 is a novel F-actin binding protein involved in actin cytoskeleton remodeling. Plant Cell 18, 2194-2206.
    Thomas, C., Moreau, F., Dieterle, M., Hoffmann, C., Gatti, S., Hofmann, C., Van Troys, M., Ampe, C., and Steinmetz, A. (2007). The LIM domains of WLIM1 define a new class of actin bundling modules. J. Biol. Chem.282,33599-33608.
    Thomas, C., Tholl, S., Moes, D., Dieterle, M., Papuga, J., Moreau, F., and Steinmetz, A. (2009). Actin bundling in plants. Cell Motil. Cytoskeleton 66,940-957.
    Tominaga, M., Yokota, E., Vidali, L., Sonobe, S., Hepler, P.K., and Shimmen, T. (2000). The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis. Planta 210,836-843.
    Tsuboi, H., and Wada, M. (2012). Distribution pattern changes of actin filaments during chloroplast movement in Adiantum capillus-veneris. J. Plant Res.125,417-428.
    van der Honing, H.S., Kieft, H., Emons, A.M., and Ketelaar, T. (2012). Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. Plant Physiol.158,1426-1438.
    Van Gestel, K., Kohler, R., and Verbelen, J.P. (2002). Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J. Exp. Bot.53, 659-667.
    Verchot-Lubicz, J., and Goldstein, R.E. (2010). Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma 240,99-107.
    Vidali, L., and Hepler, P.K. (1997). Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil. Cytoskeleton 36,323-338.
    Vidali, L., McKenna, S.T., and Hepler, P.K. (2001). Actin polymerization is essential for pollen tube growth. Mol. Biol. Cell 12,2534-2545.
    Wang, H.J., Wan, A.R., and Jauh, G.Y. (2008). An actin-binding protein, L1LIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant Physiol.147,1619-1636.
    Wang, H.Y., Yu, Y., Chen, Z.L., and Xia, G.X. (2005). Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFNl) in tobacco suspension cells. Characterization of in vivo functions of a cotton profilin gene. Planta 222,594-603.
    Wang, X., Zhu, L., Liu, B., Wang, C., Jin, L., Zhao, Q., and Yuan, M. (2007). Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules. Plant Cell 19,877-889.
    Wasteneys, G.O., and Yang, Z. (2004). New views on the plant cytoskeleton. Plant Physiol 136, 3884-3891.
    Wright, K.M., Wood, N.T., Roberts, A.G., Chapman, S., Boevink, P., MacKenzie, K.M., and Oparka, K.J. (2007). Targeting of TMV movement protein to plasmodesmata requires the actin/ER network; evidence from FRAP. Traffic 8,21-31.
    Wu, Y., Yan, J., Zhang, R., Qu, X., Ren, S., Chen, N., and Huang, S. (2010). Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. Plant Cell 22, 3745-3763.
    Xiang, Y., Huang, X., Wang, T., Zhang, Y., Liu, Q., Hussey, P.J., and Ren, H. (2007). ACTIN BINDING PROTEIN 29 from Lilium pollen plays an important role in dynamic actin remodeling. Plant Cell 19,1930-1946.
    Yaffe, M.P. (1999). The machinery of mitochondrial inheritance and behavior. Science 283,1493-1497.
    Yamamoto, Y., Nishimura, M., Hara-Nishimura, I., and Noguchi, T. (2003). Behavior of vacuoles during microspore and pollen development in Arabidopsis thaliana. Plant Cell Physiol.44,1192-1201.
    Yamashita, H., Sato, Y, Kanegae, T., Kagawa, T., Wada, M., and Kadota, A. (2011). Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens. Planta 233,357-368.
    Yan, A., Xu, G., and Yang, Z.B. (2009). Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. Proc. Natl. Acad. Sci. USA 106,22002-22007.
    Yang, Z. (2008). Cell polarity signaling in Arabidopsis. Annu. Rev. Cell Dev. Biol.24,551-575.
    Ye, J., Zheng, Y., Yan, A., Chen, N., Wang, Z., Huang, S., and Yang, Z. (2009). Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21, 3868-3884.
    Yokota, E., and Shimmen, T. (1999). The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta 209,264-266.
    Yokota, E., Takahara, K.I., and Shimmen, T. (1998). Actin-bundling protein isolated from pollen tubes of lily biochemical and immunocytochemical characterization. Plant Physiol.116,1421-1429.
    Yokota, E., Tominaga, M., Mabuchi, I., Tsuji, Y., Staiger, C.J., Oiwa, K., and Shimmen, T. (2005). Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner. Plant Cell Physiol.46,1690-1703.
    Yokota, E., Vidali, L., Tominaga, M., Tahara, H., Orii, H., Morizane. Y. Hepler, P.K., and Shimmen, T. (2003). Plant 115-kDa actin-filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells. Plant Cell Physiol.44,1088-1099.
    Zerzour, R., Kroeger, J., and Geitmann, A. (2009). Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev. Biol.334, 431-446.
    Zhang, H., Qu, X., Bao, C., Khurana, P., Wang, Q., Xie, Y., Zheng, Y., Chen, N., Blanchoin, L., Staiger, C.J., et al. (2010). Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell 22,2749-2767.
    Zhao, Y., Yan, A., Feijo, J.A., Furutani, M., Takenawa, T.. Hwang, I., Fu, Y., and Yang, Z. (2010). Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell 22,4031-4044.
    Zhao, Y., Zhao. S., Mao, T., Qu, X., Cao, W., Zhang, L., Zhang, W., He, L., Li, S., Ren, S., et al. (2011). The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis. Plant Cell 23,2314-2330.
    Zheng, Z.L., and Yang, Z. (2000). The Rop GTPase switch turns on polar growth in pollen. Trends Plant Sci.5,298-303.
    Zhu, L., Zhang, Y., Kang, E., Xu, Q., Wang, M., Rui, Y, Liu, B., Yuan, M., and Fu, Y. (2013). MAP 18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. Plant Cell 25,851-867.
    Zonia, L. (2010). Spatial and temporal integration of signalling networks regulating pollen tube growth. J.Exp.Bot.61,1939-1957.
    Zonia, L., and Munnik, T. (2008). Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J. Exp. Bot.59,861-873.
    李杰婕(2011).拟南芥微管结合蛋白MAP25参与调控下胚轴细胞伸长机理的研究.[博士学位论文].北京:中国农业大学.
    陈诚(2012).黄瓜花叶病毒运动蛋白增加胞间连丝通透性机制的研究.[博士学位论文].北京:中国农业大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700