戈壁葡萄滴灌节水机理及灌溉制度模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘肃河西地区气候干燥,年降雨量稀少,但光热资源丰富,是我国优质葡萄产区之一。然而,水资源短缺,地下水的过度开采以及农业用水的浪费,导致沙生植被枯萎死亡,沙尘暴肆虐,土壤盐碱化和生态环境恶化,农业与生态用水矛盾突出,严重制约着酿酒葡萄在这一地区的发展规模。因此,寻找一种适合于葡萄的节水灌溉模式对于提高当地经济、生态和社会效益都具有重要的意义。
     滴灌技术是对作物根区一定范围内进行局部灌溉的一种有效的节水灌溉方法,在戈壁干旱区具有较大的应用潜力。本研究针对目前甘肃河西戈壁葡萄膜下滴灌节水技术研究不够深入,多灌、少灌或不能适时滴灌的现象普遍存在,以及因大面积覆膜费工费时和生产成本提高等问题;导致人们对推广葡萄膜下滴灌节水增效潜力认识不足,尚未普遍实施膜下滴灌。因此,本文在国内外膜下滴灌研究的基础上,于2010~2011年在甘肃河西走廊的嘉峪关紫轩葡萄种植园,围绕葡萄不同滴灌水量的土壤水分动态变化特征,不同滴灌水量对葡萄光合特性和生理生化指标的影响效应,以及对葡萄经济产量、品质、水分利用效率和经济效率的影响等方面进行了系统的试验研究,取得了如下主要结果:
     (1)对不同滴灌处理条件下沙壤土土层80cm的赤霞珠测定深度0-80cm和沙砾土土层20cm的梅鹿辄测定深度0-40cm的土壤水分动态变化研究表明,两种葡萄膜下滴灌的土壤含水量均高于不覆膜常规滴灌方式(CK)下的土壤含水量。覆膜处理下的T_1和T_2分别比CK节水33%和17%,T_3与CK灌水量相同,但T4比CK多灌水43%;需水规律试验结果表明,在葡萄生育期内,浆果生长期耗水量最大,为需水关键期,浆果成熟期次之,而新梢生长期和花期最少。葡萄赤霞珠和梅鹿辄生育期的最佳灌水量应是160m~3/亩(T_1),每次灌溉定额为10~20m~3/亩。
     (2)系统分析了不同滴灌水量对酿酒葡萄2010~(-2)011年光合特性日变化的影响,结果表明戈壁葡萄光合曲线从上午8:00时至下午16:00时净光合速率基本呈“单坡线”基本规律;通过研究葡萄叶片的水分利用效率日变化可知,赤霞珠在覆膜T_1条件下,叶片日均水分利用效率要比T_2-4分别高0.13、0.19和0.15mmolCO_2·mol-1HO_2,比CK高0.11mmolCO_2·mol-1HO_2;同样条件下,梅鹿辄叶片日均水分利用效率要比T_2-4分别高0.23、0.3和0.23mmolCO_2·mol-1HO_2,也比CK高0.32mmolCO_2·mol~(-1)HO_2;对2011年7月和8月份葡萄光合特性的测定进一步发现,T_1和CK叶片水分利用效率高于其它覆膜处理,但T_1比CK省水33。因此,T_1灌溉模式达到了节水和提高叶片水分利用率的目的;对不同滴灌处理条件下土壤含水量与葡萄净光合速率及各光合参数的模拟表明,土壤含水量与各光合参数之间具有较高的相关性。
     (3)对2010~(-2)011年葡萄赤霞珠和梅鹿辄叶片叶绿素含量在不同滴灌处理条件下的变化分析表明,覆膜T_1和常规滴灌的处理(CK)的叶片叶绿素含量都较低,但覆膜的叶绿素含量高于未覆膜CK;同时也表明,叶绿素含量与土壤含水量呈显著的正相关;另外,对2010~(-2)011年两种土壤类型葡萄的生理生化特性测定表明,覆膜的生理生化指标值均优于CK,覆膜处理间T_1较T4节水180mm/亩,T_1比CK每亩节省了120mm的灌水量,节水效果显著。总体看,覆膜处理葡萄的生长指标发育快于未覆膜处理条件下。对于戈壁干旱区来说,T_1灌溉模式有利于解决该地区灌溉缺水的问题。
     (4)田间试验结果表明:2010~(-2)011年,膜下滴灌灌溉产量高于常规滴灌灌溉,赤霞珠和梅鹿辄产量T_1比CK年平均高了2485.65kg/hm~2和2009.78kg/hm~2;因此,灌水量为240mm/亩的T_1不仅比CK每亩节省灌水量120mm,而且还实现了产量的提高。膜下滴灌灌溉在以水调质过程中,提高了酿酒葡萄的品质;进一步的相关性分析显示,影响葡萄产量和品质的最重要的因素是水分。
     (5)通过对不同滴灌处理条件下葡萄灌水量、产量和水分利用效率的模拟可知,灌水量和水分利用效率是影响葡萄产量的两个关键性因素,其中水分利用效率对实现葡萄增产更为重要;同时对不同滴灌处理水分利用效率的分析表明,膜下滴灌处理可以显著提高葡萄水分利用效率,且赤霞珠和梅鹿辄覆膜T_1比CK年平均水分利用效率分别提高了1.51kg.mm~(-1).hm~(-2)和1.16kg.mm~(-1).hm~(-2),在覆膜处理中以较少的灌水量实现了水分利用效率的提高,达到了节水的目的;覆膜处理的水分经济效率总体高于CK,2010~(-2)011年覆膜T_1处理下赤霞珠的水分经济效率均值比CK高3.34元.mm~(-1)hm~(-2),同样覆膜T_1处理下梅鹿辄的水分经济效率均值比CK高1.99元.mm~(-1)hm~(-2),T_1以较低的成本投入量,实现了水分经济效率的提高;通过各生产要素投入对葡萄产量影响的分析,水资源和覆膜投入对酿酒葡萄的产量具有显著的正效应。
     可见,膜下滴灌在戈壁干旱区具有巨大的节水潜力,对在这一地区发展葡萄产业具有十分关键的作用。为此,笔者初步提出了干旱荒漠区膜下滴灌的田间灌溉应用模式。
The Hexi Corridor of Gansu lies in inland arid regions of northwest China, withan extremely dry climate, a very low precipitation and so high an evapotraspiration.However, it has abundant resources of light and heat, also to be one of the highquality grape producing areas of China. It is widely accepted that the issues such aswater shortage, overexploitation of underground water as well as agricultural wateruse severely waste to be faced with in Hexi Corridor of Gansu, which has resulted in aseries of problems like the sandy vegetation’s wither and death, the rampagingsandstorms, soil salinization and the serious contradictions between agricultural wateruse and ecological water use. Undoubtedly, the development scale of grapes isrestricted significantly. In view of this, seeking an efficient water-saving irrigationmode suitable for grapes of Hexi Corridor seems to be so urgent, which has animportant meaning for the local economy, ecology as well as social benefits.
     The mode of drip irrigation under mulch is considered as an efficientwater-saving irrigation mode that could promote a localized irrigation in crop root,and where always be kept wet, it has a great application potential in Gobi arid areas.However, the research on drip irrigation of grapes in Gobi arid regions of HexiCorridor is not enough in-depth, and a widely existing phenomena of more irrigation,less irrigation and not timely irrigation in this region, also because it takes much timeand labour in large-area film mulching to the drip irrigation of grapes, as well as theincreasing production cost, resulting in a less attention to water-saving and benefitincreasing of drip irrigation in Gobi arid regions. Aiming at the problems, thisresearch, therefore, based on the existed literature, was conducted on grape dripirrigation under mulch in Zixuan grape plantation of Jiayuguan of Hexi Corridor ofGansu in2010and2011, included the dynamic variation characteristics of soilmoisture for grape drip irrigation under mulch, the changes of soil water contentimpact on crop’s ecology, physiology and biochemistry, as well as on grape yield,quality and water use efficiency(WUE), also on its economic efficiency. The results as follows:
     (1) The dynamic variation characteristics of soil moisture under different dripirrgation treatments with80cm sand soil layer in depth of0~80cm for wine grape“cabernet sauvignon” and with20cm gravel soil layer in depth of0~40cm for winegrape “Merlot Noir” show that, the soil water content of “cabernet sauvignon”and“Merlot Noir” is both higher than that of the conventional drip irrigation(CDI) inno mulch treatment(CK). And the plastic cover treatment of T_1and T_2respectively hasa water saving amount of33%and17%compared with the CDI in no mulch, and thetreatment of T4has an irrigation amount of multiple-output60mm per mu. The resultsfurther show that, in the growth period of grapes, the water consumption from high tolow is respectively the berry growth period, berry maturity period, shoot-growingstage and florescence. We also find out the optimal irrigation amount of “cabernetsauvignon” and “Merlot Noir” is160m~3(T_1) in their growth periods, and the irrigationquota is10~20m~3/mu.
     (2) The analysis on the effects of different drip irrigation amounts on the diurnalvariation of photosynthetic characteristic of wine grape, it indicates that the curve ofnet photosynthetic rate of Gobi grape shows the tendency of single slope line from am8:00to pm16:00. The daily mean leaf WUE of “cabernet sauvignon” with thetreatment of film mulch and less irrigation amount(T_1) is0.13mmolCO_2·mol~(-1)HO_2、0.19mmolCO_2·mol~(-1)HO_2and0.15mmolCO_2·mol~(-1)HO_2higher than that of the otherfilm mulch treatments T_2-4, also is0.11mmolCO_2·mol~(-1)HO_2higher than that of theCDI in no mulch treatment(CK). Similarily, The daily mean leaf WUE of “MerlotNoir” with the treatment of T_1is0.23mmolCO_2·mol~(-1)HO_2、0.3mmolCO_2·mol~(-1)HO_2and0.23mmolCO_2·mol~(-1)HO_2higher than that of the other film mulch treatments T_2-4,likewise0.32mmolCO_2·mol~(-1)HO_2higher than that of the CDI in no mulchtreatment(CK). And the test on photosynthetic characteristics of wine grape in Julyand Augest of2011further demonstrates that the leaf WUE with the treatment of T_1and in no mulch treatment(CK) is also higher than that of the other film mulchtreatments, the treatment of T_1is nevertheless has a water saving amount of33% compared to the CDI in no mulch treatment(CK), it is no doubt that the treatment ofT_1is efficient to water saving and improve the leaf WUE.We also find out the highcorrelation between the soil water content and each photosynthetic parameter.
     (3) The changes of leaf chlorophyll content for wine grape “cabernetsauvignon” and “Merlot Noir” show that, each treatment under different drip irrgationin2010and2011, the leaf chlorophyll content with plastic cover treatment is higherthan that of the CDI in no mulch treatment under the same irrigation amount. The leafchlorophyll content with the treatment of T_1and the CDI in no mulch treatment(CK)is both low, the treatment of T_1and CK do not hinder the normal growth of grape, butthe treatment of T_1reach the saving water amount of120mm per mu compared withthe treatment of (CK). Also, there is the significant positive correlation between thechlorophyll content and soil water content. Moreover, the tests on physiological andbiochemical characteristics for “cabernet sauvignon” and “Merlot Noir” of2010and2011show that, the index values of physiological and biochemical as well as thegrowth index with plastic cover treatment are superior to that of the CDI in no mulchtreatment, and the value under plastic cover treatment with more irrigation amount isalso better than that of the treatment with less irrigation amount, the treatment of T_1could save water180mm per mu compared with the treatment of T4. No doubt that thetreatment of T_1could well deal with the problem of water shortage in Gobi airdregions of northwest China.
     (4) The results of fields experiment further indicate that, the drip irrigation of T_1with240mm could achieve the water saving amount of120mm per mu, which istherefore considered as an optimal irrigation amount that make the yield and qualityof grape simultaneously improve, and the grape yield under this mode is higher thanthat of CDI in no mulch treatment. The annual yield of “cabernet sauvignon” and“Merlot Noir” in2010and2011with the treatment of T_1enhanced by2485.65kg/hm~2and2009.78kg/hm~2in comparion of the CDI in no mulch treatment (CK). At thesame time, the drip irrigation under mulch improves the quality of grape. Further, it isfound that water is considered as one of the important factors that influencs the yield and quality of grape.
     (5) The simulation results on the correlations of irrigation amount, grape yieldand WUE show that, irrigating amount and WUE are the two key factors to influencegrape yield, the WUE is especially important to grape yield. Likewise, the treatmentof drip irrigation under mulch could significantly improve the WUE of grape, theannual mean WUE of “cabernet sauvignon” and “Merlot Noir” with the film mulchtreatment of T_1is1.51kg.mm~(-1).hm~(-2)and1.16kg.mm~(-1).hm~(-2)higher than that of theCDI in no mulch treatment (CK). The water economic efficiency of film mulch isoverall higher than that of the CDI in no mulch treatment (CK), and the annual watereconomic efficiency “cabernet sauvignon” and “Merlot Noir” in2010and2011withthe treatment of T_1seperately increased by3.34yuan.mm~(-1)hm~(-2)and1.99yuan.mm~(-1)hm~(-2)in comparion of the CDI in no mulch treatment (CK). The film mulchtreatment of T_1is more helpful to improve water economic efficiency with a lowercost investment. The impacts of productive factors input on grape yield reveal thatwater has a significant effect on grape yield. So, the mode of drip irrigation undermulch has an enormous water-saving potentiality in arid desert regions, and particularkey to develop the plant of grape in this region. A reasonable irrigatied systemsiutable for drip irrigation under mulch of arid desert regions is finally put forward.
引文
[1] Xia Jun, Zhang Lu. Climate change and water resources security in North China [M]//WagenerT.Regional Hydrological Impacts of ClimaticChang: Impact Assessment and DecisionMaking. Wallingford: IAHS Publication No.295,2005:167-173.
    [2]秦大河,丁一汇,苏纪兰,等.中国气候与环境演变(上卷):气候与环境的演变及预测[M].北京:科学出版社,2005:1-959.
    [3]夏军, Thomas Tanner,任国玉,等.气候变化对中国水资源影响的适应性评估与管理框架[J].气候变化研究进展,2008,4(4):215-219.
    [4]施雅风,张祥松.气候变化对西北干旱区地表水资源的影响和未来趋势[J].中国科学(B),1995,25(9):968-976.
    [5]张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境,2009,18(2):116-120.
    [6]陈雷.中国水资源情势不容乐观[N].人民日报海外版,2009-02-21(4).
    [7]王东坡.建立节水型社会之刍议[J].辽宁师专学报,2008,10(2):56-57.
    [8]周京成.建设节水型社会,中国的必然选择[J].科学新闻,2007,(17):30-31.
    [9]陈西庆,陈进.长江流域的水资源配置与水资源综合管理[J].长江流域资源与环境,2005,14(2):163-167.
    [10]黄国勤.我国水资源面临的问题与对策[J].中国生态农业学报,2001,9(4):123-125.
    [11]刘和平.建设节水型社会的思考[J].科技管理研究,2008,(10):20-21.
    [12]于萍萍,张进忠,林存刚.水资源现状分析及保护对策的研究[J].资源环境与发展,2006,(2):21-27.
    [13]贾大林,司徒松,庞鸿宾.节水农业技术体系与途径研究[A].许越先,刘昌明, J沙和伟主编.农业用水有效性研究[C].北京:科学出版社,1992.112-119.
    [14]刘昌明,王会肖.节水农业内涵商榷[A].石元春,等主编,节水农业应用基础研究进展
    [C].北京:中国农业出版社,1995.7-19.
    [15]王会肖,蔡燕,刘昌明.生物节水及其研究的若干方面[J].节水灌溉,2007(6):32-36.
    [16]康绍忠.农业节水灌溉:生态与科技联姻,生态节水的走势[N].中国报,2004-10-9(2).
    [17]山仑,张岁岐.能否实现大量节约灌溉用水?—我国节水农业现状与展望[J].自然杂志2005,28(2):71-75.
    [18]石元春.开拓中的蹊径:生物性节水[J].科技导报,1999,(10):3-5.
    [19]山仑,邓西平,张岁歧.农业及其生理生态基础[J].应用生态学报,1991,2(1):70-76.
    [20] Bacon M. A. Water Use Efficiency in Plant Biology. U. S. A: Blackwell publishing CRCpress.2004.
    [21] Bierhuizen J F, Slatyer R O. Effects of atmospheric concentration of water vapor and CO2indetermining transpiration photosynthesis relationships of cotton leaves [J].AgriculturalMeteorology,1965,2:229-270.
    [22] Frank A B, Barker R E, Berdahl J D. Water-use efficiency of grasses grown undercontrolled and field conditions [J].Agronomy Journal,1987,79:541-544.
    [23] Kumar K, Singh D P, et al. Influence of water stress on photosynthesis, transpiration,wateruse efficiency and yield of Brassica juncea L[J]. Field Crops Research,1994,37:95-101.
    [24]谢贤群.我国主要类型地区农业生态系统作物需水、耗水、水分利用效率研究[M].农田生态试验研究.北京:气象出版社,1996,64-81.
    [25]李俊,于沪宁,刘苏峡.冬小麦水分利用效率及其环境影响因素分析[J].地理学报,1997,52(6):552-560.
    [26]施建忠,王天则.小麦冠层不同层次叶片水分利用效率的研究-光合速率和蒸腾速率之比(P/T)的模拟[M].农田生态试验研究.北京:气象出版社,1996.1-13.
    [27]山仑.植物水分利用效率和半干旱地区农业用水.植物生理学通讯,1994,(1):61-66.
    [28]张正斌,徐萍,董宝娣,等.水分利用效率—未来农业研究的关键问题.世界科技研究与发展,2005,27(1):52-6.
    [29]由懋正,王会肖.农田土壤水资源评价[M].北京:气象出版社,1992:48-52.
    [30]王新元,赵昌盛,陈宏恩.节水型农业与节水技术的研究[M].北京:气象出版社,1993:127-128.
    [31]孙红红.滴灌条件下土壤水吸力与灌水频率对马铃薯生长及营养吸收的影响[D].甘肃农业大学,硕士学位论文,2004,2.
    [32]蔡焕杰.大田作物膜下滴灌的理论与应用[M].陕西杨凌:西北农林科技大学出版社,2003,12.
    [33]鲁会玲,尤海波,王喜庆.滴灌技术在农业设施化生产中的应用[J].黑龙江水利技.2006,34(2):142-144.
    [34]朱德兰,李昭军,王健,等.滴灌条件下土壤水分分布特性研究[J].水土保持研究,2000,7(1):81-84.
    [35] AhannersF, TadeesT. Effect of drip furrow irrigation and plant spacing on yield of tomatoat dire Dawa, Ethiopia [J]. Agricultural Water Management.1998,35(3):201-207.
    [36] West D W, I F Merrigan, J T Aylor. Soil salinity gradients and growth of tomato plants underdrip irrigation [J].Soil Sci,1979,127(5):281-291.
    [37] Alemi M H. Distribution of water and salt in soil under trickle and pot irrigation regimes [J].Agric. Water Manage,1981,3:195-203.
    [38] Dalvi V B, Tiwari K N, pawade M N, et al. Response surface analysis of tomato Productionunder microirrigation [J]. Agric Water Manage,1999,41:11-19.
    [39] Pitts D J, Tsai Y J, Obre T A, et al. Flooding and drip irrigation frequency effects on tomatoin South Florida [J].Trans ASAE,1991,34(3):865-870.
    [40] Caldwll D S,Spurgeon W E,Manges H L. Frequency of irrigation for subsurface dripirrigated [J].Trans of the ASAE,1994,37(6):1099-1103.
    [41]粟晓玲,石培泽,杨秀英等.石羊河流域干旱沙漠区滴灌条件下苹果树耗水规律研究[J].水资源与水工程学报.2005,16(1):19-23.
    [42]张书函,丁跃元,戴建平,等.日光温室樱桃西红柿滴灌适宜土壤水分控制指标研究[J].中国农村水利水电,2002,(1):23-25.
    [43]高艳明,李建设,田军仓.日光温室滴灌辣椒水肥耦合效应研究[J].宁夏农学院学报,2000,21(3):39-45.
    [44]桑艳朋,赵莉,王祯丽,等.采用膜下滴灌技术实现新疆甜瓜优化栽培[J].蔬菜,2005,(1):41-42.
    [45]张晓伟,黄占斌,李秧秧,等.不同滴灌目标下玉米滴灌制度研究[J].水土保持研究,1999,6(1):76-78.
    [46]樊根耀,吴磊,蒋莉.大田膜下滴灌技术及其发展趋势[J].现代农业水土资源高效利用理论与实践,2003(4):62-65.
    [47]范仲林.甘肃河西地区应大力推广膜下滴灌技术[J].甘肃水利水电技术,2008,44(4):263-264.
    [48] Meshkat, M, et a1. Evaporation reduction potential in an undisturbed soil irrigated withsurface drip and sand tube irrigation Tarans ASAE[J].2000,43(1):79-86.
    [49] Shin, S E Drip irrigation and sub irrigation on sugarcane Journal of Irrigation and Drainageengineering [J].1987,(114):143-155.
    [50] Bathelor, C H et a1.Importance of irrigation regime,drip line Placement and low surfacing inthe drip irrigation of sugarcane Agric Water Manege[J].1990,(17):75-94.
    [51] Golderg, Drip irrigation principles, design and agricultural practices Drip Irrigation QriPntifirPnhliratinn IC far Rhmarvahii lcrapl [J].1976.
    [52] Eavis, BW Effects of floding oil sugarcane growth, benefits during subsequent droughtIntemat Soc Sugar cane Techologisters Proc17th congress [J].1971:754-766.
    [53] Wiicox WF et al Influence of water matric potential on the development of phytophthora rootand crown rots of mahaleb cheer. Phytopathology [J].1985,(75):648-653.
    [54]李明思.膜下滴灌条件下棉花耗水强度与土壤水分的关系[M].农业高效用水与水土环境保护,陕西科学技术出版社,2000.
    [55]赵淑银,郭元贞,等.膜下滴灌对保护地黄瓜产量的及病害的影响[J].内蒙古农牧学院学报,1994,115(3).
    [56]陈多方,许鸿,徐腊梅,等.北疆棉区棉花膜下滴灌蒸散规律研究[J].新疆气象,2001,(2):25-26.
    [57]程冬玲,林性粹,蔡焕杰.膜F滴灌技术对新疆绿洲农业持续发展的效应[J].干早地区农业研究,2005,23(2):59-62.
    [58]李明思,郑旭荣,贾宏伟,等.棉花膜下滴灌灌溉制度试验研究[J].中国农村水利水电,2001(11):13-15.
    [59]危常州,马富裕,雷咏雯,等.棉花膜下滴灌根系发育规律的研究[J].棉花学报,2002,14(4):209-214.
    [60]方志刚,马富裕,崔静,等.加工番茄膜下滴灌根系分布规律的研究[J].新疆农业科学,2008,45(1):15-20.
    [61] Samel Dasbery and Eshel Bresler [M]. Drip irrigation Manua.
    [62] Hunsaker D J, Clemmens A J, Fangmeier D D, Cotton response to high frequency surfaceIrrigation [J].Agricultural Water Management,1998(37):55-74.
    [63]马富裕,李蒙春,等.北疆棉花高产水分生理基础的初步研究[J].新疆农垦1998(5).
    [64]马富裕,李俊华,等.棉花膜下滴灌增产机理及主要配套技术研究[J].新疆农业大学学报,1999,22(1):63-68.
    [65]郑旭荣,胡晓棠,李明思,等.棉花膜下滴灌田间耗水规律的试验研究[J].节水灌溉,2000(5):25-27.
    [66]张旺锋,任丽彤,王振林,等.膜下滴灌对新疆高产棉花光合特性日变化的影响[J].中国农业科学,2003,36(2):159-163.
    [67]罗宏海,张亚黎,张旺锋,等.新疆滴灌棉花花铃期干旱复水对叶片光合特性及产量的影响[J].作物学报,2008,34(1):171-174.
    [68]张西平,蔡焕杰,王健,等.日光温室膜卜滴灌黄瓜需水量与灌溉制度的试验研究[J].灌溉排水学报,2005(1):41-44.
    [69] Bucks D.A,AlIen S.G, RotIl R.L,1988. Short staple cotton under micro and level-basinirrigation methods. Irrigation Sci.9:16l-176.
    [70] Kittock D.L,1979, Pima and Upland cotton response to irrigation management Agron.7l(4):617-619.
    [71]0ron G, Ben-Asher J, DeMalach Y,1982. Effluent in trickle irrigation of cotton in aridzones. Irrig Drain. Div, ASCE108(2):115-126.
    [72] Radin J w, Reaves L L, Mauncy J.R.et al.1992. YieId enhancement in cotton by frequentirrigations during fruiting Agron.J.84(4):55l-557.
    [73]万素梅,胡守林,翟云龙.膜下滴灌棉花土壤水分动态变化研究[J].水土保持学报,2007,14(1):90-91.
    [74] Caldwell D S,Spurgeon W E,Manges H L,et al.1994Frequency of irrigation for subsurfaceDrip-irrigated corn Dept of Agricultural Engineering. Kansas State University. Manhattan,KS66506, USA.
    [75]李明思,马富裕,郑旭荣,等.膜下滴灌棉花田问需水规律的研究[J].灌溉排水,2002,21(1):58-60.
    [76]谢扬,刘建勇,王得祥.甘肃河西走廊干旱荒漠区葡萄膜下滴灌应用试验研究[J].陕西林业科技,2009,(1):13-15,25.
    [77]胡晓棠,李明思.膜下滴灌对棉花根际土壤环境的影响研究[J].中国生态农业学报,2003,11(3):121-123.
    [78]张富仓,张一平,张君常,等.温度对土壤水分保持影响的研究[J].土壤学报,1997,34(2):160-169.
    [79]张一平,白锦鳞,张君常,等.温度对土壤水势影响的研究[J].土壤学报,1990,27(4):454-458.
    [80]王国栋.水热条件与作物生长及土壤水热涡合运移的研究[D].杨凌:西北农业大学,1997.
    [81] West D W, I F Merrigan, J T Aylor. Soil salinity gradients and growth of tomato plants underdrip irrigation [J]. Soil Sci.1979,127(5):281-291.
    [82] Alemi M H. Distribution of water and salt in soil under triekle and pot lrrigation reglmes [J].Agrie. Water Manage,1981,3:195-203.
    [83]邢文刚,俞双恩,安文钰,等.春棚西瓜利用微咸水滴灌与畦灌的应用研究[J].灌溉排水学报,2003,(6):30-34.
    [84]阮明艳,张富仓,侯振安.咸水膜下滴灌对棉花生长和产量的影响[J].耕作与栽培,2006(6):4-6.
    [85]马东豪,王全九,来剑斌,等.膜下滴灌条件下灌水水质和流量对土壤盐分分布影响的田间试验研究[J].农业工程学报,2005,21(3):42-46.
    [86] Nightingale H1, G J Hoffman,D E Rolston. Trickle irrigation rates and soil salinitydistribution in an almond (Prunus Amygdalus) orchard [J]. Agric. WaterManage,1991,19:271-283.
    [87] Mmolawa K,D Or. Root zone solute dynamics under drip irrigation: a review [J]. Plant andSoil,2000,222:31-36.
    [88]郑德明,姜益娟,柳维扬,等.膜下滴灌磁化水对棉田土壤的脱抑盐效果研究[J].土壤通报,2008,39(3):494-497.
    [89]穆兴民,徐学选,陈国良,等.水肥耦合效应与协同管理[M].北京:中国林业出版社,1999.
    [90]栗岩峰,李久生,饶敏杰.滴灌施肥时水肥顺序对番茄根系分布和产量的影响[J].农业工程学报,2006,22(7):205-207.
    [91]蔡焕杰,邵光成,张振华.棉花膜下滴灌毛管布置方式的试验研究[J].农业工程学报,2002,18(1):45-49.
    [92]刘新永,田长彦.棉花膜下滴灌水氮藕合效应研究[J].植物影响与肥料科学学报,2007,13(2):286-291.
    [93]吴恩忍,郭新萍,苏安久,等.北疆膜下滴灌高产优质栽培技术[J].新疆农垦科技,2001(2):14-15.
    [94]杨涛,任福成,庄生仁,等.河西走廊棉花膜下滴灌配套技术研究[R].中国棉花学会,2009年年会.
    [95]周俊,侯德明,毛涛,等.河西灌区高效农田节水技术模式研究[J].甘肃农业,2010(10):10-12,15.
    [96]徐世昌,戴俊英,沈秀瑛,等.水分胁迫对玉米光合性能及产量的影响[J].作物学报,1995,21(3):356-363.
    [97] Hoare E Rand Bar H P. Water relations and Photosynthesis among horticultural species asaffected by simulated soi1water stress. Proc.Int.Hort.Congr.1974,3:482-486.
    [98] Ward DA, Drake BG. Osmotic stress temporarily reverses in inhibition of photosynthesis andstomatal conductance by abscisic acid evidence that abscisic acid induces a localizedclosure of stomata in intact, detached leaves. J Exp Bot,1988,39:147-155.
    [99] Kaiser WM. Effects of water deficit on photosynthetic capacity. Physiol Plant,1987,71(1):142-149.
    [100] Giles KL, Cohen D, Beardsell MF. Effects of water stress on the ultrastructure of leaf cell ofSorghum bicolor. Physiol Plant,1976,57:11-14.
    [101]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92-96.
    [102] Zhang Y-P(张英普), He W-Q(何武权), Han J(韩建).1999,Effects of water stress onphysiological ecologic properlies of corn. Water Resour Water Engin(西北水资源与水工程),10(3):18-21(in Chinese)
    [103] Xu X-N(徐小牛).1995Influence of water stress on some physiological characteristics ofEdgeworthiu chrysantha.J Anhui Agric Univ(安徽农业大学学报),22(1):42-47(inchinese)
    [104] Wallin G, Karlsson P E and Sellden G.Impact of four years exposure to different levels ofozone, phosphorus and drought on chlorophyll, mineral nutrients,and stem volume ofNoway spruce, Picea abies. Physiol Plant,2002,114:192-206.
    [105]李光敏,关军锋.作物抗旱生理与节水技术研究[M].北京:气象出版社,2001.
    [106]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32(2):144-150.
    [107]邹琦.作物在水分逆境下的光合作用[J].作物杂志,1994,5:1-4.
    [108]汤章城.植物渗透调节及其遗传工程的研究[J].植物生理生化进展,1986(4):51-60.
    [109] Jones. M. M.N.C. Turner&C.B. Osmond. The Physiology and Biochemistry of DroughtResistance in Plants (PalegL.O&D.AsPinalleds.)[J]. Sydney:Aeademic Press.1986,5(3):15-37
    [110] Kemble AR, Macpherson HT. Liberation of amino acid in perennial rye grass duringWetting [J]. Biochem,1954,58:46-49
    [111] Hugo B. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (CitrussinensisOsb. X Poncirus trifoliata L. Raf.) over producing praline[J]. PlantScience,167(6):1375-1381
    [112]汤章城.不同抗旱品种高粱苗中脯氨酸累积的差异[J].植物生理学报,1986,12(2):154-162.
    [113]张云贵,谢永红,吴学良,等. PEG诱导水分胁迫对柑橘幼苗细质膜透性及脯氨酸含量的影响[J].果树科学.1995,12(l):25-28.
    [114]陈立松,刘星辉.作物抗旱鉴定的指标种类及综合评价[J].福建农业大学学报,1997,26:277-282.
    [115]陈玉辉.柑橘对水分胁迫的光合驯化[J].浙江农业大学学报,1992,18(2):113-118.
    [116]王邦锡,黄久常,王辉.不同植物在水分胁迫条件下脯氨酸的累积与抗旱性的关系[J].植物生理学报,1989,15(1):46-51.
    [117]姚允聪,曲泽洲,李树仁.土壤干旱与柿树叶片膜脂及脂质过氧化的关系[J].林业科学,1993,29(6):485-491.
    [118]姚允聪.水分亏缺条件下草墓幼苗几个水分生理指标的变化[J].果树科学.1992,9(4):208-212.
    [119]王启明,徐心诚,马原松,等.干旱胁迫下大豆开花期的生理生化变化与抗旱性的关系[J].干旱地区农业研究,2005,23(4):98-10.
    [120]石永红,万里强,刘建宁,等.干旱胁迫对6个坪用多年生黑麦草品种抗旱性的影响[J].草地学报,2009,(1):33-35.
    [121]聂华堂,陈竹生,计玉.水分胁迫下柑橘的生理生化变化与抗旱性的关系[J].中国农业科学,1991,24(4):14-18.
    [122] Dhiddsa RS, Matowe W. Drought tolerance in two mosser: correlated with enzymaticdefecse against lipid peroxidation. J Exp Bot,1981,32:79-91.
    [123]李广敏,唐连顺,商振清,等.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J].河北农业大学学报,1994,17(2):1-5.
    [124]王茅雁,劭世勤,张建华等.水分胁迫对玉米保护酶系活力及膜系统结构的影响[J].华北农学报,1995,10(2):43-49.
    [125]胡博然,李华,马海军,等.葡萄耐旱性研究进展[J].中外葡萄与葡萄酒,2002,(2):32-34.
    [126]李明思,胡晓棠,郑旭荣.膜下滴灌条件下棉花耗水强度与土壤水分的关系[M].西安:陕西科学技术出版社,2000.
    [127]蔡焕杰,邵成光,张振华.荒漠气候区膜下滴灌棉花需水量和灌溉制度的试验研究[J].水利学报,2002,(11):119-123.
    [128]杜太生,康绍忠,夏桂敏,等.滴灌条件下不同根区交替湿润对葡萄生长和水分利用的影响[J].农业工程学报,2005,21(11):43-48.
    [129]赵成义,闫映宇,李菊艳,等.塔里木灌区膜下滴灌的棉田土壤水盐分布特征[J].干旱区地理,2009,32(6):892-898.
    [130]串志强,盛钰,赵成义,等.膜下滴灌条件下绿洲棉田土壤水分运动数值模拟[J].干旱区地理,2008,31(5):673-678.
    [131]林华,李疆.干旱荒漠地区葡萄滴灌试验[J].新疆农业大学学报.2003,26(4):62-64.
    [132]张江辉,王全九,姚新华,等.新疆葡萄滴灌技术参数对土壤水盐分布特征的影响[J].干旱区研究,2008,25(4):679-682.
    [133]李毅,王文焰,王全九,等.非充分供水条件下滴灌入渗的水盐运移特征研究[J].水土保持学报,2003,17(I): l-4.
    [134]张晓煜,刘静,张亚红,等.中国北方酿酒葡萄气候适宜性区划[J].干旱区地理,2008,31(5):707-712.
    [135]武朝宝,任罡,李金玉.马铃薯需水量与灌溉制度试验研究[J].灌溉排水学报,2009,28(3):93-95.
    [136]李唯,倪郁,胡自治,等.植物根系提水作用研究述评[J].西北植物学报,2003,23(6):1056-1062.
    [137]杜太生,康绍忠,张霁,等..不同沟灌模式对沙漠绿洲区葡萄生长和水分利用的效应[J].应用生态学报,2006,17(5):805-810.
    [138]杜太生,康绍忠,闫博远,等.干旱荒漠绿洲区葡萄根系分区交替灌溉试验研究[J].农业工程学报,2007,23(17):52-58.
    [139]张新宁,赵健,杨东芳.滴灌条件下葡萄根系分布的研究初报[J].中外葡萄与葡萄酒,2006,(16):16-18.
    [140] Zhang Dapeng, Wang Xuecheng, Lou Chenghuo..Effects of the diurnal light variationregime on net photosynthetic rate and stomatal conductance in grapevine (V, vinifera L,cv Sauvignon blanc)[J]. Scientia Agriculture Sinica,1991,24(3):1-7.
    [141]吴月燕.两个不同葡萄种对高湿弱光气候的表现[J].生态学报,2004,24(1):156-161.
    [142]苏培玺.沙地葡萄需水规律研究[J].西北植物学报,2001,21(5):944-951.
    [143]严巧娣,苏培玺.不同土壤水分条件下葡萄叶片光合特性的比较[J].西北植物学报,2005,25(8):1601-1606.
    [144]马兴祥,魏育国,蒋菊芳.沙漠边缘酿造葡萄生长气象条件及生态响应[J].中国生态农业学报,2007,15(5):13-16.
    [145]徐飞,郭卫华,王玉芳,等.济南市校园6个绿化树种光合荧光特征比较初探[J].山东大学学报(理学版),20D7,42(5):86-94.
    [146]毛培利,曹帮华,宋绪忠,等.干旱胁迫下刺槐无性系光合生理适应性研究[J].浙江林业科技.2007,27(4):34-37.
    [147]胡中民,于贵瑞,樊江文,等.干旱对陆地生态系统水碳过程的影响研究进展[J].地理科学进展,2006,25(6):12-20.
    [148]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1999:262-276.
    [149] Elanied J, Thomasc H.Nickel toxicity in mycorrhizal birch seedlings infected withLactarius rufus or Scleroderma flavidum.I.Effects on growth, hotosynthesis,respirationand transpiration[J]. New Phyt01,1988,108(4):451-459.
    [150] SILIA A, MARTA C. MONICA G, et a1. Estimation of Mediterranean forest transpirationand photosynthesis through the use of an e cosystem simulation model driven byremotelysensed data [J]. Global Ec01.Biogeogr.2004,13(4):1371-380.
    [151]高明,常杰,高玉葆,李永庚.植物生理生态学[M].北京:高等教育出版社,2004:65-68,161-169.
    [152] Farquhar GD, Sharkey T D. Stomatal conductance and photosynthesis [J]. Ann Rev PlantPhysiol,1982,33:317-334.
    [153]高清华,叶正文,李世诚,等.反光膜对桃树光合特性及根际温度的影响[J].中国生态农业学报,2008,16(1):160-163.
    [154] HeitholtJ J. Water use efficiency and dry matter distribution in nitrogen and water-stressedwinter wheat.Agron. J1989,81:464-469
    [155]曹仪植,宋占午.植物生理学[M].兰州:兰州大学出版社,1998,21-47;144-157.
    [156] Hu J C, Cao W X, Zhang J B. Quantifying responses of winter wheat physiologicalprocesses to soil water stress for use in growth simulation modeling. Pedosphere,2004,14:509-518.
    [157]胡根海.短期水分亏缺对百棉1号叶绿素含量的影响[J].安徽农业科学,2010,38(6):2914-2915,2923.
    [158]曾骧.果树生理学[M].北京:北京农业大学出版社,1992:336-349.
    [159]邹春静,韩士杰,徐文锋,等.沙地云杉生态型对干旱胁迫的生理生态响应[J].应用生态学报,2003,14(9):1446-1450.
    [160]徐小牛.水分胁迫对三桠生理特性的影响[J].安徽农业大学学报(社会科学版),22(1):42-47.
    [161]许大全,沈允钢.光合作用的限制因素[A].
    [162] Constantine N, Giannopotitis, Stanley K Ries. Superoxide Dismuta∞s[J]. Plant Physio,1977,59:309-314.
    [163]张云贵,谢永红,吴学良,等. PEG诱导水分胁迫对柑橘幼苗细胞质膜透性及脯氨酸含量的影响[J].果树科学,1995,12(1):25-28.
    [164]彭立新,李德全,柬怀瑞.园艺植物水分胁迫生理及耐早机制研究进展[J].西北植物学报,2002,22(5):1275-1281.
    [165]贺鸿雁,孙存华,杜伟.等. PEG6000胁迫对花生幼苗渗透调节物质的影响[J].中国油料作物学报,2006,28(1):76-78.
    [166]王云中,韩忻彦,张建成,等.水分胁迫下葡萄叶片中几种物质含量的变化[J].华北农学报,2003,18(4):72-75.
    [167]陆爱华,褚盂嫒.水分胁迫后梅杏桃脯氨酸脱落酸的累积及其与抗旱性的关系[J].南京农业大学学报,1989,12(3):29-32.
    [168] Wang Z C.Stutte GW. The role of carbohydrates in active osmotic adjustment in appleunder water stress [J]. J Amer Soc Hort Sci,1992,117:816-823.
    [169] Xue Q, Zhu Z, MusickJ T, et al. Root growth and water uptake in winter wheat under deficitirrigation[J]. Plant and Soil,2003,257:151-161.
    [170]于同泉,秦岭,陈静,等.水分胁迫对板栗幼苗抗氧化酶及丙二醛的影响[J].北京农学院学报,1996,11(1):48-52.
    [171]马双艳,姜远茂,彭福田,等.干旱胁迫对苹果叶片中甜菜碱和丙二醛及脯氨酸含量的影响[J].落叶果树,2003,(5):1-4.
    [172]周万海,曹孜义,李胜,等.三个酿酒葡萄品种嫁接在520A砧木上的栽培表现[J].甘肃农业大学学报,2005,40(6):330-333.
    [173] Cifre J,Beta J,Escalona J. M,et a1. Physiological tools for irrigation scheduling ingrapevine (14tisviniferaL)An open gate to improve water-us efficiency? Agriculture,Ecosystems and Environment,2005,(106):159-170
    [174]刘雁翼,杨贵森,张寄阳,等.利用气象资料指导膜下滴灌棉花灌溉的试验研究[J].灌溉排水学报,2008,27(3):37-40.
    [175] PAN Y H, KANG S Z (潘英华,康绍忠). Irrigation water infiltration in furrows and cropwater use0f altemative furrow irrigation[J].Transactions ofthe CSAE(农业工程学报),2000,16(1):39-43.(in Chinese)
    [176]苏培玺,施来成.塑料薄膜滴灌带在沙地葡萄节水中的应用研究[J].2000,18(4):94-98.
    [177]裴冬,张喜英,亢茹.调亏灌溉对棉花生长、生理及产量的影响[J].生态农业研究,2002,12(4):52-56.
    [178]刘雁翼,杨贵森,张寄阳,等.利用气象资料指导膜下滴灌棉花灌溉的试验研究[J].灌溉排水学报,2008,27(3):37-40.
    [179]赵志军,程福厚,高彦魁,等.灌溉方式和灌水量对梨产量和水分利用效率的影响[J].果树学报,2007,24(1):98-101.
    [180] BENJAMIN J G, HAVIS H R, AHUJA L R.Leaching and water flow patterns in everyfurrow and alternate furrow irrigation [J]. Soil Science Society of America Journal,1994,58(5):1511-1517..
    [181]马富裕,严以绥.棉花膜下滴灌技术理论与实践[J].乌鲁术齐;新疆大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700