高渗应激对肝细胞癌Huh7细胞增殖和凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肝细胞肝癌是严重危害人类生命的恶性肿瘤,揭示其分子发病机制极为重要。激活的T细胞核因子5(nuclear factor of activated T-cells5, NFAT5)也被称为TonEBP (Tonicity-responsive enhancer binding protein),是经典的Rel同源转录因子,因为作为渗透压调节者的角色在高渗或低渗状态下调节细胞平衡而被人们熟知。凋亡的特征是细胞收缩,核固缩,DNA断裂及凋亡小体生成。这些特征使凋亡区别于其他类型的细胞死亡如坏死。而一些细胞凋亡的标志,如磷脂酰丝氨酸外化,改变的线粒体功能或具有细胞类型或凋亡信号依赖的激活caspases,凋亡细胞体积减小(apoptotic cell volume decrease, AVD)是早期而普遍的标志事件。而高渗下正常的肝细胞皱缩能减小细胞体积,诱导细胞凋亡。由于没有任何关于癌组织的渗透压的文献数据,是否恶性肿瘤组织渗透压与周围组织或血液明显不同仍是未知的。明确肝癌发生过程中渗透压应激对肝癌细胞凋亡和增殖的影响,能为肝癌的分子靶向治疗提供新的靶位点。而将来后续的深入研究将提供更好地理解对NFAT5的刺激是如何调控相关基因表达的,而这与健康和疾病息息相关。
     研究目的
     观察高渗应激对肝细胞癌Huh7细胞增殖和凋亡的影响,并探讨其调控机制。
     研究方法
     1.免疫组化法检测64例肝细胞癌组织中渗透压调控的转录因子NFAT5的表达。
     2. RT-PCR检测肝细胞癌组织NFAT5mRNA的水平。
     3.氯化钠模拟肿瘤高渗微环境,蛋白免疫印迹法检测NFAT5蛋白的表达。
     4.流式细胞仪检测氯化钠模拟肿瘤高渗微环境下肝癌细胞凋亡
     5.噻唑蓝(MTT)比色法检测高渗微环境下肝癌细胞体外增殖活力。
     研究结果
     1.肝癌组织NFAT5的阳性表达率为9.38%,明显低于癌旁组织68.75%(P<0.01)。
     2.癌旁组织NFAT5基因mRNA水平明显高于癌组织(P<0.01)。
     3.高渗24h (100mmol/LNaCl)处理能使Huh7细胞NFAT5蛋白的表达显著升高(P<0.01)。
     4.高渗24h (100mmol/LNaCl)处理肝癌细胞凋亡率(26.0±3.2)%明显高于空白对照组(0.8±0.2)%(P<0.01)。
     5.高渗24h (100mmol/LNaCl)能明显抑制Huh7细胞增殖,细胞生长抑制率(31.35±2.09)%(P<0.01)。
     结论
     作为哺乳动物唯一的渗透压调节相关因子NFAT5,肝细胞癌组织与癌旁组织在NFAT5高表达率上存在明显差异,高渗应激能上调肝癌细胞NFAT5的表达,诱导肝癌细胞凋亡,并抑制细胞增殖。
Background
     It is critical to understand the underlying molecular mechanisms of the development of hepatocellular carcinoma (HCC) which is a malignant seriously threatening people's life. Toni city-responsive enhancer binding protein (TonEBP/nuclear factor of activated T-cells5,NFAT5) is a Rel homologytranscription factor classically known for its osmosensitive role in regulating cellular homeostasis during states of hypo-and hypertonic stress.Apoptosis is characterized by cell shrinkage,nuclear condensation, DNA fragmentation and apoptoticbody formation. These features distinguish apoptosis from other types of cell death, such as necrosis.Whereas some signs of apoptosis, such as externalization of phosphatidylserine, altered mitochondrial function or activation of caspases are cell type-and death signal-dependent, apoptotic cell volume decrease (AVD) is an early and ubiquitous event. Hyperosmotic hepatocyte shrinkage could decrease cell volume and induce cell apoptosis. Since there is no documentation of carcinoma tissue osmolality,it is unknown if cancerous tumors possess an osmolality vastly different from that of the surrounding tissues or blood. Since there is no documentation of carcinoma tissue osmolality,it is unknown if cancerous tumors possess an osmolality vastly different from that of the surrounding tissues or blood.In conclusion, the aim of this research is to find the influence of osmotic stress in tumor microenvironment on hepatoma cell apoptosis and proliferation to provide a new molecular targeted therapy in HCC. Continuing research will provide a better understanding as to how these and other alternative TonEBP stimuli regulate gene expression in both health and disease.
     Objective
     To investigate the effect of hyperosmotic stress on the proliferation and apoptosis of hepatocellular carcinoma Huh7cells,and preliminarily explore the mechanism.
     Methods
     1. The expression of mammalian osmotic regulator Nuclear factor of activated T-cells5(NFAT5) was detected in64cases of hepatocellular carcinoma by immunohistochemistry staining method.
     2. The NFAT5mRNA level was analyzed by RT-PCR.
     3. NaCl was used as a chemical hyperosmotic-inducible reagent to mimic tumor hyperosmotic microenvironment. The expression of NFAT5protein was analyzed by Western blotting Successfully construct the NFAT2overexpressed lentiviral vector and package the lentivirus.
     4. Cell apoptosis was examined by flow cytometry.
     5. Cell growth was measured by Methyl-Thiazol-Tetrazolium (MTT) assay.
     Results
     1. NFAT5positive expression rate was low(9.38%) in hepatocellular carcinoma tissue but was high in the corresponding peritumoral tissue(68.75%)(P<0.01).
     2. NFAT5mRNA level was low in hepatocellular carcinoma tissue but was high in the corresponding peritumoral tissue(P<0.01).
     3. Under hyperosmotic stress(100mmol/LNaCl) for24h,the Huh7cell protein expression levels of NFAT5were up-regulated(p<0.01).
     4. The apoptosis rate in experimental group (26.0±3.2%) was significantly higher than that in blank control group (0.8±0.2%)(P<0.01).
     5. Hyperosmotic stress(100mmol/LNaCl) also inhibit growth of Huh7cells, cell growth inhibitory rate was31.35±2.09%(P<0.01).
引文
[1]Maluccio M, Covey A.Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma.CA Cancer J Clin.2012 Nov-Dec;62(6):394-9.
    [2]Jemal A, Bray F, Center MM, Ferlay J. Ward E, Forman D.Global cancer statistics.CA Cancer J Clin.2011 Mar-Apr;61(2):69-90.CA Cancer J Clin. 2011;61:69-90.
    [3]Schlesinger S, Aleksandrova K, Pischon T, Fedirko V, Jenab M, Trepo E, Boffetta P, Dahm CC, Overvad K, Tjonneland A, Halkjaer J, Fagherazzi G, Boutron-Ruault MC, Carbonnel F, Kaaks R, Lukanova A, Boeing H, Trichopoulou A, Bamia C, Lagiou P, Palli D, Grioni S, Panico S, Tumino R, Vineis P, Bueno-de-Mesquita HB, van den Berg S, Peeters PH, Braaten T, Weiderpass E, Quiros JR, Travier N, Sanchez MJ, Navarro C, Barricarte A, Dorronsoro M, Lindkvist B, Regner S, Werner M, Sund M, Khaw KT, Wareham N, Travis RC, Norat T, Wark PA, Riboli E, Nothlings U.Abdominal obesity, weight gain during adulthood and risk of liver and biliary tract cancer in a European cohort.Int J Cancer.2013 Feb 1;132(3):645-57.
    [4]Maluccio M, Covey A.Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma.CA Cancer J Clin.2012 Nov-Dec;62(6):394-9.
    [5]Cervello M, McCubrey JA, Cusimano A, Lampiasi N, Azzolina A, Montalto GTargeted therapy for hepatocellular carcinoma:novel agents on the horizon.Oncotarget.2012 Mar;3(3):236-60.
    [6]Hanahan D, Weinberg RA.Hallmarks of cancer:the next generation.Cell.2011 Mar4;144(5):646-74.
    [7]Junttila MR, Evan GI.p53--a Jack of all trades but master of none.Nat Rev Cancer. 2009 Nov;9(11):821-9.
    [8]Tong EH, Guo JJ, Huang AL, Liu H, Hu CD, Chung SS, Ko BC.Regulation of nucleocytoplasmic trafficking of transcription factor OREBP/TonEBP/NFAT5.J Biol Chem.2006 Aug 18;281(33):23870-9.
    [9]Halterman JA, Kwon HM, Wamhoff BR.Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5).Am J Physiol Cell Physiol.2012 Jan 1;302(1):C1-8.
    [10]Asirvatham AJ, Gregorie CJ, Hu Z, Magner WJ, Tomasi TB.MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components.Mol Immunol.2008 Apr;45(7):1995-2006.
    [11]Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, Chen PH, Li S. Fletcher AL, Yokoyama S, Scott KL, Garraway LA, Song JS, Granter SR, Turley SJ, Fisher DE, Novina CD. Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma.Mol Cell.2010 Dec 10;40(5):841-9.
    [12]Chen M, Sinha M, Luxon BA, Bresnick AR, O'Connor KL.Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin.J Biol Chem.2009;284(3):1484-94.
    [13]Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A.The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol. 2002;4(7):540-4.
    [14]Hynes RO.Integrins:bidirectional, allosteric signaling machines.Cell.2002; 110(6):673-87.
    [15]Akira Katsumi, A. Wayne Orr, Eleni Tzima,Martin Alexander Schwartz.Integrins in mechanotransduction.J Biol Chem.2004;279(13):12001-4.
    [16]Mercurio AM, Rabinovitz I.Towards a mechanistic understanding of tumor invasion--lessons from the alpha6beta 4 integrin. Semin Cancer Biol.2001; 11(2):129-41.
    [17]Chen M, Sastry SK, O'Connor KL.Src kinase pathway is involved in NFAT5-mediated S100A4 induction by hyperosmotic stress in colon cancer cells. Am J Physiol Cell Physiol.2011; 300(5):C 1155-63.
    [18]Haussinger D, Schliess F, Dombrowski F, Vom Dahl S. Involvement of p38MAPK in the regulation of proteolysis by liver cell hydration. Gastroenterology; 1999;116(4):921-35.
    [19]Kurz AK, Graf D, Schmitt M, Vom Dahl S,Haussinger D. Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats.Gastroenterology.2001; 121(2):407-19.
    [20]Reinehr R, Graf D, Fischer R, Schliess F, Haussinger D.Hyperosmolarity triggers CD95 membrane trafficking and sensitizes rat hepatocytes toward CD95L-induced apoptosis. Hepatology.2002; 36(3):602-14.
    [21]Haussinger D, Reinehr R.Osmotic regulation of bile acid transport, apoptosis and proliferation in rat liver.Cell Physiol Biochem.2011; 28(6):1089-98.
    [22]Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A.The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol. 2002 Jul;4(7):540-4.
    [23]Hynes RO.Integrins:bidirectional, allosteric signaling machines.Cell.2002 Sep 20;110(6):673-87.
    [24]Mancini M, Toker A.NFAT proteins:emerging roles in cancer progression.Nat Rev Cancer.2009 Nov;9(11):810-20.
    [25]张进,刘志苏,刘权焰,龚铖,刘阳,孙江阳.激活的T细胞核因子家族在肝癌与癌旁组织中的差异表达.中华实验外科杂志.2012,29(2):237-239.
    [26]Miyakawa H, Woo SK, Chen CP, Dahl SC, Handler JS, Kwon HM.Cis-and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity.Am J Physiol.1998 Apr;274(4 Pt 2):F753-61.
    [27]Lopez-Rodriguez C, Aramburu J, Rakeman AS, Rao A.NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun.Proc Natl Acad Sci U SA.1999 Jun22;96(13):7214-9.
    [28]Dahl SC, Handler JS, Kwon HM.Hypertonicity-induced phosphorylation and nuclear localization of the transcription factor TonEBP.Am J Physiol Cell Physiol. 2001 Feb;280(2):C248-53.
    [29]Ho SN.Intracellular water homeostasis and the mammalian cellular osmotic stress response.J Cell Physiol.2006 Jan;206(1):9-15.
    [30]Liu Q, Chen J, Liu L, Zhang J, Wang D, Ma L, He Y, Liu Y, Liu Z, Wu J.The X protein of hepatitis B virus inhibits apoptosis in hepatoma cells through enhancing the methionine adenosyltransferase 2A gene expression and reducing S-adenosylmethionine production.J Biol Chem.2011 May 13;286(19):17168-80.
    [31]Lu SC, Mato JM.Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol-associated liver cancer.Alcohol.2005 Apr;35(3):227-34.
    [1]Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR.Identification of a putative regulator of early T cell activation genes. Science.1988; 241:202-5.
    [2]Crabtree GR, Clipstone NA.Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu Rev Biochem.1994; 63:1045-83.
    [3]Jain J, Loh C, Rao A.Transcriptional regulation of the IL-2 gene.Curr Opin Immunol.1995; 7(3):333-42.
    [4]Lee M,Park J.Regulation of NFAT activation:a potential therapeutic target for immunosuppression.Mol Cells.2006; 22(1):1-7.
    [5]Carvalho LD, Teixeira LK, Carrossini N, Caldeira AT, Ansel KM, Rao A, Viola JP.The NFAT1 transcription factor is a repressor of cyclin A2 gene expression.Cell Cycle.2007;6(14):1789-95.
    [6]Mancini M, Toker A.NFAT proteins:emerging roles in cancer progression.Nat Rev Cancer.2009; 9(11):810-20.
    [7]Miyakawa H, Woo SK, Chen CP, Dahl SC, Handler JS, Kwon HM.Cis-and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity.Am J Physiol.1998 Apr;274(4 Pt 2):F753-61.
    [8]Lopez-Rodriguez C, Aramburu J, Rakeman AS, Rao A.NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun.Proc Natl Acad Sci U SA.1999 Jun 22;96(13):7214-9.
    [9]Dahl SC, Handler JS, Kwon HM.Hypertonicity-induced phosphorylation and nuclear localization of the transcription factor TonEBP.Am J Physiol Cell Physiol. 2001 Feb;280(2):C248-53.
    [10]Ho SN.Intracellular water homeostasis and the mammalian cellular osmotic stress response.J Cell Physiol.2006 Jan;206(1):9-15.
    [11]Zhang Z, Ferraris JD, Brooks HL, Brisc Ⅰ, Burg MB.Expression of osmotic stress-related genes in tissues of normal and hyposmotic rats.Am J Physiol Renal Physiol.2003 Oct;285(4):F688-93.
    [12]Ko BC, Ruepp B, Bohren KM, Gabbay KH, Chung SS.Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene.J Biol Chem.1997 Jun 27;272(26):16431-7.
    [13]Lee SD, Choi SY, Lim SW, Lamitina ST, Ho SN, Go WY, Kwon HM.TonEBP stimulates multiple cellular pathways for adaptation to hypertonic stress:organic osmolyte-dependent and -independent pathways.Am J Physiol Renal Physiol.2011 Mar;300(3):F707-15.
    [14]Trama J, Lu Q, Hawley RG, Ho SN.The NFAT-related protein NFATL1 (TonEBP/NFAT5) is induced upon T cell activation in a calcineurin-dependent manner.J Immunol.2000 Nov 1;165(9):4884-94.
    [15]Franchi-Gazzola R, Visigalli R, Dall'Asta V, Sala R, Woo SK, Kwon HM, Gazzola GC, Bussolati O.Amino acid depletion activates TonEBP and sodium-coupled inositol transport. Am J Physiol Cell Physiol.2001 Jun;280(6):C1465-74.
    [16]Maallem S, Berod A, Mutin M, Kwon HM, Tappaz ML.Large discrepancies in cellular distribution of the tonicity-induced expression of osmoprotective genes and their regulatory transcription factor TonEBP in rat brain.Neuroscience.2006 Oct 13;142(2):355-68.
    [17]Tsai TT, Danielson KG, Guttapalli A, Oguz E, Albert TJ, Shapiro IM, Risbud MV.TonEBP/OREBP is a regulator of nucleus pulposus cell function and survival in the intervertebral disc.J Biol Chem.2006 Sep 1;281(35):25416-24.
    [18]Woo SK, Dahl SC, Handler JS, Kwon HM.Bidirectional regulation of tonicity-responsive enhancer binding protein in response to changes in tonicity.Am J Physiol Renal Physiol.2000 Jun;278(6):F1006-12.
    [19]Go WY, Liu X, Roti MA, Liu F. Ho SN.NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment.Proc Natl Acad Sci U S A.2004 Jul 20;101(29):10673-8.
    [20]Loyher ML, Mutin M, Woo SK, Kwon HM, Tappaz ML.Transcription factor tonicity-responsive enhancer-binding protein (TonEBP) which transactivates osmoprotective genes is expressed and upregulated following acute systemic hypertonicity in neurons in brain.Neuroscience.2004; 124(1):89-104.
    [21]Neuhofer W.Role of NFAT5 in inflammatory disorders associated with osmotic stress.Curr Genomics.2010 Dec;11(8):584-90.
    [22]Morancho B, Minguillon J, Molkentin JD, Lopez-Rodriguez C, Aramburu J.Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice.BMC Mol Biol.2008 Jan 25;9:13.
    [23]Halterman JA, Kwon HM, Zargham R, Bortz PD, Wamhoff BR.Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation.Arterioscler Thromb Vase Biol.2011 Oct;31(10):2287-96.
    [24]Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A.The role of NFAT transcription factors in integrin-mediated carcinoma invasion.Nat Cell Biol. 2002 Jul;4(7):540-4.
    [25]O'Connor RS, Mills ST, Jones KA, Ho SN, Pavlath GK.A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis.J Cell Sci.2007 Jan 1;120(Pt 1):149-59.
    [26]Yoon HJ, You S, Yoo SA, Kim NH, Kwon HM, Yoon CH, Cho CS, Hwang D, Kim WU.NFAT5 is a critical regulator of inflammatory arthritis.Arthritis Rheum. 2011 Jan 10.
    [27]Asirvatham AJ, Gregorie CJ, Hu Z, Magner WJ, Tomasi TB.MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components.Mol Immunol.2008 Apr;45(7):1995-2006.
    [28]Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, Chen PH, Li S, Fletcher AL, Yokoyama S, Scott KL, Garraway LA, Song JS, Granter SR, Turley SJ, Fisher DE, Novina CD. Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma.Mol Cell.2010 Dec 10;40(5):841-9.
    [29]Chen M, Sinha M, Luxon BA, Bresnick AR, O'Connor KL.Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin.J Biol Chem.2009 Jan 16;284(3):1484-94.
    [30]Hynes RO.Integrins:bidirectional, allosteric signaling machines.Cell.2002; 110(6):673-87.
    [31]Katsumi A, Orr AW, Tzima E, Schwartz MA.Integrins in mechanotransduction.J Biol Chem.2004 Mar 26;279(13):12001-4.
    [32]Chen M, Sastry SK, O'Connor KL.Src kinase pathway is involved in NFAT5-mediated S100A4 induction by hyperosmotic stress in colon cancer cells. Am J Physiol Cell Physiol.2011; 300(5):C1155-63.
    [33]Nishino M, Ashiku SK, Kocher ON, Thurer RL, Boiselle PM, Hatabu H.The thymus:a comprehensive review.Radiographics.2006 Mar-Apr;26(2):335-48.
    [34]Go WY, Liu X, Roti MA, Liu F, Ho SN.NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment.Proc Natl Acad Sci USA.2004 Jul 20;101(29):10673-8.
    [35]Trama J, Go WY, Ho SN.The osmoprotective function of the NFAT5 transcription factor in T cell development and activation.J Immunol.2002 Nov 15;169(10):5477-88.
    [36]Drews-Elger K, Ortells MC, Rao A, Lopez-Rodriguez C, Aramburu J.The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cells exposed to hypertonic stress.PLoS One.2009;4(4):e5245.
    [37]Berga-Bolanos R, Drews-Elger K, Aramburu J, Lopez-Rodriguez C.NFAT5 regulates T lymphocyte homeostasis and CD24-dependent T cell expansion under pathologic hypernatremia.J Immunol.2010 Dec 1;185(11):6624-35.
    [38]Sivan S, Neidlinger-Wilke C, Wurtz K, Maroudas A, Urban JP.Diurnal fluid expression and activity of intervertebral disc cells.Biorheology.2006;43(3-4):283-91.
    [39]Gajghate S, Hiyama A, Shah M, Sakai D, Anderson DG, Shapiro IM, Risbud MV.Osmolarity and intracellular calcium regulate aquaporin2 expression through TonEBP in nucleus pulposus cells of the intervertebral disc.J Bone Miner Res.2009 Jun;24(6):992-1001.
    [40]Hiyama A, Gajghate S, Sakai D, Mochida J, Shapiro IM, Risbud MV.Activation of TonEBP by calcium controls{beta}1,3-glucuronosyltransferase-I expression, a key regulator of glycosaminoglycan synthesis in cells of the intervertebral disc.J Biol Chem.2009 Apr 10;284(15):9824-34.
    [41]Hiyama A, Gogate SS, Gajghate S, Mochida J, Shapiro IM, Risbud MV.BMP-2 and TGF-beta stimulate expression of beta 1,3-glucuronosyl transferase 1 (GlcAT-1) in nucleus pulposus cells through API, TonEBP, and Sp1:role of MAPKs.J Bone Miner Res.2010 May;25(5):1179-90.
    [42]Bartok B, Firestein GS.Fibroblast-like synoviocytes:key effector cells in rheumatoid arthritis.Immunol Rev.2010 Jan;233(1):233-55.
    [43]Owens GK, Kumar MS, Wamhoff BR.Molecular regulation of vascular smooth muscle cell differentiation in development and disease.Physiol Rev.2004 Jul;84(3):767-801.
    [44]Handler JS, Kwon HM.Transcriptional regulation by changes in tonicity.Kidney Int.2001 Aug;60(2):408-11.
    [45]Tyagi MG, Nandhakumar J.Newer insights into renal regulation of water homeostasis.Indian J Exp Biol.2008 Feb;46(2):89-93.
    [46]Yang T, Zhang A, Honeggar M, Kohan DE, Mizel D, Sanders K, Hoidal JR, Briggs JP, Schnermann JB.Hypertonic induction of COX-2 in collecting duct cells by reactive oxygen species of mitochondrial origin.J Biol Chem.2005 Oct 14;280(41):34966-73.
    [47]Zhang Z, Dmitrieva NI, Park JH, Levine RL, Burg MB.High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA.Proc Natl Acad Sci USA.2004 Jun 22;101(25):9491-6.
    [48]Zhou X, Ferraris JD, Burg MB.Mitochondrial reactive oxygen species contribute to high NaCl-induced activation of the transcription factor TonEBP/OREBP.Am J Physiol Renal Physiol.2006 May;290(5):F1169-76.
    [49]Zhou X, Ferraris JD, Cai Q, Agarwal A, Burg MB.Increased reactive oxygen species contribute to high NaCl-induced activation of the osmoregulatory transcription factor TonEBP/OREBP.Am J Physiol Renal Physiol.2005 Aug;289(2):F377-85.
    [50]Mattson DL, Wu F.Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla.Acta Physiol Scand.2000 Jan;168(1):149-54.
    [51]Neuhofer W, Fraek ML, Beck FX.Nitric oxide decreases expression of osmoprotective genes via direct inhibition of TonEBP transcriptional activity.Pflugers Arch.2009 Feb;457(4):831-43.
    [52]Miiller M, Jansen PL.Molecular aspects of hepatobiliary transport.Am J Physiol. 1997 Jun;272(6 Pt 1):G1285-303.
    [53]Haussinger D, Kubitz R, Reinehr R, Bode JG, Schliess F.Molecular aspects of medicine:from experimental to clinical hepatology.Mol Aspects Med.2004 Jun;25(3):221-360.
    [54]Kubitz R, Haussinger D.Osmoregulation of bile formation.Methods Enzymol. 2007;428:313-24.
    [55]Haussinger D, Schmitt M, Weiergraber O, Kubitz R.Short-term regulation of canalicular transport.Semin Liver Dis.2000;20(3):307-21.
    [56]Dombrowski F, Kubitz R, Chittattu A, Wettstein M, Saha N, Haussinger D.Electron-microscopic demonstration of multidrug resistance protein 2 (Mrp2) retrieval from the canalicular membrane in response to hyperosmolarity and lipopolysaccharide.Biochem J.2000 May 15;348 Pt 1:183-8.
    [57]Lang F, Madlung J, Bock J, Lukewille U, Kaltenbach S, Lang KS, Belka C, Wagner CA, Lang HJ, Gulbins E, Lepple-Wienhues A. Inhibition of Jurkat-T-lymphocyte Na+/H+-exchanger by CD95(Fas/Apo-1)-receptor stimulation.Pflugers Arch.2000 Oct;440(6):902-7.
    [58]Bortner CD, Cidlowski JA.Flow cytometric analysis of cell shrinkage and monovalent ions during apoptosis.Methods Cell Biol.2001;66:49-67.
    [59]Bortner CD, Cidlowski JA.Apoptotic volume decrease and the incredible shrinking cell.Cell Death Differ.2002 Dec;9(12):1307-10.
    [60]Yu SP, Canzoniero LM, Choi DW.Ion homeostasis and apoptosis.Curr Opin Cell Biol.2001 Aug;13(4):405-11.
    [61]Nobel CS, Aronson JK, van den Dobbelsteen DJ, Slater AF.Inhibition of Na+/K(+)-ATPase may be one mechanism contributing to potassium efflux and cell shrinkage in CD95-induced apoptosis.Apoptosis.2000 Apr;5(2):153-63.
    [62]Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S.Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD).J Physiol.2001 Apr 1;532(Pt 1):3-16.
    [63]Reinehr R, Schliess F, Haussinger D.Hyperosmolarity and CD95L trigger CD95/EGF receptor association and tyrosine phosphorylation of CD95 as prerequisites for CD95 membrane trafficking and DISC formation.FASEB J.2003 Apr;17(6):731-3.
    [64]Reinehr R, Graf D, Fischer R, Schliess F, Haussinger D.Hyperosmolarity triggers CD95 membrane trafficking and sensitizes rat hepatocytes toward CD95L-induced apoptosis.Hepatology.2002 Sep;36(3):602-14.
    [65]Reinehr R, Graf D, Haussinger D.Bile salt-induced hepatocyte apoptosis involves epidermal growth factor receptor-dependent CD95 tyrosine phosphorylation.Gastroenterology.2003 Sep;125(3):839-53.
    [66]Reinehr R, Haussinger D.Inhibition of bile salt-induced apoptosis by cyclic AMP involves serine/threonine phosphorylation of CD95.Gastroenterology.2004 Jan; 126(1):249-62.
    [67]Eberle A, Reinehr R, Becker S, Haussinger D.Fluorescence resonance energy transfer analysis of proapoptotic CD95-EGF receptor interactions in Huh7 cells.Hepatology.2005 Feb;41(2):315-26.
    [68]Reinehr R, Becker S, Braun J, Eberle A, Grether-Beck S, Haussinger D.Endosomal acidification and activation of NADPH oxidase isoforms are upstream events in hyperosmolarity-induced hepatocyte apoptosis.J Biol Chem.2006 Aug 11;281 (32):23150-66.
    [69]Reinehr R, Becker S, Keitel V, Eberle A, Grether-Beck S, Haussinger D.Bile salt-induced apoptosis involves NADPH oxidase isoform activation.Gastroenterology. 2005 Dec;129(6):2009-31.
    [70]Reinehr R, Becker S, Eberle A, Grether-Beck S. Haussinger D.Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis.J Biol Chem.2005 Jul 22;280(29):27179-94.
    [71]Becker S, Reinehr R, Grether-Beck S, Eberle A, Haussinger D.Hydrophobic bile salts trigger ceramide formation through endosomal acidification.Biol Chem.2007 Feb;388(2):185-96.
    [72]Schliess F, Haussinger D.The cellular hydration state:a critical determinant for cell death and survival.Biol Chem.2002 Mar-Apr;383(3-4):577-83.
    [73]Lambeth JD.Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases.Curr Opin Hematol.2002 Jan;9(1):11-7.
    [74]Marchesini N, Hannun YA.Acid and neutral sphingomyelinases:roles and mechanisms of regulation.Biochem Cell Biol.2004 Feb;82(1):27-44.
    [75]Reinehr R, Sommerfeld A, Keitel V, Grether-Beck S, Haussinger D.Amplification of CD95 activation by caspase 8-induced endosomal acidification in rat hepatocytes.J Biol Chem.2008 Jan 25;283(4):2211-22.
    [76]Reinehr R, Gorg B, Hongen A, Haussinger D.CD95-tyrosine nitration inhibits hyperosmotic and CD95 ligand-induced CD95 activation in rat hepatocytes.J Biol Chem.2004 Mar 12;279(11):10364-73.
    [77]Bogdan C.Nitric oxide and the immune response.Nat Immunol.2001 Oct;2(10):907-16.
    [78]Haussinger D, Kurz AK, Wettstein M, Graf D, Vom Dahl S, Schliess F.Involvement of integrins and Src in tauroursodeoxycholate-induced and swelling-induced choleresis.Gastroenterology.2003 May; 124(5):1476-87.
    [79]Reinehr R, Sommerfeld A, Haussinger D.Insulin induces swelling-dependent activation of the epidermal growth factor receptor in rat liver.J Biol Chem.2010 Aug 20;285(34):25904-12.
    [80]Schliess F, Reissmann R, Reinehr R, vom Dahl S, Haussinger D.Involvement of integrins and Src in insulin signaling toward autophagic proteolysis in rat liver.J Biol Chem.2004 May 14;279(20):21294-301.
    [81]Taniguchi CM, Emanuelli B, Kahn CR.Critical nodes in signalling pathways: insights into insulin action.Nat Rev Mol Cell Biol.2006 Feb;7(2):85-96.
    [82]Cohen P.The twentieth century struggle to decipher insulin signalling.Nat Rev Mol Cell Biol.2006 Nov;7(11):867-73.
    [83]Haussinger D, Kubitz R, Reinehr R, Bode JG, Schliess F.Molecular aspects of medicine:from experimental to clinical hepatology.Mol Aspects Med.2004 Jun;25(3):221-360.
    [84]Haussinger D (ed):Liver regeneration.De Gruyter Publ. Berlin/Boston,2011.
    [85]Burg MB, Ferraris JD, Dmitrieva NI.Cellular response to hyperosmotic stresses.Physiol Rev.2007 Oct;87(4):1441-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700