酵母培养制备(1→3)-β-D-葡聚糖方法及相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有免疫活性的(1→3)-β-D-葡聚糖是葡萄糖通过(1→3)-β-D-糖苷键连接而成的一类高分子化合物,广泛分布在细菌、酵母、蘑菇、真菌、谷物、海藻中。Saccharomyces cerviseae是重要的一类单细胞真菌,外被一坚硬的刚性细胞壁包围,(1→3)-β-D-葡聚糖是构成细胞壁的主要组分之一。(1→3)-β-D-葡聚糖通过与巨噬细胞、嗜中性粒细胞和NK细胞上的受体相互作用,诱导生物活性,提高宿主免疫功能,具有抗肿瘤和辐射保护作用,是哺乳动物、无脊椎动物的免疫促进物,还可用于治疗细菌、病毒、真菌和寄生虫引发的疾病。
     S.cerevisiae FL1因具有较厚的细胞壁而被选择为(1→3)-β-D-葡聚糖的生产菌株。在液体YEPD培养基的生长,S.cerevisiae FL1最大比生长速率μ_(max)0.51h~(-1),细胞倍增时间约1.34h。在利用单因素摇瓶实验考察营养和环境条件对S.cerevisiae FL1生物量影响的基础上,得到了较优的培养条件:8%(w/v)葡萄糖,4%(w/v)蛋白胨,1%(w/v)酵母浸提物,培养温度30℃,种龄5~8h,接种量2~4%(v/v),摇床转速220r/min,装液量30%(v/v)。随后,考虑到单因素试验设计的局限性,采用了响应面法对发酵培养基进行了优化。响应面法系数学与统计学的结合,它有助于快速建模、缩短优化时间和提高工程应用可信度。通过响应面法建立了S.cerevisiae FL1生物量与培养基组分蔗糖、硫酸铵及酵母浸出物浓度之间的函数关系
     y=9.8634+1.0066x_1-0.2782x_2+2.3718x_3+0.3187x_1x_2+1.1812x_1x_3-0.1688x_2x_3,-0.2414x_1~2-0.0735x_2~2-1.0191x_3~2
     其中,x_1、x_2、x_3分别表示蔗糖、硫酸铵和酵母浸出物的编码值浓度。该模型与实际符合程度较高(R~2=0.997)。变量分析揭示,在考察范围内,酵母浸出物对生物量收率影响程度最高,蔗糖次之,硫酸铵最弱。优化得到的发酵培养基为:115.5g/L蔗糖,10.0g/L硫酸铵,25.0g/L酵母浸出物,0.1g/L NaCl,0.1/LCaCl_2·2H_2O,0.5g/L MgSO_4·7H_2O,1.0/L KH_2SO_4。上罐发酵,S.cerevisiae FL1的最大生物量42.96g/L。
     传统的(1→3)-β-D-葡聚糖制备方法是基于酸碱反复萃取,这种方法的明显不足在于酸、碱试剂用量大、产物杂质含量高、劳动强度大和环境污染大。本工作提出了使用次氯酸钠氧化S.cerevisiae FL1自溶细胞制备(1→3)-β-D-葡聚糖的思路。在考察了各种理化因素对细胞自溶率的影响后发现,52℃下,S.cerevisiae FL1暴露在1.5%(v/v)乙酸乙酯(pH5.5)溶液中,S.cerevisiae FL1自溶率达到最值。自溶36h后,自溶进行得比较彻底。而且与平衡期的S.cerevisiaeFL1细胞壁相比较,自溶细胞的细胞壁基本保持不变。利用自溶过程降解、去
    
    浙江大学博士学位论文
    除细胞内的大分子物质,继而使用稀次氯酸钠溶液氧化5. cerevisia。FLI自溶细
    胞制备真菌(l一3)一p一D一葡聚糖。借助于元素分析、红外吸收光谱技术和‘H
    NMR,得到的多糖系(l峥3)一p一D一葡聚糖。(1分3)一p一D一葡聚糖’H NMR谱图分
    辨率与温度相关,温度越高,谱图分辨率提高;(1分3)一p一D·葡聚糖的水溶性较
    差。
     细胞在其自然栖息环境和工业培养过程如食品、制药工业、绿色化学合成、
    深海微生物学和有机相生物转化以及细胞固定化工程中,常常要忍受高盐、高
    糖渗透应激作用。为了揭示渗透作用机制,考察了氯化钠、山梨醇、甘油和聚
    乙二醇(PEG600)等4种化合物对模式生物5. cerevisiae细胞生长、形态结构
    和代谢的影响。24h细胞培养结果表明,渗透抑制作用随着渗透强度的增加一
    致加剧,抑制细胞比生长速率。当甘油浓度上升到4.52 mol/L时,细胞增殖完
    全被抑制。增加环境中甘油浓度能增加细胞平均体积,并随着甘油浓度的提高,
    L:B值趋近于1.18左右,细胞形状趋于球形,这减少了细胞的比表面积,有利
    于减少胞内水分的损失流量,从而保护了细胞。在生理可接受的渗透强度内,
    与对照组相比较,0.5 mo比氯化钠和0.33m。比PEG600不影响最终残糖水平
    和生物量浓度。5 cerevisiae FLI由于具有刚性的细胞壁能耐受低渗应激处理,
    尝试通过了低渗应激诱导5. cerevisiaeFLI合成(l峥3)一p一D一葡聚糖。与对照组,
    等渗环境的5. cerevista。FLI相比,低渗环境抑制了细胞壁的增长,但低渗、等
    渗交替作用对细胞壁的效应最明显。低渗应激处理40h后,细胞p一葡聚糖含量
    7.2%,而低渗、等渗交替作用40h后,细胞壁p一葡聚含量提高了18.1%。低渗、
    等渗交替作用能够刺激5. cerevisiaoFLI合成(1分3)一p一D一葡聚糖。
     通过简化5. cerevisiaeFLI菌落形态和引入未饱和系数、渗透作用,得到了
    一个描述不同渗透环境下5. cerevisiae FLI在YEPD固体培养基上的增殖模型
    m(t)
    0 .00004lx0.006728
    加.000041“+(0.006728“一0.000041”)。一,聆
    其中,刀表示环境因子
    的效应。卢越大,环境越利于细胞的增殖,环境越友好;Z为适小,环境越不利于
    细胞的增殖,环境越恶劣。使用该模型,我们建立了一个定量描述不同渗透剂
    在不同浓度时的渗透抑制作用。对照组YEPD平板、o.smol几氯化钠、0.巧mol几
    甘油、o.smol/L氯化钠和。,15mol几甘油
Immunologically active glucans are (l→3)-β-D-linked glucose polymers that occur as a primary component in the cell walls of bacteria, fungi, cereals, mushrooms, seaweed or are secreted extracellularly by various fungi. Fungi are almost entirely multicellular, with yeast, Saccharomyces cerviseae, being a prominent unicellular fungus. S. cerviseae are surrounded by a tough, rigid cell wall. Cell walls are dynamic structures during normal cell expansion. β-Glucans are the conserved structure of cell wall, which are (l→3)-linked β-D-glucopyranan backbone with (1 →6)-β-branches.
    The beneficial effects of glucans have been attributed to modulation of immune function, increased bacterial clearance, increased bactericidal activity, and other nonspecific effects. One strain of S. cerevisiae FL1 screened from the nature, rather than commercial spent yeast, was selected as the starting fungus for β-D-glucan production as their cell walls were thick under transmission electron microscopy. Influences of environmental conditions and media components on S. cerevisiae FL1 biomass were evaluated in shake flasks. Results indicated that cells multiplied and sugar dropped quickly with μmax of approximate 0.51h-1; influences of temperature, nutrient usage and agitation on biomass were significant; a satisfactory biomass productivity was obtained under the, condition: 30℃, 8% (w/v) glucose, 4% (w/v) peptone, and agitation speed of 220 r/min, medium volumetric ratio of 30% (v/v). In addition, sucrose as well as ammonium sulfate could be utilized by S. cerevisiae FL1 to meet their requirement for nutrients while inoculation ratio, in the observed range, had negligible effect on biomass. Due to inherent drawbacks of the traditional single factor experimental design, response surface methodology was further employed to optimize the growth media for S. cerevisiae FL1. The relationship between biomass and nutrients was founded, which correlated experiment well with R2 of 0.997. It was
    y = 9.8634 + 1.0066x1, -0.2782x2 +2.3718x3 + 0.3187x1x2 +1.1812x1x2 -0.1688x2x3 -0.2414x12 -0.0735x22 -1.0191x32
    , where x1, x2, x3, denoted the concentration of sucrose, ammonium sulfate and yeast extract, respectively. Analysis of variables indicated that sucrose, ammonium sulfate
    
    
    
    and yeast extract significantly influenced biomass density. Further mathematical analysis was conducted. From the contour plot of the fitted mode, yeast extract and sucrose had significant positive effects on S. cerevisiae FL1 biomass while ammonium sulfate had negative effect on the biomass.
    (l→3)-β-D-Glucan has received much attention from 1940s. Traditional method for preparing (l→3)-β-D-glucan from S. cerevisiae is based on the repeated extractions with acids and alkali. However, there are some drawbacks in this method, such as large amount of chemicals required, time consuming, many impurities and much wastewater produced. Herein, a novel method to extract (1→3)-β-D-glucan from S. cerevisiae cell wall was proposed, which was based on the combination of induced autolysis and subsequent oxidation of the autolysed cell by sodium hypochlorite to remove undesirable substances. Influences of temperature, pH value and organic solvent on S. cerevisiae FL1 autolysis were investigated. Results indicated that each factor had its significant effect on induced autolysis and the optimal condition was 52℃, pH5.5 and 1.5% (v/v) ethyl acetate. The kinetics behavior of yeast autolytic process under the optimized condition was further studied. After 36h of autolysis, 42.0% (w/w) cellular substances were released while cell wall nearly remained intact. Finally, an ideal glucan yield as high as 22.9% (w/w) was obtained when S. cerevisiae FL1 was treated with the novel method. Infrared spectrum and H NMR spectra conferred the prepared polysaccharide was (l→3)-β-D-glucan. However, the aqueous solubility of (l→3)-β-D-glucan was still poor.
    In biochemical process with whole cell used, S. cerviseae may encounter several environmental stresses that adversely affect c
引文
Adams, D.S., Pero, S.C., Petro, J.B., Nathans, R., Mackin, W.M., Wakshull, E. PGG-Glucan activates NF-κB-like and NF-IL-6-like transcription factor complexes in a murine monocytic cell line. J. Leukoc. Biol., 1997, 62: 865-873.
    Adams, D.S., Nathans, R., Pero, S.C., Sen, A., Wakshull, E. Activation of a Rel-A/CEBP-beta-related transcription factor heteromer by PGG-Glucan in a murine monocytic cell line. J. Cell. Biochem., 2000, 77: 221-233.
    Adler, L., Blomberg, A., Nilsson, A. Glycerol metabolism and osmoregulation in the
    
    salt-tolerant yeast Debaryomyces hansenii. J. Bacteriol., 1985, 162: 300-306.
    Akhtar, N., Blomberg, A., Adler, L. Osmoregulation and protein expression in a pbs2A mutant of Saccharomyces cerevisiae during adaptation to hypersaline stress. FEBS Lett., 1997, 403: 173-180.
    Albertyn, J., Hohmann, S., Thevelein, J.M., Prior, B.A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high osmolarity glycerol response pathway. Mol. Cell. Biol., 1994, 14:4135-4144.
    Allison, S.D., Chang, B., Randolph, T.W., Carpenter, J.F. Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch. Biochem. Biophys., 1999, 356: 289-298.
    Anderson, D.P. Immunostimulants, adjuvants, and vaccine carriers in fish: applications to aquaculture. Annual Review of Fish Diseases, 1992:281-307.
    Anderson, D.E, & Jeney, G. Immunostimulants added to injected Aeromonas salmonicida bacterin enhance the defense mechanisms and protection in rainbow trout (Oncorhynchus mykiss). Veterinary Immunology and Immunopathology, 1992, 34: 379-389.
    Anderson, D.P., & Siwicki, A.K. Duration of protection against Aeromonas salmonicida in brook trout irnmunostimulated with glucan or chitosan by injection or immersion. Progres. Fish-Cult., 1994, 56:258-261.
    Battle, J., Ha, T., Li, C., Della Beffa, V., Rice, P., Kalbfleisch, J., Browder, W., Williams, D. Ligand binding to the (1→3)-β-D-glucan receptor stimulates NFκB activation, but not apoptosis in U937 cells. Biochem. Biophys. Res. Commun., 1998, 249: 499-504.
    Blazquez, M.A., Lagunas, R., Gancedo, C., Gancedo, J.M. Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett., 1993, 329: 51-54.
    Blomberg, A., Adler, L. Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD~+) in acquired osmotolerance of Saccharomyces cerevisiae. J. Bacteriol., 1989, 171: 1087-1092.
    Blomberg, A., & Adler, L. Physiology of osmotolerance in fungi. Adv. Microb. Phys., 1992, 33: 145-212.
    Blomberg, A. Global changes in protein synthesis during adaptation to 0.7 M NaCl medium of Saccharomyces cerevisiae. J. Bacteriol., 1995, 177: 3563-3572.
    Bohn, J.A., & BeMiller, J.N. (1→3)-β-D-glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym., 1995, 28: 3-14.
    Brown, A.D. Microbiol water stress. Bacteriol. Rev., 1976, 40: 803-846.
    
    
    Brown, A.D. Compatible solute and extreme water stress in eukaryotic microorganisms. Adv. Microb. Phys., 1978, 17: 181-242.
    Brown, G.D., & Gordon, S. Immune recognition. A new receptor for beta-glucans. Nature, 2001, 413: 36-37.
    Brul, S., King, A., Van der V.J.M., Chapman, J., Klis, F., Verrips, C.T. The incorporation of mannoproteins in the cell wall of S. cerevisiae and filamentous Ascomycetes. Antonie van Leeuwenhoek, 1997, 72: 229-237.
    Cheung, N.K.V., Modak, S., Vickers, A., Knuckles, B. Orally administered β-glucans enhance anti-tumor effects of monoclonal antibodies. Cancer Immunol Immunother, 2002, 51: 557-564.
    Cid, C.J., Duran, A., Del Ray, F., Snyder, M., Nombela, C., Sanchez, M. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Rev., 1995, 59: 345-386.
    Crowe, J. H., Crowe, L.M., Chapman, D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 1984, 223: 701-703.
    Donzelli, B.G.G., Lorito, M., Scala, F., Harman, G.E. Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-β-glucosidase from Trichoderma atroviride (T. harzianum). Gene, 2001, 277: 199-208.
    Donzis, R.A. Substantially purified beta (1,3) finely ground yeast cell wall glucan composition with dermatological and nutritional uses. US Patent 1996, 5 576 015.
    Dziezak, J.D. Yeasts and yeast derivatives. Applications Food Technol., 1987, 41: 122-125.
    Engstad, R.E., Lunde, H., Robertsen, B. Effect of soluble versus particulate yeast beta-glucan (Macrogard (R)) on immune responses in Atlantic salmon. Dev. Biol. Stand, 1997, 90: 463.
    Eriksson, P., Andre, L., Ansell, R., Blomberg, A., Adler, L. Cloning and characterisation of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD~+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol. Microbiol., 1995, 17: 95-107.
    Falameeva, O.V., Poteryaeva, O.N., Zhanaeva, S.Y., Levina, O.A., Filatova, T.G, Korolenko, T.A., Kaledin, V.I., Sandula, I., Kogan, G. Macrophage stimulator β-(1→3)-D-carboxymethylglucan improves the efficiency of chemotherapy of lewis lung carcinoma. Bulletin of Experimental Biology and Medicine, 2001, 8: 205-208.
    Gustin, M.C., Albertyn, J., Alexander, M., Davenport, K, MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 1998, 62: 1264-1300.
    
    
    何秀萍,刘增然,刘春秀,张博润.酵母菌细胞自溶突变株的研究.微生物学报,2003,43:283-287.
    Hirayama, T., Maeda, T., Saito, H., Shinozaki, K. Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Mol. Gen. Genet., 1995, 249: 127-138.
    胡小忠,冯万祥.酵母葡聚糖的制备及理化性质.华东理工大学学报,1999,25:477-479.
    胡小忠,甄宝贵,冯万祥.酸碱法从面包酵母中提取β-(1-3)-D葡聚糖.工业微生物,2003,30:28-31.
    Jagodzinski, P.E, Wiaderkiewicz, R., Kurzawski, G., Kloczewiak, M., Nakashima, H., Hyjek, E., Yamamoto, N., Uryu, T., Kaneko, Y., Posner, M.R., Kozbor, D. Mechanism of the inhibitory effect ofcurdlan sulfate on HIV-1 infection in vitro. Virology, 1994, 202: 735-745.
    Jamas, S., Easson, J., Davidson, D., Ostroff, G.R. Use of aqueous soluble glucan preparation to stimulate platelet production. US Patent, 1996, 5 532 223.
    Janeway, C.A., & Medzhitov, R. Lipoproteins take their Toll on the host. Curr. Biol., 1999, 9: 879-882.
    Jeney, D., & Anderson, D.P. Glucan injection or bath exposure given alone or in combination with a bacterin enhance the non-specific defence mechanism in rainbow trout (Oncorhyncus mykiss). Aquaculture, 1993, 116: 315-329.
    Jimenez-Vega, F., Sotelo-Mundo, R.R., Ascencio, F., Vargas-Albores, F. 1,3-β-D Glucan binding protein (BGBP) from the white shrimp, Penaeus vannamei, is also a heparin binding protein. Fish & Shellfish Immunology, 2002, 13:171-181.
    Jong, S.C., & Birmingham, J.M. Medicinal and therapeutic value of the Shiitake mushroom. Adv. App. Microbiol., 1993, 39: 153-184.
    Kamisato, J.K., & Nowakowski, M. Morphological and biochemical alterations of macrophages produced by a glucan, PSK. Immunopharmacology, 1988, 16: 88-96.
    Kassai, Z., Bauerová, K., Koprda, V., andula, J., Harangozó, M. Penetration of radionuclides across the skin: Glucans as possible inhibitors of metals permeation. Journal of Radioanalytical and Nuclear Chemistry, 2001, 250: 189-191.
    Klis, EM. Review: cell wall assembly in yeast. Yeast, 1994, 10: 851-869.
    Korolenko, T.A., Djanayeva, S., Poteryaeva, O.N., Falameyeva, O.V., Levina, O.A., Kaledin, V.I., Nowicky, J. Antimetastatic and antitumor effect of chemically modified glucans. Tumor Prevention and Genetics, 2002. S43.
    Larsson, K., Ansell, R., Eriksson, P., Adler, L. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD~+) complements an osmosensitive mutant of
    
    Saccharomyces cerevisiae. Mol. Microbiol., 1993, 10: 1101-1111.
    Lee, S. B., Jeon, H.W., Lee, Y.W., Lee, Y.M., Song, K.W., Park, M.H., Nam, Y.S., Ahn, H.C. Bio-artificial skin composed of gelatin and (1-3), (1-6)-β-glucan. Biomaterials, 2003, 24: 2503-2511.
    李卫旗,黄甫宏,吴雪昌,曾云中.啤酒酵母中β-(1-3)-葡聚糖的提取及其性能分析.浙江大学学报理学版,1999,26:75-79.
    李夏兰,蔡婀娜,曾明荣.温和化学渗透法破碎酵母细胞的研究.药物生物技术,2000,7:23-27.
    刘烺新,陈宗道,王光慈.啤酒酵母胞壁多糖提取工艺的研究.重庆大学学报,1994,17:43-48.
    刘烺新,陈宗道,王光慈.从啤酒废酵母泥中提取的胞壁多糖的流变学特性.重庆大学学报,1995,18:91-95.
    刘永强,刘德华,苏琼.以氯化钠为渗透压调节剂的甘油间歇和连续发酵.化工学报,2003,54:259-263.
    Lowe, E., Rice, P., Haa, T., Li, C., Kelley, J., Ensley, H., Lopez-Perez, J., Kalbfleisch, J., Lowrnan, D., Margl, P., Browder, W., Williams, D. A (1→3)-β-D-linked heptasaccharide is the unit ligand for glucan pattern recognition receptors on human monocytes. Microbes and Infection, 2001, 3: 789-797.
    Lukondeh, T., Ashbolt, N.J., Rogers, P.L., Hook, J.M. NMR confirmation of an alkali-insoluble glucan from Kluyveromyces marxianus cultivated on a lactose-based medium. World Journal of Microbiology & Biotechnology, 2003, 19: 349-355.
    Medzhitov, R., Janeway, C.A. An ancient system of host defense. Curr. Opin. Immunol., 2000, 10: 12-15.
    Meikle, A.J., Chudek, J.A., Reed, R.H., Gadd, G.M. Natural abundance ~(13) C nuclear magnetic resonance spectroscopic analysis of acyclic polyol and trehalose accumulation by several yeast species in response to salt stress. FEMS Microbiol. Lett., 1991, 82: 163.
    Mueller, A., Rice, P.J., Ensley, H.E., Coogan, P.S., Kalbfleisch, J.H., Kelley, J.L., Love, E.J., Portera, C.A., Ha, T., Browder, I.W., Williams, D.L. Receptor binding and internalization of water-soluble (1→3)-β-D-glucan biologic response modifier in two monocyte/macrophage cell lines, J. Immunol., 1996, 156: 3418-3425.
    Mueller, A., Raptis, J., Rice, P.J., Kalbfleisch, J. H., et al. The influence of glucan polymer structure and solution conformation on binding to (1→3)-beta-Dglucan receptors in a human monocyte-like cell line. Glycobiology, 2000, 10:339-346.
    
    
    Norbeck, J., Pahlmann, A.K., Akhtar, N., Blomberg, A., Adler, L. Purification and characterization of two isoenzymes of DL-glyeerol 3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogenactivated protein kinase signal transduction pathway. J. Biol. Chem., 1996, 271: 13875-13883.
    Ochiai, M., Ashida, M. A pattern-recognition protein for beta-1,3-glucan. The binding domain and the eDNA cloning of beta-1,3-glucan recognition protein from the silkworm, Bombyx mori. J. Biol. Chem., 2000, 275: 4995-5002.
    Parrou, J.L., Teste, M.A., Francois, J. Effects of various types of stress on the metabolism of reserve carbohydratesin Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology, 1997, 143: 1891-1900.
    Sahoo, P.K., & Mukherjee, S.C. Effect of dietary β-1,3 glucan on immune responses and disease resistance of healthy and aflatoxin β_1-induced immunocompromised rohu (Labeo rohita Hamilton). Fish & Shellfish Immunology, 2001, 11: 683-695.
    SANTARIM, M., NOVOA, B., FIGUERAS, A. Effects of β-glucans on the non-specific immune responses of turbot (Scophthalmus maximus L.). Fish & Shellfish Immunology, 1997, 7: 429-437.
    Secombes, C.J. Enhancement of fish phagocyte activity. Fish & Shellfish Immunology, 1994, 4: 421-436.
    Seeley, R.D. Fractionation and utilisation of baker's yeast. MBAA Tech Q., 1977, 14: 35-39.
    Siwicki, A. Immunomodulatory activity of levamisole in carp spawners, Cyprinus carpio L. Journal of Fish Biology, 1987, 31A: 245-246.
    Siwicki, A.K., Anderson, D.P., Dixon, O.W. In vitro immunostimulation of rainbow trout (Oncorhynchus mykiss) spleen cells with levamisole. Developmental and Comparative Immunology, 1990, 4: 231-237.
    孙虎山,李光友.硒化卡拉胶和酵母葡聚糖对栉孔扇贝血淋巴中两种水解酶活力的影响.海洋与湖沼,2002,33:245-249.
    Tanaka, T., Burgess, J.G., Wright, EC. High-pressure adaptation by salt stress in a moderately halophilie bacterium obtained from open seawater, Appl. Microbiol. Biotechnol., 2002, 57: 200-204.
    唐军,黄良军,蔡水洪,叶勤.玉米浆用量、渗透压和耗糖速率对甘油发酵的影响.华东理工大学学报,2001,27:234-237.
    Thanardkit, P., Khunrae, P., Suphantharika, M., Verduyn, C. Glucan from spent brewer's yeast: preparation, analysis and use as a potential immunostimulant in shrimp feed. World Journal of Microbiology & Biotechnology, 2002, 18:
    
    527-539.
    Thornton, B.P., Vetvicka, V., Pitman, M., Goldman, R.C., Ross, G.D. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol., 1996, 156: 1235-246.
    Ulli, F.Z., Suter, F. Improving skin function with CM-glucan, a biological response modifier from yeast. International Journal of Cosmetic Science, 1998, 20: 79-86.
    Vargas-Albores, F., Yepiz-Plascencia, G. Beta glucan binding protein and its role in shrimp immune response. Aquaculture, 2000, 191: 13-21.
    Van Aelst, T., Hohmann, S., Zimmermann, F. K., Jans, A.W.H., Thevelein, J.M. A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucoseinduced RAS-mediated cAMP signalling. EMBO J., 1991, 10: 2095-2104.
    Varela, J.C.S., Mager, W.H. Response of Saccharomyces cerevisiae to changes in external osmolarity. Microbiology, 1996, 142: 721-731.
    Vetvicka, V., Thornton, B.P., Ross, G.D. Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J. Clin. Invest., 1996, 98: 50-61.
    王滨,张国政,路福平,杜连样.酵母酒精耐性机制的研究进展.天津轻工业学院学报,2001(1):18-23.
    王淼,丁宵霖.可溶性酵母葡聚糖生物活性的体外检测.无锡轻工业大学学报.1996,15:6-11.
    王淼,丁宵霖.羧甲基化改性酵母葡聚糖的流变性质.无锡轻工业大学学报,1998a,17:34-38.
    王淼,丁宵霖.改性酵母葡聚糖——CMG的部分性质及其在溶液中的构象行为.中国生物化学与分子生物学报,1998b,14:636-640.
    王淼,陈玉添.酵母葡聚糖在肉制品中的应用研究.食品机械,2001(2):32-33.
    王光慈,黄前美,陈宗道,刘烺新.酵母胞壁多糖的乳化性及酯化修饰.食品与发酵工业,1994,(5):29-33.
    王云川,殷蔚申.β-1,3-葡聚糖酶的研究和应用.微生物学通报,1998,25:74-76.
    汪治.口服酵母葡聚糖可防治炭疽病和肿瘤.生物技术通报,2003(2):25.
    Williams, D.L., Pretus, H.A., McNamee, R.B., Jones, E.L., Ensley, H.E., Browder, I.W. Development of a water-soluble, sulfated (1→3)-β-D-glucan biological response modifier derived from Saccharomyces cerevisiae. Carbohydr Res., 1992, 235: 247-257.
    Williams, D.L., Mueller, A., Browder, W. Glucan-based macrophage stimulators: A
    
    review of their anti-infective potential. Clin. Immunother., 1996, 5: 392-399.
    张树政.糖生物学与糖生物工程.北京:清华大学出版社,2002.
    张岩,梁萌,刘德华.克鲁氏假丝酵母在高渗环境中海藻糖和胞内甘油积累的研究.生物工程学报,2001,17:332-335.
    赵光远,殷蔚申,吴小荣.用废啤酒酵母制备碱不溶性葡聚糖研究.微生物学通报,1997,24:148-152.
    诸葛健,方慧英.发酵法生产甘油的发展趋势.精细与专用化学品,2002,(3,4):3-5。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700