参与介导胆红素诱导人神经母细胞瘤SH-SY5Y细胞凋亡的胞内信号分子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高胆红素血症是造成新生儿听力损伤的高危因素之一。部分高胆红素患儿的听性脑干反应结果提示听觉脑干中枢存在病变,遗传性高胆红素血症动物模型Gunn大鼠的听觉脑干中枢及斜方体有明显病变,高胆红素血症也是听神经病的最重要诱因之一。因此,有必要研究胆红素对神经系统的损伤机理。
     细胞凋亡是细胞对周围环境变化所做出的反应之一。诱导细胞凋亡的因素很多,包括氧化应激,氮化应激,高渗应激,损伤基因组DNA的化合物,紫外线照射,热休克,低氧,生长因子剥夺,某些细胞因子如肿瘤坏死因子,转化生长因子β等。介导凋亡反应的信号通路很多,如蛋白激酶A,蛋白激酶C,MAPK等,其中属于MAPK超家族的P38MAPK和JNK家族在凋亡信号的转导中发挥重要的作用。
     本文以胆红素作用于体外培养的人神经母细胞瘤细胞系SH-SY5Y细胞,探讨胆红素损伤神经细胞的分子机制。运用分子生物学和细胞生物学技术,观察了胆红素诱导SH-SY5Y细胞凋亡,及对其线粒体膜电势的影响;应用细胞转染技术,建立了bcl-2过表达的细胞株,观察了bcl-2对胆红素诱导SH-SY5Y细胞凋亡的影响;应用P38MAPK特异性抑制剂SB203580研究了P38在胆红素诱导SH-SY5Y细胞凋亡的信号转导中的作用,然后,应用反义基因表达技术,建立了P38MAPK低表达的细胞株,进一步证实P38的作用;最后利用过氧化氢短暂激活JNK,探讨JNK通路在胆红素诱导SH-SY5Y细胞凋亡中扮演的角色。
     1.胆红素诱导SH-SY5Y细胞凋亡
     显微镜下见SH-SY5Y细胞经0.02g/L胆红素作用2h后即开始皱缩,变圆;Hochest33258染色显示在胆红素作用6h后,SH-SY5Y细胞出现染色质凝集,片段化等典型的凋亡改变;western blot检测在胆红素作用2h后多聚核糖腺苷二磷酸聚合酶(PARP)蛋白出现明显的断裂,提示caspase3被激活;流式细胞仪的定量分析显示SH-SY5Y细胞的凋亡率随胆红素作用时间的延长而增多,3h为19.4%,4h达到76.4%,6h后达到79%。
     2.胆红素诱导SH-SY5Y细胞线粒体膜电势的崩解
     经Rodanmin 123染色后,流式细胞仪结果显示SH-SY5Y细胞经0.02g/L胆红素作用1h后即出现线粒体膜电势的崩解,由16.6下降到7.11。而此时
Neonatal hyperbilirubinemia is one of the risk factors leading to hearing loss of neonates. Auditory brainstem responses of neonates with severe hyperbilirubinemia might indicate that there were pathological changes in the auditory central nucleus; Research showed morphological changes in the cochlear and nucleus of trapezoid body in Gunn rat pups which is the genetic animal model of hyperbilirubinemia; Hyperbilirubinemia also is the most frequent pathogeny of auditory neuropathy. Consequently, It is very significant to study the mechanism that bilirubin damage central nerve system.
    Apoptosis is a response of cell to the dramatic changes during the surrounding environment. Diverse extracellular stimuli including irradiation, ultraviolet light, heat shock, high osmotic, proinflammatory cytikines such as interleukin-1 and tumor necrosis factor, oxidative stress, nitric oxide, hypoxia, transforming growth factor- 3 can trigger apoptosis. Such stimuli are sensed by receptors at the cell surface, and transmitted to cytosolic and nuclear targets by the activation of intracellular signal transduction pathways. Diverse signal pathways including protein kinase A, protein kinase C, mitogen-activated protein kinase(MAPK) mediate the apoptotic response, in particular, the family of P38MAPK and c-jun N-terminal kinase both belonging to the MAPK superfamily play a important roles.
    We use the bilirubin directly acting on human neuroblastoma cell line SH-SY5Y cells to study the mechanism by which bilirubin damage neurons, especially the signaling transduction pathway. Utilizing the techniques of molecular biology and cell biology we observe that bilirubin induce apoptosis in SH-SY5Y cells, and its effect on the mitochondrial membrane potential; we establish a cell line SH-SY5Ybcl-2 with overexpression of bcl-2 protein, and observe the effect of bcl-2 on bilirubin-induced apoptosis and disruption of mitochondrail membrane potential of SH-SY5Y cells. Applying the P38MAPK specific inhibitor SB203580 we observe the role of P38 in the signal transduction of biliribin-induced apoptosis in SH-SY5Y cells. To further prove this we set up a cell line SH-SY5Yantip38 with low expression of P38MAPK
引文
Ahn YH, Koh JY, Hong SH Protein synthesis-dependent but Bcl-2-independent cytochrome C release in zinc depletion-induced neuronal apoptosis. J Neurosci Res, 2000,61:508-514.
    Almeida, E.A., llic, D., Han, Q., Hauck, C.R., Jin, F., Kawakatsu, H., Schlaepfer, D.D., and Damsky, C.H. Matrix survival signaling: from fibronectin via focal adhesion kinase to c-Jun NH2-terminal kinase. J. Cell Biol, 2000, 149:741-754.
    Alpert D, Schwenger P, Han J, et al. Cell stress and MKK6b-mediated p38 Map kinase activation inhibit tumor necrosis factor-induced IkappaB phosphorylation and NF-kappaB activation. J Biol Chem, 1999, 274:22176-22183.
    Amarante-Mendes GP, McGahon AJ, Nishioka WK, Afar DE, Witte ON, Green DR. Bcl-2-independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with up regulation of Bcl-xL. Oncogene, 1998, 16:1383-1390.
    Bagrodia S, Derijard B, Davis RJ, et al. Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem, 1995, 270:27995-27998.
    Baud, V., Lus, Z.G., Bennett, B., Suzuki, N., Xia, Y., and Karin, M., Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via and amino-terminal effector domain. Genes Dev, 1999, 13:1297-1308.
    Blank JL, Gerwins P, Elliott EM, et al. Molecular cloning of mitogen-activated protein/ERK kinase kinases (MEKK) 2 and 3. Regulation of sequential phosphorylation pathways involving mitogen-activated protein kinase and c-Jun kinase. J Biol Chem, 1996, 271:5361-5368.
    Bradham CB, Qian T, Streetz K, Trautwein C, Brenner DA and lemasters JJ. The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol. Cell. Biol, 1998, 18:6353-6364.
    Brdiczka D, Beutner G, Ruck A, Dolder M and WAllimann T. The molecular??structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition. Biofactors, 1998, 8:235-242.
    Breitschopf, K., haendeler, J., Malchow, P., Zeiher, A.M., and Dimmeler, S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Cell. Biol, 2000, 20:1886-1896.
     Budd SL, Tenneti L, Lishnak T and lipton SA. Mitochondrial and extramitochondrial apoptotic singaling pathways in cerebrocortical neurons. Proc, Natl. Acad. Sci. USA, 2000,97:6161-6166.
    Budd SL, Tennti L, Lishnak T, Lipton SA. Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc.Natl.Acad.Sci.USA, 2000,97:6161-6166.
    Chang HY, Nishitoh H, Yang X, et al. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science, 1998, 281:1860-1863.
    Chen YR, Tan TH. Inhibition of the c-jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene, 1998, 17:173-178.
    Chen, Y.R., and Tan, T.H. The c-Jun N-terminal kinase pathway and apoptotic signaling. Int. J. Oncol. 2000,16,651 -662.
    Cobb MH, Goldsmith EJ. How MaP kinases are regulated. J Biol Chem, 1995, 270:14843-14846.
    Colee JW, Shapiro SM. Morphological changs in the cochlear nucleus and nucleus of the trapezoid body in Gunn rat pups. Hearing Research, 1991, 57(1):23-30.
     Colombini M. Voltage gating in the mitochondrial channel, VDAC. J Membr. Biol, 1989,111:103-111.
    Coso, O.A., Chiariello, M., Yu, J.C., Teramoto, H., Crespo, P., Xu, N., Miki, T, and Gutkind, J.S. The small GTP-binding proteinds Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell, 1995, 81:1137-1146.
    Costantini P, Belzacq AS, Vieira HL, Larochette N, De Pablo MA, Zamzami N, Susin A, Brenner C, Kroemer G. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore??opening and apoptosis. Oncogene, 2000, 19:307-314.
    Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J, 1999, 341:233-249.
    Cryns V, Yuan J. Proteases to die for. Genes Dev, 1998,12:1551-1570.
    Deacon K, Blank JL. Mek kinase 3 directly activates MKK6 and MKK7, specific activators of the p38 and c-Jun NH2-terminal kinases. J Biol Chem, 1999 274:16604-16610.
    Debatin KM, Krammer PH. Resistance to APO-1 (CD95) induced apoptosis in T-ALL is determined by a BCL-2 independent anti-apoptotic program. Leukemia, 1995, 9:815-820.
    Degols G, Russell P. Discrete roles of the Spcl kinase and the Atfl transcription factor in the UV response of Schizosaccharomyces pombe. Mol Cell Biol, 1997, 17:3356-3363.
    Derijard B, Raingeaud J, Barrett T, et al. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms [published erratum appears in Science 1995; 269:17]. Science, 1995,267:682-685.
    Doi T, Motoyama N, Tokunaga A, Watanabe T. Death signals from the B cell antigen receptor target mitochondrial, activating necrotic and apoptotic death cascades in a murine B cell line, WEHI-231. Int.Immunol, 1999, 11:933-941.
    DuDley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc.Natl.Acad.Sci. USA, 1995,92:7686-7689.
    Dumont A, Hehner SP, Hofmann TG, Ueffing M, Droge W, Schmitz ML. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappa B. Oncogene, 1999, 18:747-757.
    Enslen H, Raingeaud J, Davis RJ. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem, 1998, 273:1741-1748.
    Freshney NW, Rallinson L, Guesdon F, et al. Interleukin-1 activated a novel protein??kinase cascade that results in the phosphorylation fo Hsp27. Cell, 1994, 78:1039-1049.
    Fuchs, S.Y., Adler, V., Buschmann, T., Yin, Z., Wu, X., Jones, S.N., and Ronai, Z. JNK. targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev, 1998a, 12:2658-2663.
    Fuchs, S.Y., Adler, V., Pincus, M.R., and Ronai, Z. MEKK1/JNK signaling stabilizes and activates p53. Proc. Natl. Acad. Sci. USA, 1998b, 95:10541 -10546.
    Fulda S, Scaffidi C, Susin SA, Krammer PH, Kroemer G, Peter ME, Debatin KM. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J.Biol.Chem, 1998,273:33942-33948.
    Funk RH, Nagel F, Wonka F, Krinde HE, Golfert F and Hofer A. Effects of heat shock on the functional morphology of cell organelles observed by video-enhanced microscopy. Anat. Rec, 1999, 255:458-464.
    Furlong IJ, Lopez Medivilla C, Ascaso R, Lopez Rivas A, Collins MKL. Induction of apoptosis by valinomycin: mitochondrial permesbility transition causes intracellular acidification. Cell Death Differ, 1998,5:214-221.
    Ganiatsas S, Kwee L, Fujiwara Y, et al. SEKI deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci USA, 1998, 95:6881-6886.
    Gao G, Dou QP. N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem, 2000, 80:53-72.
    Ghatan S, lamer S, kinoshita Y, Hetman M, Patel L, Xia Zhengui, Youle RJ, Morrison RS. P38 MAP kinase mediates Bax translocation in nitric oxide-induced apoptosis in neurons J.Cell Biol, 2000,150:335-347.
    Goldstein JC, Waterhouse NJ, Juin P, Evan GI and Green DR. The coordinate release of cytochrome c is rapid, complete and kinetically invariant. Nat. Cell, 2000, 2:156-162.
    Green DR and Reed JC. Mitochondria and apoptosis. Science, 1998, 281:1309-1312.Gross, A., Mcdommell, J.M., and Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999, 13:1899-1911.
    Guan Z, Buckman SY, Miller BW, et al. Interleukin-1 beta-induced cyclooxygenase-2 expression requires activation of both c-Jun NH2-terminal kinase and p38 MAPK signal pathways in rat renal mesangial cells. J Biol Chem, 1998, 273:28670-28676.
    Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K., Derijard, B., and Davis, R.J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J, 1996, 15:2760-2770.
    Hakem, R., Hakem, A., Duncan, G.S., Henderson, J.T., Woo, M., Soengas, M.S., Elia, A., de la Pompa, J.L., Kagi, D., Khoo, W., et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell, 1998, 94:339-352.
    Hale KK, Trollinger D, Rihanek M, et al. Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J Immunol, 1999, 162:4246-4252.
    Halestrap AP. The regulation of the matrix volumne of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim. Biophys. Acta, 1989,973:355-382.
    Han J, Jiang Y, Li Z, et al. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature, 1997, 386:296-299.
    Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ,2000,7:1182-1191.
    Heffner RR and Barron SA. The early effects of ischemia upon skeletal muscle mitochondria. J. Neurol. Sci, 1978, 38:295-315.
    Hehner SP, Hofmann TG, Ratter F, Dumont A, Droge W and Schmitz ML. Tumor mecrosis factor-alpha induced cell killing and activation of transcription factor NF-kappa B are uncoupled in L929 cells. J. Biol. Chem, 1998,273:18117-18121.
    Heiskanen KM, Bhat MB, Wang HW, Ma JJ and NIeminen AL. Mitochondrial depolarization accompanies cytochrome c realease during apoptosis in PC6 cells. J. Biol. Chem, 1999, 274:5654-5658.Heron-Mi lhavet L, Le Roith D. IGF-I induces MDM2-dependent degradation of p53 via the p38 MAP kinasepathway in response to DNA damage. J Biol Chem. 2002, Feb 27.
    Hirai S, Izawa M, Osada S, et al. Activation of the JNK pathway by distantly related protein kinases, MEKK and MUK. Oncogene, 1996,12:641 -650.
    Hu MC, Wang YP, Mikhail A, et al. Murine p38-delta mitogen-activated protein kinase, a developmentally regulated protein kinase that is activated by stress and proinflammatory cytokines. J Biol Chem, 1999,274:7095-7102.
    Hutchison M, Berman KS, Cobb MH. Isolation of TAO1, a protein kinase that activated MEKs in stress-activated protein kinase cascades. J Biol Chem, 1998, 273:28625-28632.
    Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAP-KKK that activated SAPK/JNK and p38 signaling pathways. Science, 1997, 275:90-94.
    Ip, Y>T., and Davis, R.J. Signal transduction by the c-Jun N-terminal kinase(JNK)-from inflammation to development. Curr. Opin. Cell Biol. 1998, 10:205-219.
    Ito, T., Deng, X., Carr, B., and May, W.S. Bcl-2 phosphorylation required for anti-apoptosis function. J. Biol. Chem, 1997,272:11671-11673.
    Jacotot E, Ravagnan L, loeffler M, Ferri KF, Vieira HLA, Zamzami N, Costantini P, Druillennec S, Hoebeke J, Brian JP, Irinopoulos T, Daugas E, Susin SA, Cointe D, Xie ZH, Reed JC, Roques BP, Kroemer G. The HIV-1 viral protein R induced apoptosis via a direct effect on mitochondrial permeability transition pore. J.Exp.Med , 2000, 191:33-45.
    Jacysyn JF, Conde-Moscatelli M, Barrichello CR, Silva UR, Macedo MS, Amarante-Mendes JP. Thymic epithelial cells mediate a Bcl-2-independent protection of single-positive thymocytes from dexamethasone-induced apoptosis. Exp Cell Res, 2002, 272:119-126.
    Jiang Y, Gram H, Zhao M, et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem, 1996,??271:17920-17926.
    Kim J, Nueda A, Meng YH, et al. Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members. J Cell Biochem, 1997, 67:43-54.
    Kishimoto, K., Matsumoto, K., and Ninomiya-Tsuji, J. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J. Biol. Chem, 2000, 275:7359-7364.
    Kopp, E., Medzhitov, R., Carothers, J., Xiao, C, Douglas, I., Janeway, C.A., and Ghosh, S. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev, 1999, 13:2059-2071.
    Kroemer G, Dallaporta B and Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol, 1998, 60:619-642.
    Kuan, C.Y., yang, D.D., Samanta Roy, D.R., Davis, R.J., Rakic, P., and Flavell, R.A. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron, 1999, 22:667-676.
    Kuida, K., Haydar, T.F., Kuan, C.Y., Gu, Y, Taya, C, Karasuyama, H., Su, M.S., Rakic, P., and Flavell, R.A. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell, 1998, 94:325-337.
    Li Z, Jiang Y, Ulevitch RJ, Han J. The primary structure of p38 gamma: A new member of p38 group of MAP kinases. Biochem Biophys Res Commun, 1996, 228:334-340.
    Li, K., Li, Y, Shelton, J.M., Richardson, J.A., Spencer, E., Chen, Z.J., Wang, X., and Williams, R.S. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell, 2000, 101:389-399.
    Lin A, Minden A, Harinetto H, et al. Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science, 1995, 268:286-290.
    Liu, H. Nishitoh, H., Ichijo, H., and Kyriakis, J.M. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol. Cell. Biol, 2000, 20:2198-2208.Liu, Z.G., Hsu, H., Goeddel, D.V., and Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kB activation prevents cell death. Cell, 1996, 87:565-567.
    Lomaga, M.A., Yeh, W.C., Sarosi, I., Duncan, G.S., Furlonger, C, Ho, A., Morony, S., Cappaareli, C, Van, G, Kaufman, S., et al. TRAF7 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev, 1999, 13:1015-1024.
    Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Haeffner A, Hirsch F, Geuskens M, Kroemer G. Mitochondrial permeability transition is a central coordinating event of apoptosis. J.Exp.Med, 1996, 184:1155-1160.
    Marchetti P, Hirsch T, Zamzami N, Castedo M, Decaudin D, Susin SA, Masse B, Kroemer G Mitochondrial permeability transition triggers lymphocyte apoptosis. J.Immunol, 1996,157:4830-4836.
    Marzo I, Brenner C, Zamzami N, Jurgensmeier J, Susin SA, Vieria HLA, Prevos M-C, Xie Z, Mutsiyama S, Reed JC and Kroemer G. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science, 1998, 281:2027-2031.
    Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie Z-H, Reed JC and Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2 related proteins. J. Exp. Med, 1998, 187:1261-1271.
    Mastrangelo AJ, Zou SF, Hardwick JM, Betenbaugh MJ. Antiapoptosis chemicals prolong productive lifetimes of mammalian cells upon Sindbis virus vector infection. Bioengineering, 1999,65:298-305.
    Matsumoto Y, Kawatani M, Simizu S, Tanaka T, Tanaka M, Imoto M. Bcl-2-independent induction of apoptosis by neuropeptide receptor antagonist in human small cell lung carcinoma cells. Anticancer Res, 2000,20: 3123-3129.
    Maundrell, K., Antonsson, B., Magnenat, E., Camps, M., Muda, M., Chabert, C, Gillieron, C, Boschert, U., Vial-Knecht, E., Martinou, J.C., and Arkinstall, S. Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein,??kinases in the presence of the constitutively active GTP-ginding protein Racl. J. Biol. Chem, 1997, 272:25238-25242.
    Merritt, S.E., Mata, M., Nihalani, D., Zhu, C, Hu, X., and Holzman, L.B. The mixed lineage kinase DLK utilizes MKK7 and nto MKK4 as substrate. J. Biol. Chem, 1999, 274:25238-25242.Milne, D.M., Campbell, L.E., Campbell, D.G, and Meek, D.W. p53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK1. J. Biol. Chem, 1995,270:5511-5518.
    Merry DE, Korsmeyer SJ Bcl-2 gene family in the nervous system. Annu.Rev.Neurosci ,1997,20:245-267.
    Minden A, Lin A, Claret FX, et al. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases RAc and Cdc42Hs. Cell, 1995,81:1147-1157.
    Minden, A., Lin, A., Claret, F.X., Abo, A., and Karin, M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell, 1995, 81:1147-1157.
    Muzio M, Natoli G, Saccani S, et al. The human toll signaling pathway: Divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med, 1998, 187:2097-2101.
    Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H and Tsujimoto Y. Bax interacts with the permeability transition pore to. induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA, 1998, 95:14681-14686.
    Noguchi, K., Kitanaka, C, Yamana, H., Kokubu, A., Mochizuki, T, and Kuchino, Y. Rugulation of c-Myc through phosphorylation at Ser-72 and Ser-71 by c-Jun N-terminal kinase. J. Biol. Chem, 1999,274:32580-32587.
    Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress: The p38 MAPK pathway. Crit Care Med, 2000, 28(4 Suppl):67-77.
    Pastorino JG, Hoeck JB. Ethanol potentiates tumor necrosis factor-alpha cytotoxicity in hepatoma cells and primary rat hepatocytes by promoting induction of??the mitochondrial permeability transition. Hepatology, 2000, 31:1141-1152.
    Pastorino JG, Tafani M, Rothman RJ, Macineviciute A, Hoek JB and Farber JL. Functional consequences of sustained or transient activation by Bax of the mitochondrial permeability transition pore. J. Biol. Chem, 1999, 274:31734-31739.
    Petronili V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P and Di Lisa F. Transient and long-lasting openings of the mitochonidrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Bilphys.J, 1999,76:725-734.
    Pica F, Franzese O, D'Onofrio C, Bonmassar E, Favalli C, Garaci E, Prostaglandin E2 induces apoptosis in resting immature and mature human lymphocytes: a c-Myc-dependent and Bcl-2-independent associated pathway. J Pharmacol Exp Ther, 1996,277:1793-1800.
    Pulverer, B.J., Kyriakis, J.M., Avruch, J., Nikolakaki, E., and Woodgett, J.R. Phosphorylation of c-Jun mediated by MAP kinases. Nature, 1991, 353:670-674.
    Raingeaud J, Gupta S, Rogers JS, et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem, 1995, 270:7420-7426.
    Raingeaud J, Whitmarsh AJ, Barrett T, et al. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol, 1996,16:1247-1255.
    Rana A, Gallo K, Godowski P, et al. The mixed lineage kinase SPRK phosphorylated and activated the stress-activated protein kinase activator, SEK-1. J Biol Chem, 1996,271:19025-19028.
    Ranee G, Beer DE,Cone-Wesson B,et al. Clinical findings for a group of infants and young childrenwith auditory neuropathy. Ear & Hearing, 1999,20:238-252.
    Reinhard, C, Shamoon, B., Shyamala, V., and Williams, L.T. Tumor necrosis factor alpha-induced activation of c-jun N-terminal kinase is mediated by TRAF2. EMBO J, 1997, 16:1080-1092.
    Rhee CK, Park HM, Jang YJ. Audiologic evaluation of neonates with severe hyperbilirubinemia using transiently evoked otoacoustic emissions and auditory??brainstem responses. Laryngoscope, 1999 ,109(12):2005-2008.
    Roger JD Signal transduction by the JNK group of MAP kinases. Cell, 2000,103:239-252.
    Rosini P, De Chiara G, Lucibello M, Garaci E, Cozzolino F, Torcia M. NGF withdrawal induces apoptosis in CESS B cell line through p38 MAPK activation and Bcl-2 phosphorylation. Biochem Biophys Res Commun, 2000,278:753-759.
    Rouse J, Cohen P, Trigon S, et al. A novel kinase cascade triggered by stress and heat shock that stimulated MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell, 1994, 78:1027-1037.
    Rutka JT, Gilbin JR, Berens ME, Bar-Shiva E, Tokuda K, McCuloch JR, Rosenblum ML, Eessalu TE, Aggarwal BB ad Bodell WJ. The effects of human recombinant tumor necrosis factor on glioma-derived cell lines: cellular proliferation, cytotoxicity, morphological and radioreceptor studies. Int. J.Cancer, 1988 41:573-582.
    Sabapathy, K., Jochum, W., Hochedlinger, K., Chang, L., Karin, M., and Wagner, E.F. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech. Dev, 1999b, 89:115-124.
    Sakai H, Kobayashi Y, Sakai E, Shibata M, Kato Y. Cell adhesion is a prerequisite for osteoclast survival. Biochem.Biophys.Res.Commun, 2000,270:550-556.
    Saks VA, Chernousova GB, Gukovsky DE, Smimov VN and Chazov El Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ions. Eur. J. Biochem, 1975, 57:273-290.
    Salmeron A, Ahmad TB, Carlile GW, et al. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J, 1996, 15:817-826.
    Sanchez- Prieto R, Rojas JM, Taya Y, Gutkind JS. A role for the p38 mitogen-acitvated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res, 2000,60:2464-2472.
    She QB, Bode AM, Ma WY, Chen NY, Dong Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and??p38 kinase. Cancer Res,2001, 61:1604-1610.
    Sheikh, M.S., Hollander, M.C., and Formace, A.J., Jr. Role of Gadd45 in apoptosis. Biochem. Pharmacol, 2000, 59:43-45.
    Sheykholeslami K, Kaga K. Otoacoustic emissions and auditory brainstem response after neonatal hyperbilirubinemia. Int J Pediatr Otorhinolaryngol., 2000, 52(1):65-73.
    Shimizu S, Ide T, Yanagida T and Tsujimoto Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol. Chem, 2000, 275:12321-12325.
    Shimizu S, Narita M and Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC [see comments]. Nature, 1999,399:483-487.
    Smeal, T., Binetruy, B., Mercola, D.A., Birrer, M., and Karin, M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature, 1991, 354:494-496.
    Soilu Hanninen M, Ekert P, Bucci T, Syroid D, Bartlett PF, Kilpatrick TG Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl-2-independent pathway. J Neurosci, 1999, 19:4828-4838.
    Stridh H, Fava E, Single B, Nicotera P, Orrenius S, Leist M. Tributyltin-induced apoptosis requires glycolytic adenosine triphosphate production. Chem.Res.Toxicol, 1999, 12:874-882.
    Szalai G, Krischnamurthy R and Hajnoczky G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J, 1999,18:6349-6361.
    Takaesu, G, Kishida, S., Hiyama, A., Yamaguchi, K., Shibuya, H., Irie, K., Ninomiya-Tsuji, J., and Matsumoto, K. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell, 2000, 5:649-658.
    TAkekawa M, Posas F, Saito H. A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediated stress-induced activation of the p38 and JNK pathways. EMBO J, 1997,16:4973-4982.Takekawa, M., Maeda, T., and Saito, H. Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPk pathways. EMBO J, 1998, 17:4744-4752.
    Tanaka K, Oda N, Iwasaka C, et al. Induction of Ets-1 in endothelial cells during reendothelialization after denuding injury. J Cell Physiol, 1998, 176:235-244.
    Tong L, et al. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat Struct Biol, 1997,4:311-316.
    Tournier, C, Hess, P., Yang, D.D., Xu, J., Turner, T.K., NImnual, A., Bar-Sagi, D., Jones, S.N., Flavell, R.A., and Davis, R.J. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science, 2000, 288:870-874.
    Tournier, C, Whitmarsh, A.J., Cavanagh, J., Barrett, T., and Davis, R.J. The MKK7 gene encodes a group of c-Jun NH_2-terminal kinase kinases. Mol. Cell. Biol, 1999, 19:1569-1581.
    Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P., and Ron, D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000,287:664-666.
    Van der Heiden M, Chandel NS, Schumacker PT and Thompson CB. Bcl-XL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell, 1999, 3:159-167.
    Vander Heiden MG and Thompson CB. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell Biol, 1999, 1: E209-E216.
    Vander Heiden MG, Chandel NS, Schumacker PT and Thompson CB. Bcl-x_L prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell, 1999, 3: 159-167.
    Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT and Thompson CB. Bcl-x_L regulates the membrane potential and volume homeostasis of mitochondria. Cell, 1997,91:627-637.
    Vieira HLA, Haouzi D, EI Hamel C, Jacotot E, Belzacq A-S, Brenner C, Kroemer G. Permeabilization of the mitochondrial inner membrane during apoptosis:impact of the??adenine nucleotide translocator. Cell Death Differ, 2000,7:1146-1154.
    Wang XS, Diener K, Manthey CL, et al. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem, 1997, 272:23668-23674.
    Wang XZ, Ron D. Stress-induced phosphorylation and activation of the transcription factor CHOP(GADD153) by p38 MAP kinase. Science, 1996, 272:1347-1349.
    Wang Z, Canagarajah BJ, Boehm JC, et al. Structural basis of inhibitor selectivity in MAP kinases. Structure, 1998, 6:1117-1128.
    Watson RWG, O'Neill A, Brannigen AE, Coffey R, Marshall JC, Brady HR, Fitzpatrick JM. Regulation of Fas antibody induced neutrophil apoptosis is both caspase and mitochondrial dependent. FEBS lett, 1999,453:67-71.
    Welch WJ and Suhan JP. Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J. Cell. Biol, 1985, 101:1198-1211.
    Wilson KP, McCaffrey PG, Hsiao K, et al. The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase. Chem Biol, 1997,4:423-431.
    Woo, M., Hakem, R., Soengas, M.S., Duncan, G.S., Shahinian, A., Kagi, D., Hakem, A., McCurrach, M., Khoo, W., Kaufman, S.A., et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev, 1998, 12:806-819.
    Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., and Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995, 270:1326-1331.
    Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAP-KKK family as a potential mediator of TGF-beta signal transduction. Science, 1995,270:2008-2011.
    Yamamoto, K., Ichijo, H., and Korsmeyer, S.J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol. Cell. Biol, 1999, 19:8469-8478.Yang SH, Galanis A, Sharrocks AD. Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol, 1999, 10:4028-4038.
    Yang X, Khosravi-Far R, Chang HY, et al. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell, 1997, 89:1067-1076.
    Yeh, W.C., Shahinian, A., Speiser, D., Kraunus, J., Billia, F., Wakeham, A., de la Pompa, J.L., Ferrick, D., Hum, B., Iscove, N., et al. Early lethality, functional NF-kappaB activation, and creased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity, 1997, 7:715-725.
    Yoshida, H., Kong, Y.Y., Yoshida, R., Elia, A.J., Hakem, A., Hakem, R., Penninger, J.M., and Mak, T.W. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell, 1998, 94:739-750.
    Yuan Junying, Yankner BA. Apoptosis in the nervous system. Nature,2000,407:802-809.
    Zamzami N, Marchetti P, Castedo M, Hirsch T, Susin SA, Masse B and Kroemer G Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett, 1996, 384:53-57.
    Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, CAstedo Mand, Kroemer G Mitochondrial control of nuclear apoptosis. J. Exp. Med, 1996, 183:1533-1544.
    Zechner D, Craig R, Hanford DS, et al. MKK6 activates myocardial cell NF-kappaB and inhibits apoptosis in a p38 mitogen-activated protein kinase-dependent manner. J Biol Chem, 1998, 273:8232-8239.
    Zervos AS, Faccio L, Gatto JP, et al. Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylated Max protein. Proc Natl Acad Sci USA, 1995, 92:10531-10534.
    Zhang S, Han J, Sells MA, et al. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem, 1995,270:23934-23936.
    Zoratti M and Szabo I. The mitochondrial permeability transition. Biochim.??Biophys. Acta, 1995,1241:139-176.
    Shapiro SM, Conlee JW. Brainstem auditory evoked potentials correlate with morphological changes in Gunn rat pups. Hear Res, 1991, 57:16-22.
    Uziel A, Marot M, Pujol R. The Gunn rat: an experimental model for central deafness. Acta Otolaryngol, 1983, 95:651-656.
    Ozcelik T, Onerci M, Ozcelik U, Aksoy S, Sennaroglu L. Audiological findings in kernicteric patients. Acta Otorhinolaryngol Belg, 1997,51 (1 ):31 -34.
    Boo NY, Oakes M, Lye MS, Said H. Risk factors associated with hearing loss in term neonates with hyperbilirubinaemia. J Trop Pediatr, 1994,40(4): 194-197.Dublin W. Neurological lesions in erythroblastosis fetalis in relation to nuclear deafness. Am J Clin Pathol,1951,21:935-939.Ahdab-barmada M, Moosy J. The neuropathology of kernicterus in the premature neonate: diagnosis problems. J Neuropathol Exp Neurol, 1984,43:45-56.
    Gerrard J. Nuclear jaundice and deafness. J Laryngol Otol, 1952, 66:39-46.
    kelemen G. Erythroblastosis fetalis. Pathologic report on the hearing organs of a newborn infant. AMA Arch Otolaryngol, 1956, 63:392-398.
    Belal A. Effect of hyperbilirubinemia on the inner ear in Gunn rats. J Laryngol Otol, 1975,89:259-265.
    Uziel AM, Marot M, pujol R. The Gunn rats: An experimental model for central deafness. Arch Otolaryngol, 1983, 95:651-656.
    Matkin ND, Carhart R. Auditory profiles associated with Rh incompatibility. Arch Otolaryngol. 1966, 84:502-513.
    Berginan I, Hirsch RP, Fria TJ, et al. Cause of hearing loss in the high-risk premature infant. J Pediatr, 1985,106:95-101.
    de Vries LS, Lary S, Dubowitz LMS. Relationship of serum bilirubin levels to ototoxicity and deafness in high-risk, low birth-weight infants. Pediatrics, 1985,76:351-354.
    de Vries LS, Lary S, Whitelaw AG, et al. Relationship of serum bilirubin levels and hearing impairment in newborn infants. Early Hum Dev, 1987, 15:269-277.
    Gunn CK. Hereditary acholuric jaundice in a new mutant strain of rats. J hered, 1938,29:137-139.
    Strebel I, Odell GB. Billirubin uridine disphosphoglucuronyltransferase in rat liver microsomes: genetic variation and maturation. Pediatr Res, 1971,5:548-559.
    Chun SB, Delorenzo RJ, Shapiro SM. Biliribin induces a calcium-dependent inhibition of multifunctional Ca2+/calmodulin-dependent kinase II activity in vitro. Pediatr Res, 1995,38:949-954.
    Shapiro SM, Hecox KE. developmental studies of auditory evoked potentials in jaundiced Gunn rats. Ann Otol Rhinol Laryngol, 1988,41:147-157.
    Shapiro SM, Hecox KE. Brain stem auditory evoked potential abnormalities in jaundiced Gunn rats given sulfonamide. Pediatr Res, 1989,98:308-317.
    Diamond I, Schmid R. Experimental bilirubin encephalopathy: The model of entry??of bilirubin-14C into the CNS. J Clin Invest, 1966,45:678-689.
    Shapiro SM. Acute brainstem auditory evoked potential abnormalities in jaundiced Gunn rats given sulfonamide. Pediatr Res, 1988,23:306-310.
    Shapiro SM. Binaural effects in brainstem auditory evoked potentials of jaundiced rats. Hearing Res, 1991, 53:41 -48.
    Chisin R, Perlman M, Sohmer H. Cochlear and brain stem responses in hearing loss following neonatal hyperbilirubinemia. Ann Otol, 1979, 88:352-357.
    Starr A, Picton TW, Sininger Y, et al. Auditory neuropathy. Brain, 1996, 119:741-753.
    Funato M, Tamal H, Shimada S, et al. Unbound bilirubin and auditory brainstem response. Pediatrics, 1994,93:50-53.
    Nakamura H, Takada S, Shimaduku R, et al. Auditory never and brainstem response in newborn infants with hyperbilirubinemia. Pediatrics, 1985, 75:703-708.
    Deltenre P, Mansbach AL, Bozet C, et al. Auditory neuropathy: a report on three cases with onsets and major neonatal illnesses. Electroencephalog Clin Neurophysiol, 1997,104:17-22.
    Ahlfors CE, Shapiro SM. Auditory brainstem response and unbound bilirubin in jaundiced Gunn rat pups. Biol Neonate, 2001,80:158-162.Adams J. Proteasome inhibition in cancer:development of PS-341. Semin.Oncol,2001,28:613-619.
    Adams JM, Cory S. The Bcl-2 protein family:arbiters of cell survivial. Science,281,1322-1326.
    Adams JM, Harris AW, Strasser A, Ogilvy S, Cory S. Transgenie models of lymphoid neoplasia and development of a pan-hematopoietie vector. Onconge, 1999,18:5268-5277.
    Arango D, Comer GA, Wadler S, Catalano PJ, Augenlicht LH. c-Myc/p53 interaction determines sensitivity of human colon carcinoma cells to 5-fluorouracil in vitro and in vivo. Cancer Res, 2001,61:4910-4915.
    Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMutrey AE, Hebert A, et al. Safety and antitumor activty of recombinant soluble Apo2 ligand. J.Clin.Invest, 1999,104:155-162.
    Asselin E, Mills GB, Tsang BK. XIAP regulates Akt activity and easpase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res, 2001,61 : 1962-1868.
    Attardi LD, Jacks T. The role of p53 in tumour suppression:lessons from mouse models. Cell.Mol Life Sci. 1999,55:48-63.
    Baldwin AS. Control of oncongenesis and cancer therapy resistance by the transcription factor NF- κB. J.Clin. Invest, 2001,107:241-246.
    Bartke T, Siegmund D, Peters N, Reichwein M, Henkler F, Scheurich P, Wajant H. P53 upregulates cFLIP, inhibits transcription of NF- κB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Onconge, 2001,20:571-580.
    Beere HM, Green DR. Stress management-heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol.,2001, 11:6-10.
    Blagosklonny MV. Unwinding the loop of Bcl-2 phosphorylation. Leukemia,2001,15:869-874.Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by Ras-MAPK signaling pathway by transcription -dependent and -independent mechanisms. Science,1999,286:1358-1362.
    Brown JM, Wouters BG. Apoptosis,p53, and tumor cell sensitivity to anticancer agents. Cancer Res, 1999,59:1391-1399.
    Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, lengauer C, Kinzler KW, Vogelstein B. Disruption of p53 in human cancer cells after the responses to therapeutic agents. J.Clin.Invest, 1999,104:263-269.
    Chatterjee D, Schmtz I, Krueger A, Teung K, Kirchhoff S, Krammer PH, Peter ME, Wyche JH, Pantazis P. Induction of apoptosis in 9-nitrocamptothecin-treated DU145 human prostate carcinoma cells correlates with de novo synthesis of CD95 and CD95 ligand and down-regulation of cFLIP. Cancer Res, 2001,61:7148-7154.
    Chen YN, Sharma SK, Ramsey TM, Jiang L, Martin MS, Baker K, Admas PD, Bair KW, Kaelin WG. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc.Natl.Acad.Sci.USA, 1999,96:4325-4329.
    Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ. Bcl-2,bcl-Xl sequester bh3 domain-only molecules reventing bax-and bak-mediated mtochondrial apoptosis. Mol.Cell, 2001,8:705-711.
    Cobet SW, Clarke AR, Gledhill S, Wylie AH. P53-dependent and -independent liks between DNA-damage,apoptosis and mutation frequency in ES cells. Onconge, 1999,18:1537-1544.
    Creagh EM, Sheehan D, Cotter TG. Heat shock protein-modulators of apoptosis in tumour cells. Leikemia,2000,14:1161-1173.
    Cunningham CC, Holmlund JT, Geary RS, Kwoh TJ, Dorr A, Johnson JF, Monia B, Nemunaitis J. A phase 1 trial of H-ras antisense oligonucleotide ISIS2503 administered as a continous intravenous infusion in patients with advanced carcinoma. Cancer, 2001,92:1265-1271.
    Dang CV, semenza GL. Oncogenic alterations of metabolism. Trend Biochem.Sci, 1999,24: 68-72.
    Datta SR, Brunet A, Greenberg ME. Cellular survivial: a play in three Akts. Genes??Dev, 1999,13:2905-2927.
    Deveraux QL, Reed JC. IAP family protein-suppressors of apoptosis. Genes Dev, 1999,13.239-252.
    Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell.2000,100:387-390.
    Domen J, Gandy KL, Weissman IL. Systemic overexpression of Bcl-2 in the hematopoietic system protects transgenic mice from the consequence of lethal irradiation. Blood, 1998, 91:2272-2282.
    El-Deiry WS. Role of oncongenes in resistance and killing by cancer therapeutic agents. Curr.Opin.Oncol, 1997,9:79-87.
    Evan GI, Vousden KH. Proliferation,cell cycle,and apoptoss in cancer. Nature, 2001,411:342-348.
    Fidler IJ. Critical determinants of cancer metastasis:rationale for therapy. Cancer Chemother.Pharmacol, 1999,43:3-10.
    Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science, 1999,286:2507-2510.
    Fulda S, Meyer E, Friesen C, Susin SA, Kroemer G, Debatin KM. Cell type specific involvememt of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncongene,2001,20; 1083-1075.
    Green DR. Apoptotic pathway.paper wraps stone blunts scissors. Cell,2000,102:1-4.
    Griffiths SD, Clarke AR, Healy LE, Ross G, Ford AM, Hooper ML, Wyllie AH, Greaves M. Absnce of p53 permits propagation of mutant cells following genotoxic damage. Oncongene, 1997,14:523-531.
    Guo Z, Yikang S, Yoshida H, Mak TW, Zacksenhaus E. Inactivation of the retinoblastoma tumor suppressor induces apoptosis protease-activating factor-1 dependent and independent apoptotic pathway during embryogenesis. Cancer Res, 2001,61:8395-8400.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell,2000,100:57-70.
    Harada H, Andersen JS, Mann M, Terada N, korsmeyer SJ. P70S6 kinase signals??cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc.Natl.Acad.Sci.USA, 2001,98:9666-9670.
    Harbour JW, Dean DC. Rb function in cell-cycle regulation and apoptosis. Nat.cell Biol, 2000,2:65-67.
    Herr I, debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood,2001,98:2603-2614.
    Hoffman WH, Biade S, Zilfou JT, Chen J, murphy M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J.Biol.Chem. 2001, 19:19.
    Huang DC, Strasser A. BH3-only domain protein-essential intiators of apoptotic cell death. Cell, 2000,103:839-842.
    Hwang PM, Bunz F, Yu J, Rago C, Chan TA, Murphy MP, Kelso GF, Smith RA, Kinzier KW, Vogeistein B. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat.Med, 2001,7:1111-1117.
    Jansen B, Wacheck V, Heere-Ress E, SchlagbauerWadl H, Hoeller C, Lucas T, Hoermann M, Hollenstein U, Wolff k, pehamberger H.. Chemosensitisation of malignant melanoma by Bcl-2 antisense therapy. Lancet,2000, 356:1728-1733.
    Jia L, Srinivasula SM, Liu FT, Newland AC, Femandes-Alnemri T, Alnemri ES, Kelsey SM. Apaf-1 protein deficiency confers resistance to cytochrome c-dependent apoptosis in human leukemic cell. Blood, 2001,98:414-421.
    Johnstone RW, Ruefli AA, Smyth MJ. Multiple physiological functions for multidrug transporter P-glycoprotein? Trends Biochem.Sci, 2000, 25:1 -6.
    Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair, and the cancer connection. Nat.Genet, 2001,27:247-254.
    Komarov PG, Komarova FA, Christov-Tselkov K, Coon JS, Chemov MV, Gudkov AV. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Scence, 1999, 285:1733-1737.
    Komarova EA, Gudkov AV. Suppression of p53:a new approach to overcome side effects of antitumor theraphy. Biochemistry, 2000,65:41 -48.
    Komarova EA, Gudkov AV. Chemoprotection from p53-dependent??apoptosis:potential clinical applications of the p53 inhibitors. Biochem.Pharmacol, 2001,62:657-667.
    Kndo S, Shinomura Y, Miyazaki Y, Kiyohara T, Ysutsui S, Kitamura S, Nagasawa Y, Kanayama S, Matsuzawa Y. Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res, 2000, 60:4328-4330.
    Krek W, Xu G, Livingston DM. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell,1995, 83:1149-1158.
    Leone G, Mele L, Pulsoni A, Equitani F, Pagano L. The incidence of secondary leukemias. Haematologica, 1998,84:937-945.
    Liu R, Page C, Beidler DR, Wicha MS, Nunez G. Overexpression of bcl-Xl promotes chemotherapy resistance of mammary tomors in a syngeneic mouse model. Am. J.Pathol, 1999, 155:1861-1867.
    Los M, Wesselborg S, schulze-Osthoff K. The role of caspases in development,immunity,and apoptotic signal transduction:lessons fron knockout mice. Immunity, 1999,10:629-639.
    Lowe SW, Lin AW. Apoptosis in cancer. carcinogenesis, 2000,21:485-495.
    Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr.Opin.Oncol, 2001,13:477-483.
    Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat.Rev.Mol.Cell.Biol, 2001,1:63-67.
    Moroni JC, Hickman ES, Denchi EL, Caprara G, Colli E, Cecconi F, Muller H, helin K. Apaf-1 is a transcriptional target for E2F and p53. Nat.Cell.Biol, 2001,3:552-558.
    Muschen M, Warskulat U, Beckmann MW. Defining CD95 as a tumor soppessor gene. J.Mol.Med, 2000,78:312-325.
    Ng SSW, Tsao MS, Chow S, Hedley DW. Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res, 2000,60:5451-5455.
    Omer CA, Chen Z, Diehl RE, Conner MW, Chen HY, Trumbauer ME, Gopal-Truter S, Seeburger G, Bhimnathwala H, Abrams MT, et al. Mouse mammary tumor??virus-ki-rasB transgenic mice develop mammary carcinomas that can be growth-inhibited by a farnesyl: protein transferase inhibitor. Cancer Res, 2000, 60:2680-2688.
    Paulsen M, Ferguson-Smith AC. DNA methylation in genomic imprinting, development, and disease. J.Pathol, 2001,195:97-110.
    Rampino N, Yamamoto H, Lonov Y, Li Y, Sawai H, Reed JC, Perucho M. Somatic grameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 1997,275:967-969.
    Reed JC. Dysregulation of apoptosis in cancer. J.Clin.Oncol, 1999,18:6457-6473.
    Robertson KD, Jones PA. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol.Cell.Biol, 1998, 18:6457-6473.
    Rosen D, Li JH, Keidar S, Markon I, Orda R, Berke G. Tumor immunity in perforin-deficient mice: a role for CD95(Fas/APO-1). J.Immunol, 2000,164,3229-3235.
    Roymans D, Siegers H. Phosphatidylinositol 3-kinase in tumor progression. Eur.J.Biochem, 2001, 268:487-498.
    Ryan KM, Emst MK, Rice NR, Vousden KH. Role of NF- κB in p53-mediated programmed cell death. Nature, 2000,404:892-897.
    Ryan KM, Phillips AC, Vousden KH. Regulation and function of p53 tumor suppressor protein. Curr.Opin.Cell.Biol, 2001,13:332-337.
    Sasaki H, Sheng Y, Kotsuji F, Tsang BK. Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cell. Cancer Res, 2000, 60:5659-5666.
    Schmitt CA, McCurrach ME, de Stanchina E, Wallace-BrodeurRR, Lowe SW. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev, 1999,13:2670-2677.
    Schmitt CA, Rosenthal CT, Lowe SW. Genetic analysis of chemoresistance in primary murine lymphomas. Nat.Med, 2000,6:1029-1035.
    Sherr CJ, Weber JD. The ARF/p53 pathway. Curr.Opin.Genet.Dev, 2000,10:94-99.Shin MS, Kim HS, Lee SH, Park WS, Kim SY, Park JY, Lee JH, Lee SK, Lee SN, Jung SS, et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1(TRAIL-R1) and receptor 2(TRAIL-R2) genes in metastatic breast cancers. Cancer Res, 2001,61:4942-4946.
    Sierra A, Castellsague X, Escobedo A, Lloveras B, Garcia-Ramirez M, Moreno A, Fabra A. Bcl-2 with loss of apoptosis allows accumulation of genetic alterations: a pathway to metastatic progression in human breast cancer. Int.J.Cancer, 2000,89:142-147.
    Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science, 1999,284:156-159.
    Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature, 2001,409:207-211.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijin M, Jeffrey SS et al. gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc.Natl.Acad.Sci.USA, 2001,98:10869-10874.
    stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW. Regulation of PTEN transcription by p53. Mol.Cell, 2001,8:317-325.
    Straus SE, Jaffe ES, Puck JM, Dale JK, Elkon KB, Rosen-Wolff A, Peter AM, Sneller MC, Hallahan CW, Wang J, et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood, 2001,98:194-200.
    Suzuki SG, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, Htra2, is released from the mitochondria and interacts with xiap, inducing cell death. Mol,Cell, 2001, 8:613-621.
    Swisher SG, Roth JA, Nemunaitis J, Lawrence DD, Kemp BL, Carrasco CH, Connors DG, EI-Naggar AK, Fossella F, Glisson BS, et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J.Natl.Cancer.Inst,??1999,91:763-771.
    Tai YT, Strobel T, Kufe D, Cannistra SA. In vivo cytotoxicity of ovarian cancer cells through tumor-selective expression of the BAX gene. Cancer Res, 1999, 59:2121-2126.
    Takakura M, kyo S, Sowa Y, Wang Z, Yatabe N, Maida Y, Tanaka M, Inoue M. Telomerase activation by histone deacetylase in normal cells. Nucleic.Acids.Res, 2001,29:3006-3011.
    Takeda K, hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H, Okumura K. Involvement of tumor necrosis factor-related apoptosis -inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med, 2001,7:94-100.
    Tamm I, Dorken B, Hartmann G. Antisense therapy in oncology: new hope for an old idea? Lancet, 2001,358:489-497.
    Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat.Med, 2000,6:529-535.
    Tepper CG, Seldin MF. Modulation of caspase-8 and FLICE-inhibitory protein expression as a potential machanism of Epstein-Barr virus tumorigenesis in Burkitt's lymphoma. Blood, 1999,94:1727-1737.
    Trapani JA, Davis J, Sutton VR, Smyth MJ. Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Curr.Opin.Immunol, 2000,12:323-329.
    Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature,2000,408:307-310.
    Volm M. Multidrug resistance and its reversal. Anticancer Res, 1998,18:2905-2917.
    Walczak H, Bouchon A, Stahl H, Krammer PH. Tumor necrosis factor-related apoptosis-inducing ligand retains its apoptosis-inducing capacity on Bcl-2- or Bcl-xL-overexpressing chemotherapy -resistant tumor cells. Cancer Res, 2000,60;3051-3057.Walker A, Taylor ST, Hickman JA, Dive C. Germinal center-derived signals act with Bcl-2 to decrease apoptosis and increase clonogenicity of drug-treated human B lymphoma. Cancer Res, 1997,57:1939-1945.
    Wallace-Brodeur RR, Lowe SW. Clinical implications of p53 mutations. Cell.Mol.Life.Sci, 1999,55:64-75.
    Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc.Natl.Acad.Sci.USA, 2000,97:7124-7129.
    Wang X. The expanding role of mitochondria in apoptosis. Genes Dev,2001,15:2922-2933.
    Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR. Cytochrome c maintains mitochondria; transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J.Cell.Biol, 2001,153:319-328.
    Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science,2001,292:727-730.
    Wolf BB, Schuler M, Li W, Eggers-Sedlet B, Lee w, Tailor P, Fitzgerald P, Mills GB, Green DR. Defective cytochrome c-dependent caspase activation in ovarian cancer cell lines due to diminished or absent apoptotic protease activating factor-1 activity. J.Biol.Chem, 2001,276:34244-34251.
    Wu Y, Mehew JW, Heckman CA, Arcinas M, Boxer LM. Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncongene ,2001,20:240-251. Yang A, McKeon F. p63 and p73: p53 mimics, mwnaces and more. Nat.Rev.Mol.Cell.Biol, 2000,1:199-207.
    Zhang L, Yu J, Park BH, Kinzier KW, Vogelstein B. Role of BAX in the apoptotic response to anticancer agents. Science, 2000,290:989-992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700