染色质重塑与TonEBP依赖的基因转录调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞在高渗环境下首先通过细胞外离子迅速内流和细胞内水外流来保证细胞内外的渗透压平衡,此时伴有细胞皱缩等形态改变,这是细胞对高渗应激的即刻反应,但它的代偿保护作用是暂时和有限的,并且细胞内持续的高离子状态对细胞是非常有害的,可以诱发细胞凋亡或死亡。此时细胞会激活另外一个长效代偿机制,那就是通过增加一系列渗透压反应基因的转录翻译,从而增加有机渗透物合成、促进胞外有机渗透物内流或减少有机渗透物降解,最终使有机渗透物在细胞内聚集,从而恢复细胞内外的渗透压平衡,这些有机渗透物对细胞是无害的。目前的研究表明渗透压反应基因的转录合成增加是依赖于特异性转录因子TonEBP与TonE增强子元件的结合而启动的。真核细胞的DNA在细胞核内是以染色质的形式存在的。DNA缠绕组蛋白组成核小体,然后进一步形成染色质,组蛋白对DNA来说既是一个结构上的保护因素又是一个功能上的抑制因素。基因转录作为一个以DNA为模板的酶学过程必然要涉及到局部染色质如何打开以利于转录起始的过程,这就是染色质重塑过程。目前发现的染色质重塑事件主要有两种,一种是组蛋白翻译后共价修饰,另外是一种ATP酶依赖的核小体重塑。TonEBP作为高渗应激信号途径的一个核转录因子,它启动靶基因转录
Eukaryotic cell membrane is permeable to water. When a cell experiences hypertonic stress, water is withdrawn from the cell along the osmotic gradient and Na+, Cl-, and K+ ions are accumulated within the cell, which results in cell shrinkage. This condition is detrimental because high ionic strength destabilizes proteins and compromises cellular functions. Cells respond to this situation by replacing these ions with organic osmolytes, which is able to resume osmotic equilibrium and preserve cell volume without perturbing macromolecular structure and function. A series of experiments have demonstrated that extracellular hypertonicity induces a set of osmocompensatory genes transcription, leading to the accumulation of gene products and osmolytes within the cells. TonEBP (Tonicity Element Binding Protein), has been identified as a transcription factor responsible for the hypertonic induction of osmocompensatory genes. The chromatin environment of a gene has a major influence on its transcription efficiency. The activation and repression of genes have been associated with alterations in chromatin structure. Several general mechanisms for altering
引文
[1] Hsieh TF, Fischer RL. Biology of chromatin dynamics [J]. Annu Rev Plant Biol. 2005; 56:327-51.
    [2] van Leeuwen F, van Steensel B. Histone modifications: from genome-wide maps to functional insights[J]. Genome Biol. 2005; 6(6):113.
    [3] Becker PB, Horz W. ATP-dependent nucleosome remodeling [J]. Annu Rev Biochem. 2002; 71:247-73.
    [4] Strahl BD, Allis CD. The language of covalent histone modifications [J]. Nature. 2000; 403(6765):41-5.
    [5] Peterson CL, Laniel MA. Histones and histone modifications [J]. Curr Biol. 2004; 14(14):R546-51.
    [6] Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases [J]. EMBO Rep. 2003; 4(10):944-7.
    [7] Bertos NR, Wang AH, Yang XJ. Class II histone deacetylases: structure, function, and regulation [J]. Biochem Cell Biol. 2001; 79(3):243-52.
    [8] Gray SG, Ekstrom TJ. The human histone deacetylase family [J]. Exp Cell Res. 2001; 262(2):75-83.
    [9] Bode AM, Dong Z. Inducible covalent posttranslational modification of histone H3 [J]. Sci STKE. 2005; 2005(281):re4
    [10] Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications [J]. Cell. 2000; 103(2):263-71.
    [11] De Nadal E, Zapater M, Alepuz PM, etc. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes [J]. Nature. 2004; 427(6972):370-4.
    [12] Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code [J]? Curr Opin Genet Dev. 2005; 15(2):163-76
    [13] Ehrenhofer-Murray AE. Chromatin dynamics at DNA replication, transcriptionand repair [J]. Eur J Biochem. 2004; 271(12):2335-49.
    [14] Lusser A, Kadonaga JT. Chromatin remodeling by ATP-dependent molecular machines [J]. Bioessays. 2003; 25(12):1192-200.
    [15] Cairns BR. Chromatin remodeling complexes: strength in diversity, precision through specialization [J]. Curr Opin Genet Dev. 2005; 15(2):185-90
    [16] Peterson CL. Chromatin remodeling enzymes: taming the machines [J]. EMBO Rep. 2002; 3(4):319-22.
    [17] Mellor J. The dynamics of chromatin remodeling at promoters [J]. Mol Cell. 2005; 19(2):147-57.
    [18] Henikoff S, Ahmad K. Assembly of variant histones into chromatin [J]. Annu Rev Cell Dev Biol. 2005; 21:133-53.
    [19] Adkins MW, Tyler JK. The histone chaperone Asf1p mediates global chromatin disassembly in vivo [J]. J Biol Chem. 2004; 279(50):52069-74.
    [20] Li B, Ruan C, Workman JL. Histones: should I stay or should I go [J]? Genome Biol. 2005; 6(2):306.
    [21] Zhao J, Herrera-Diaz J, Gross DS. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density [J]. Mol Cell Biol. 2005; 25(20):8985-99
    [22] Schwabish MA, Struhl K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II [J]. Mol Cell Biol. 2004; 24(23):10111-7.
    [23] Korber P, Luckenbach T, Blaschke D, etc. Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter [J]. Mol Cell Biol. 2004; 24(24):10965-74.
    [24] Schwartz BE, Ahmad K. Transcriptional activation triggers deposition and removal of the histone variant H3.3 [J]. Genes Dev. 2005; 19(7):804-14.
    [25] Smith MM. Histone variants and nucleosome deposition pathways [J]. Mol Cell. 2002; 9(6):1158-60.
    [26] Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin byreplication-independent nucleosome assembly [J]. Mol Cell. 2002; 9(6):1191-200.
    [27] Ahmad K, Henikoff S. Histone H3 variants specify modes of chromatin assembly [J]. Proc Natl Acad Sci U S A. 2002; 99 Suppl 4:16477-84.
    [28] Waldegger S, Steuer S, Risler T, etc. Mechanisms and clinical significance of cell volume regulation [J]. Nephrol Dial Transplant. 1998; 13(4):867-74.
    [29] Yancey PH, Clark ME, Hand SC, etc. Living with water stress: evolution of osmolyte systems [J]. Science. 1982; 217(4566):1214-22.
    [30] Garcia-Perez A, Martin B, Murphy HR, etc. Molecular cloning of cDNA coding for kidney aldose reductase--regulation of specific mRNA accumulation by NaCl-mediated osmotic stress [J]. J Biol Chem. 1989; 264(28):16815-21.
    [31] Handler JS, Kwon HM. Regulation of renal cell organic osmolyte transport by tonicity [J]. Am J Physiol. 1993; 265(6 Pt 1):C1449-55.
    [32] Strange K, Emma F, Paredes A, etc. Osmoregulatory changes in myo-inositol content and Na+/myo-inositol cotransport in rat cortical astrocytes [J]. Glia. 1994; 12(1):35-43.
    [33] Garcia-Perez A, Burg MB. Renal medullary organic osmolytes [J]. Physiol Rev. 1991; 71(4):1081-115.
    [34] Jacquin-Becker C, Labourdette G. Regulation of aldose reductase expression in rat astrocytes in culture [J]. Glia. 1997; 20(2):135-44.
    [35] Burger-Kentischer A, Muller E, Marz J, etc. Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells [J]. Kidney Int. 1999; 55(4):1417-25.
    [36] Trama J, Lu Q, Hawley RG, etc. The NFAT-related protein NFATL1 (TonEBP/NFAT5) is induced upon T cell activation in a calcineurin-dependent manner.J Immunol [J]. 2000; 165(9):4884-94.
    [37] Nadkarni V, Gabbay KH, Bohren KM, etc. Osmotic response element enhancer activity. Regulation through p38 kinase and mitogen-activated extracellular signal-regulated kinase kinase [J]. J Biol Chem. 1999; 274(29):20185-90.
    [38] Takenaka M, Preston AS, Kwon HM, etc. The tonicity-sensitive element thatmediates increased transcription of the betaine transporter gene in response to hypertonic stress [J]. J Biol Chem. 1994; 269(47):29379-81
    [39] Ferraris JD, Williams CK, Jung KY, etc. ORE, a eukaryotic minimal essential osmotic response element --the aldose reductase gene in hyperosmotic stress [J]. J Biol Chem. 1996; 271(31):18318-21.
    [40] Rim JS, Atta MG, Dahl SC, etc. Transcription of the sodium/myo-inositol cotransporter gene is regulated by multiple tonicity-responsive enhancers spread over 50 kilobase pairs in the 5'-flanking region [J]. J Biol Chem. 1998; 273(32):20615-21.
    [41] Miyakawa H, Rim JS, Handler JS, etc. Identification of the second tonicity-responsive enhancer for the betaine transporter (BGT1) gene [J]. Biochim Biophys Acta. 1999; 1446(3):359-64.
    [42] Lopez-Rodriguez C, Aramburu J, Rakeman AS, etc. NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun [J]. Proc Natl Acad Sci U S A. 1999; 96(13):7214-9.
    [43] Trama J, Go WY, Ho SN. The osmoprotective function of the NFAT5 transcription factor in T cell development and activation [J]. J Immunol. 2002; 169(10):5477-88.
    [44] Na KY, Woo SK, Lee SD, etc. Silencing of TonEBP/NFAT5 transcriptional activator by RNA interference [J]. J Am Soc Nephrol. 2003; 14(2):283-8.
    [45] Stroud JC, Lopez-Rodriguez C, Rao A, etc. Structure of a TonEBP-DNA complex reveals DNA encircled by a transcription factor [J]. Nat Struct Biol. 2002; 9(2):90-4.
    [46] Dmitrieva NI, Burg MB. Hypertonic stress response [J]. Mutat Res. 2005; 569(1-2):65-74.
    [47] Ferraris JD, Williams CK, Ohtaka A, etc. Functional consensus for mammalian osmotic response elements [J]. Am J Physiol. 1999; 276(3 Pt 1):C667-73.
    [48] Hsu DK, Guo Y, Peifley KA, etc. Differential control of murine aldose reductase and fibroblast growth factor (FGF)-regulated-1 gene expression in NIH 3T3 cellsby FGF-1 treatment and hyperosmotic stress [J].Biochem J. 1997; 328 ( Pt 2):593-8.
    [49] Neuhofer W, Vastag M, Fraek ML, etc. Effect of ammonium on the expression of osmosensitive genes in Madin-Darby canine kidney cells [J]. J Physiol. 2005; 563(Pt 2):497-505.
    [50] Kurdistani SK, Grunstein M. Histone acetylation and deacetylation in yeast [J]. Nat Rev Mol Cell Biol. 2003; 4(4):276-84.
    [51] Korber P, Barbaric S, Luckenbach T, etc. The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters [J]. J Biol Chem. 2006; 281(9):5539-45.
    [52] Lee CK, Shibata Y, Rao B, etc. Evidence for nucleosome depletion at active regulatory regions genome-wide [J]. Nat Genet. 2004; 36(8):900-5.
    [53] Chen X, Wang J, Woltring D, etc. Histone dynamics on the interleukin-2 gene in response to T-cell activation [J]. Mol Cell Biol. 2005; 25(8):3209-19.
    [54] Schermer UJ, Korber P, Horz W. Histones are incorporated in trans during reassembly of the yeast PHO5 promoter [J]. Mol Cell. 2005; 19(2):279-85
    [55] Anello L, Albanese I, Casano C, etc. Different micrococcal nuclease cleavage patterns characterize transcriptionally active and inactive sea-urchin histone genes [J]. Eur J Biochem. 1986; 156(2):367-74.
    [56] Reinke H, Horz W. Anatomy of a hypersensitive site [J]. Biochim Biophys Acta. 2004; 1677(1-3):24-9.
    [57] Holloway AF, Rao S, Chen X, Shannon MF. Changes in chromatin accessibility across the GM-CSF promoter upon T cell activation are dependent on nuclear factor kappaB proteins [J]. J Exp Med. 2003; 197(4):413-23.
    [58] Rao S, Procko E, Shannon MF. Chromatin remodeling, measured by a novel real-time polymerase chain reaction assay, across the proximal promoter region of the IL-2 gene [J]. J Immunol. 2001; 167(8):4494-503.
    [59] Weinmann AS, Plevy SE, Smale ST. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription [J].Immunity. 1999; 11(6):665-75.
    [60] Ercan S, Carrozza MJ, Workman JL. Global nucleosome distribution and the regulation of transcription in yeast [J]. Genome Biol. 2004; 5(10):243.
    [61] Bernstein BE, Liu CL, Humphrey EL, etc. Global nucleosome occupancy in yeast [J]. Genome Biol. 2004; 5(9):R62.
    [62] Reinke H, Horz W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter [J]. Mol Cell. 2003; 11(6):1599-607
    [63] Adkins MW, Howar SR, Tyler JK. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes [J]. Mol Cell. 2004; 14(5):657-66.
    [1] Ehrenhofer-Murray AE. Chromatin dynamics at DNA replication, transcription and repair [J]. Eur J Biochem. 2004; 271(12):2335-49.
    [2] Hsieh TF, Fischer RL. Biology of chromatin dynamics [J]. Annu Rev Plant Biol. 2005; 56:327-51.
    [3] van Leeuwen F, van Steensel B. Histone modifications: from genome-wide maps to functional insights [J]. Genome Biol. 2005; 6(6):113.
    [4] Strahl BD, Allis CD. The language of covalent histone modifications [J]. Nature. 2000; 403(6765):41-5.
    [5] 4(14):R546-51.
    [6] Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases [J]. EMBO Rep. 2003; 4(10):944-7.
    [7] Bertos NR, Wang AH, Yang XJ. Class II histone deacetylases: structure, function, and regulation [J]. Biochem Cell Biol. 2001; 79(3):243-52.
    [8] Gray SG, Ekstrom TJ. The human histone deacetylase family [J]. Exp Cell Res. 2001; 262(2):75-83.
    [9] Bode AM, Dong Z. Inducible covalent posttranslational modification of histone H3. Sci STKE. 2005; 2005(281):re4
    [10] Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications [J]. Cell. 2000; 103(2):263-71.
    [11] Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code [J]? Curr Opin Genet Dev. 2005; 15(2):163-76
    [12] Lin HY, Chen CS, Lin SP, etc. Targeting histone deacetylase in cancer therapy [J]. Med Res Rev. 2006; [Epub ahead of print].
    [13] Becker PB, Horz W. ATP-dependent nucleosome remodeling [J]. Annu Rev Biochem. 2002; 71:247-73.
    [14] Cairns BR. Chromatin remodeling complexes: strength in diversity, precisionthrough specialization [J]. Curr Opin Genet Dev. 2005; 15(2):185-90
    [15] Peterson CL. Chromatin remodeling enzymes: taming the machines [J]. EMBO Rep. 2002; 3(4):319-22.
    [16] Mellor J. The dynamics of chromatin remodeling at promoters [J]. Mol Cell. 2005; 19(2):147-57.
    [17] Lusser A, Kadonaga JT. Chromatin remodeling by ATP-dependent molecular machines [J]. Bioessays. 2003; 25(12):1192-200.
    [18] Henikoff S, Ahmad K. Assembly of variant histones into chromatin [J]. Annu Rev Cell Dev Biol. 2005; 21:133-53.
    [19] Li B, Ruan C, Workman JL. Histones: should I stay or should I go [J]? Genome Biol. 2005; 6(2):306.
    [20] Schwabish MA, Struhl K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II [J]. Mol Cell Biol. 2004; 24(23):10111-7.
    [21] Korber P, Luckenbach T, Blaschke D, etc. Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter [J]. Mol Cell Biol. 2004; 24(24):10965-74.
    [22] Schwartz BE, Ahmad K. Transcriptional activation triggers deposition and removal of the histone variant H3.3 [J]. Genes Dev. 2005; 19(7):804-14.
    [23] Smith MM. Histone variants and nucleosome deposition pathways [J]. Mol Cell. 2002; 9(6):1158-60.
    [24] Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly [J]. Mol Cell. 2002; 9(6):1191-200.
    [25] Ahmad K, Henikoff S. Histone H3 variants specify modes of chromatin assembly [J]. Proc Natl Acad Sci U S A. 2002; 99 Suppl 4:16477-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700