PbSnBi合金熔体结构转变对凝固组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,关于熔体热历史对凝固影响方面的研究已取得一定成果,发现对熔体进行过热处理能显著改善合金的组织和性能,但熔体热历史对凝固行为影响的实质等一些深层次问题还有待进一步探讨。前期的研究工作表明:Pb26Sn42Bi32、Pb36.32Sn58.68Bi5和Pb3.82Sn6.18Bi90合金存在温度诱导的液-液结构转变现象,本文在前人研究的基础上,对这三种成分的合金进行不同的热处理,探究可逆和不可逆两类熔体结构转变对合金凝固行为、凝固组织和性能的影响。另外,本文还运用过热处理的方法对含铅焊料的绿色化做了一些探讨。主要内容和结论如下:
     (1)对于发生可逆结构转变的Pb26Sn42Bi32合金经过不同的热处理后,空冷条件下的凝固组织转变前后变化不明显;但由于在快冷条件下有效地抑制了Pb26Sn42Bi32熔体中可逆性原子团簇的回复,从而使得从高温直接快冷凝固的合金组织细化,硬度下降。对于发生不可逆结构转变的Pb36.32Sn58.68Bi5和Pb3.82Sn6.18Bi90合金经过不同的热处理后,由于不可逆性液-液结构转变发生使得熔体中原有的原子团簇彻底消失,液-液结构转变后的熔体结构更加均匀和无序,所以在空冷和快冷条件下,其结构转变都能使组织细化,成分均匀;特别在快速凝固组织中,前后差异尤为明显。
     (2)利用自制的定向凝固装置探究了液-液结构转变对三种成分的PbSnBi合金定向凝固组织的影响。研究结果表明:结构转变前后的定向凝固组织变化明显,经历结构转变后的试样定向凝固组织细小,方向性高度一致。
     (3)对含铅焊料Pb36.32Sn58.68Bi5经过过热处理使其发生不可逆结构转变,与结构转变前的相比较发现:结构转变后试样铅的挥发难度加大;在酸、碱、盐中的相对腐蚀率和腐蚀速度变小;在H2SO4溶液中,发生结构转变的试样钝化膜的形成相时间早于未发生结构转变的试样,在NaOH溶液中,经历结构转变的试样每个时间点的腐蚀电流都要小于未发生结构转变的试样,在NaCL溶液中,发生结构转变的试样一定会生成钝化膜,而未发生结构转变的试样则不生成钝化膜。
     通过研究液-液结构转变对凝固行为、凝固组织和性能的影响,不仅避免了传统熔体热处理工艺的盲目性,还为改进合金的制备工艺提供了行之有效的方法,为更深入地认识液态物质结构提供了科学依据。
In recent years, the studies of effect of heat history on solidification have made some achievements, it has been found that the structures and properties of some alloys could be obviously improved by such superheat treatment,but some deep problems about the essence of effect of heat history on solidification behavior still needs further discussion.Prior investigation suggested that a temperature–induced liquid-liquid structure transition(TI-LLST) could occur in Pb26Sn42Bi32 ,Pb36.32Sn58.68Bi5 and Pb3.82Sn6.18Bi90 alloys. In this paper, on the basis of the previous studies, the three components alloys were experienced different heat treatment, the solidification behaviors,microstructures and property of melt with reversible TI-LLST and melt with irreversible TI-LLST were studied. At the same time, we do some research about the solder containing Pb PbSnBi Innoxiousness by use of heat-treatment.The major contents and conclusions are as follows:
     First,The Pb26Sn42Bi32 melt with reversible TI-LLST were experienced different heat treatment, the solidification microstructures of Pb26Sn42Bi32 alloy is invariant in the air,due to cooling speed is very big, inhibit the reversibility of atom clusters in Pb26Sn42Bi32 melt,So that the microstructures of melt became finer and the Vickers hardness of the sample is reduced after solidified from rapid solidification. The Pb36.32Sn58.68Bi5 and Pb3.82Sn6.18Bi90 melt with irreversible TI-LLST were experienced different heat treatment, due to irreversible TI-LLST, irreversibility of atom clusters in melt completely disappear,the melt structure becomes more homogeneous and disorder after structure transition,so the microstructures became finer, the components became homogeneous in the air cooling and rapidly cooling conditions, especially in rapid solidification microstructures,the differences is very significant.
     Second,the directional solidification experiments of three components PbSnBi alloys were carried out to investigate the effect of the TI-LLST on directional solidification microstructures by the using of self-made unidirectional solidification device.the results show that the directional solidification microstructures are changed obviously after TI-LLST, the directional solidification microstructures of sample became finer that experienced structure transition,and the directional is extraordinarily consistent.
     Third, the solder containing Pb Pb36.32Sn58.68Bi5 undergo irreversible TI-LLST after superheat treatment, compared with pre-structure transition,we found the evaporation of Pb in more difficult after structure transition; the relative corrosion rate and corrosion rate of the samples in acid, alkali, salt become smaller; the formation of passivation film of the sample experienced structure transition earlier than the sample unexperienced structure transition in H2SO4,the corrosion current of the sample experienced structure transition at each time should be less than the sample unexperienced structure transition in the NaOH, the passivation film of the sample experienced structure transition will be generated eventually in NaCL, while no passivation film is generated in the sample unexperienced structure transition.
     According to the studies that the influence of liquid-liquid structure transition on solidification behaviors, microstructure and property of alloys , not only to avoid the blindness of traditional melt heat treatment process, but also to provide effective method for improvement of the preparation technology of alloys,and provide scientific basises for more in-depth understanding of liquid material structure.
引文
[1]郭景杰,傅恒志著.合金熔体及其处理[M].北京:机械工业出版社,2005.
    [2] McMillan P..Nature,2000,Vol.403:151-155.
    [3] P.Lamparter and S.Steeb.Z.Naturforsch,1976,31A:99-105.
    [4]王家炘,黄积荣,林建生著.金属的凝固及其控制[M].北京:机械工业出版社,1983.
    [5] ZU F Q,ZHU Z G, GUO L J,et al.Observation of an anomalous discontinuous liquid-structure change with temperature[J].Phys.Rev. Lett.,2002,89(12):1-3.
    [6] ZU F Q,L I X F,GUO L J,et al.Temperature dependence of liquid structures in In-Sn20:diffraction experimental evidence[J].Phys.Lett.A,2004,324(5- 6):472-478.
    [7] ZU F Q,ZHU Z G,GUO L J,et al.Liquid-liquid phase transition in Pb-Sn melts[J].Phys. Rev. B.,2001,64 (18):180203-4.
    [8] ZU F Q,ZHU Z G,ZHANG B,et al.Post -melting anomaly of Pb-Bi alloys observed by internal friction technique [J].J.Phys.:Condens. Matter,2001,13:11435-11442.
    [9] LI X F,ZU F Q,D ING H F,et al.High-temperature liquid-liquid structure transition in liquid Sn-Bi alloys:experimental evidence by electrical resistivity method[J].Phys. Lett. A.,2006,354 (4):325-329.
    [10]秦敬玉,谷廷坤,田学雷,边秀房.Fe-Si合金系熔体结构的X射线衍射研究[J].金属学报,2004,40(7):689-693.
    [11]秦敬玉,边秀房,王伟民.Al和Sn液态结构的温度变化特性[J].物理学报,1998,47(3):438-444.
    [12]边秀房,王伟民,潘学民,秦绪波.Al-TM合金熔体的中程有序结构及其演化规律[J].化学学报,2002,60(7):1215-1219.
    [13]祖方遒,朱震刚,郭丽君,张博,水嘉鹏.液态Pb-Sn合金的内耗研究[J].中山大学学报(自然科学版),2001,40(A):273-275.
    [14]余瑾.合金熔体电子传输性质的温度行为及其与凝固相关性研究[D].合肥:合肥工业大学博士学位论文,2009.
    [15]孙益民,秦敬玉.过热处理对Al-1.1%Fe合金固态组织的影响[J].山东冶金,2008,30(4):35-36.
    [16]孙民华,耿浩然,边秀房,等.金属学报,2000,36(11):1134.
    [17] Morando R,Biloni H,Cole G S,et a1.Metall Trans,1970,(01):1407.
    [18] KpyшенкоГГ,ШnаковВИ.Технолгиялегкихсплавов,1973,(04):59.
    [19]沈宁福,汤亚力,关绍康,等.凝固理论进展与快速凝固[J].金属学报, 1996,32(7):673-684.
    [20]陈光,傅恒志.非平衡凝固新型金属材料[M].北京:科学出版社,2004.
    [21]程天一,章守华.快速凝固技术与新型合金[M].宇航出版社,1990.
    [22]李月珠.快速凝固技术和材料[M].国防工业出版社,1993.
    [23]张瑞丰,沈宁福.快速凝固高强高导铜合金的研究现状及展望[J].材料科学与工程,2001,19(4):143.
    [24]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [25] McLean M.Directionally solidified materials for high temperature service.London:The Metals Society,1983.
    [26] VerSnyder F L,BarlowR B,Sink LW,Piearcey B J.Directional solidification in the precision casting of gas-turbine parts.Modern Casting,1967,52(6):68-75.
    [27] HigginbothamG L S.Fromresearch to cost-effective directional solidification and single-crystal production-an integrated approach.Materials Science and Technology,1986,2:442-460.
    [28] Giamei A F,Erickson J S.Computer applications in directional solidification processing.Superalloys:Metallurgy and Manufacture,Edited by Kear B H,Muzyka D R,Tien J K,Wlodek S T,Proceedings of the third international Symposium.Seven Springs,Pennsylvania.1976,405-424.
    [29] Nakagawa Y G,Murakami K,Ohtomo A,Saiga Y.Directional Growth of Eutectic composite by fluidized bed quenching.Transactions ISIJ,1980,20:614-623.
    [30]苏彦庆,郭景哲,刘畅,等.定向凝固技术与理论研究的进展[J].特种铸造及有色合金,2006,26(01):25-30.
    [31] Shi Z X,Li J G,Fu H Z.J Met Sci-Technolo,1990,6:167.
    [32]唐卫.西北工业大学硕士学位论文.1989.
    [33] Piearcey B J.U S Patent No 3494709,1970.
    [34]杨森.哈尔滨工业大学硕士学位论文,1993.
    [35]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社,1999.
    [36]杜长华,陈方.电子微连接技术与材料[M].重庆:重庆工学院,2005.
    [37]陈方,杜长华,杜云飞,等.电子焊料的工艺性能及影响因素[J].电子元件与材料,2006,25(7):6-8.
    [38] Chu G.Acta Phys.Sin.1998,47:1142.
    [39] Liu G,Lu K,Liang Z D.Acta Phys.Sin.2000,49:1520.
    [40]边秀房,刘相法,马家骥.铸造合金遗传学[M].济南:山东科学技术出版社,1999.
    [41]关绍康.熔体热历史对快凝铝铁基合金显微结构影响的研究[D].北京:北京科技大学博士学位论文,1995.
    [42]坚增运.净化和熔体温度处理对铝合金凝固过程、组织和性能的影响[D].西安:西北工业大学博士学位论文,1995.
    [43]张林,边秀房,马家骥.铝硅合金的液相结构转变[J].铸造,1995,(10):7-12.
    [44]李培杰,桂满昌,贾均.A1-16%Si合金熔体的电阻率及其结构遗传[J].铸造,1995,(9):15-20.
    [45]李涛,黄卫东,林鑫.半固态处理中球晶形成与演化的直接观察[J].中国有色金属学报,2000,10(5):635-639.
    [46]李培杰.铝硅合金熔体的物性及结构遗传[D].哈尔滨:哈尔滨工业大学博士学位论文,1995.
    [47] ZHANG Kui,ZHANG Yong-zhong,LIU Guo-jun,et a1.Structure evolution of non-dendritic AlSi7Mg alloy during reheating[J].Trans Nonferrous Met Soc China,1999,9 (3):553-556.
    [48] ZU Fang-Qiu,YU Jin,XU Wei,ZHANG Yan,YANG Hui-Zhen.Reversibility of Temperature-Induced Liquid Transition in Pb26Sn42Bi32 Melt:Experimental Evidence with Electrical Property [J].China Phys. Lett.,2008,25(4):1384-1387.
    [49]徐炜.PbSnBi三元合金熔体温度诱导液-液结构转变行为研究:[硕士学位论文].合肥:合肥工业大学,2006.
    [50] Mohanty P S,Gruzleski T E.Grain refinement mechanisms of hypoeutectic Al-Si alloys [J].Acta Mater,1996,44 (9):3749-3760.
    [51] Sigworth G K,Guzowski M M.Grain refining of hypoeutectic Al-Si alloys [J].AFS Transactions,1985,93:907-912.
    [52] Chai G,Backerud L.Factors affecting modification of Al-Si alloys by adding Sr-containing master alloys[J].AFS Transactions,1992,100:847-854.
    [53] Closset B,Gruzleski J E.Mechanical properties of A356 alloys modified with pure strontium[J].AFS Transactions,1982,90:453-464.
    [54]坚增运,王有超,常芳娥,魏超锋.熔体过热处理对过共晶Al-Si合金凝固组织的影响[J].西安工业大学学报,2007,27(4):348-351.
    [55]胡成明,李先芬,祖方遒,等.Sn-Bi合金熔体可逆液-液结构转变的研究[J].原子与分子物理学报,2008,25(4):1003-1007.
    [56]S.OZBAYRAKTAR,A.KOURSARIS.Effect of Superheat on the Solidification Structures of AISI 310S Austenitic Stainless Steel[J].Metallurgical And Materials Transactions B,1996,27(2):287-296.
    [57] WANQI JIE,ZHONGWEI CHEN,W.REIF,and K.MüLLER.Superheat Treatment of Al-7Si-0.55Mg Melt and Its Influences on the SolidificationStructures and the Mechanical Properties[J].Metallurgical And Materials Transactions A,2003,34(3):799-806.
    [58]李先芬.熔体结构转变及其对凝固的影响[D].合肥工业大学博士学位论文,2006.
    [59]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000:85-101.
    [60]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [61]卢百平.定向凝固技术的若干进展[J].铸造,2006,55(08):767-771.
    [62]蔡英文.固液界面的介观响应-从低速到亚快速的行为特征[D].西北工业大学博士学位论文,1996.
    [63]陈光,李建国,傅恒志.先进定向凝固技术[J].材料导报,1999,(1305):5-7.
    [64]刘明全.熔体结构转变对二元Sn-Bi和Sn-Bi合金凝固的影响:[硕士学位论文].合肥:合肥工业大学,2009.
    [65] Engineering Alloys.Woldman.1954.
    [66] Metals Handbook.ASM.8th Ed..Vol.I,1964.
    [67] Metal progress.Vol.91,No.6:1967.
    [68] Light production Engineering.No.2,1965.
    [69]济南铸锻机械研究所.自铸低熔点合金模具的研究、应用和发展[J].锻压机械,1974(6):3-15.
    [70] Sheet metal industries.Vol.43,No.473:1966.
    [71]王松林.石青在熔模铸造易熔合金压型制造中的应用[J].特种铸造及有色合金,1994, (3):38-39.
    [72]陈方,杜长华,杜云飞,等.含铅焊料绿色化的途径[J].电子元件与材料,2006,25(11):1-3.
    [73] Chen F,Du C H,Du Y F.Solderability of melting lead-free solder to tiny joint of electronic products[A].The International Conference on Mechatronics and Information Technology,Abstracts 3rd ICMIT’2005[C].Chongqing China,2005:386.
    [74] Amdur M O.Casarett and Doull’s Toxicology,The Basic Science of Poisons,4th[C].New York:Pergamon Press,1991.
    [75] Urizar R,Vernier R L.Bismuth Nepjropathy [J].J.of the American Medical Association,1996,198:187-189.
    [76] Fowler F A.Trace Metals in Human Health [C].London:Butterworth, 1982:74-82.
    [77] Allenby B R,Artaki I,Carroll TA,et al.An Assessment of the Use of Lead in Electronic Assembly[A].Proc. of the Technical Program,Surface Mount International [C].California:San Jose,1992.
    [78] U.S.Department of Health and Human Services,Toxicology Profile for Lead[R].New York:Clement International Corporation,1990.
    [79]罗渝然.化学键能数据手册[M].北京:科学出版社,2005,1.
    [80]徐秀清,王顺兴.添加微量铈对热镀锌层耐腐蚀性的影响[J].稀土,2008, 29(01):56-57.
    [81]李克艳,薛冬.电负性概念的新拓展[J].科学通报,2008,53(20):2442-2448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700