单向多道次弯曲工艺及其对AZ31B镁合金薄板织构与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是目前工程应用中最轻的金属结构材料,具有高比强度、良好的导热性和减震性等特点,被认为是21世纪最富于开发和应用的“绿色材料”。但是到目前为止,由于镁合金的塑性加工性能差的问题没有得到根本解决,使其应用范围不够广泛。目前采用镁合金加工的零部件多数是通过压铸的方法加工而成的,如照相机、手机、笔记本电脑等产品的外壳。为了使镁合金的应用范围更加广泛,用板材成形方法加工零件是最佳的选择,不仅可以充分利用镁合金材料优异的机械性能,而且能够大幅度提高生产效率和产品合格率。因此镁合金板材的冲压成形性能和工艺的研究是扩大镁合金应用的关键所在。
     冷轧退火态镁合金板材具有很强的(0002)基面织构,室温下滑移系少,形变各向异性强,不利于冲压成形。目前,镁合金冲压工艺方面已有一定的研究,但对如何改善、提高镁合金板材冲压性能的研究还较少。本文提出了一种改善镁合金板材织构与冲压性能的新方法——单向多道次弯曲。
     自制单向多道次弯曲实验设备,以镁合金板材杯突值为指标考察成形性能,通过正交实验确定变形中的工艺参数,获得适合改善镁合金板材成形性能的优化变形方案。以优化工艺为指导,对冷轧退火态AZ31B镁合金薄板进行单向多道次弯曲变形,分析变形前后各状态样品的显微组织、力学性能、冲压性能及织构状态。结果表明,单向多道次弯曲工艺使晶粒在变形过程中发生转动,大幅削弱对后续塑性成形不利的(0001)基面织构组分,出现了很强的(1212),(1211),(0110)等面织构。同时还有少量的(0112),(0111)组分。在135℃回复温度下退火1h,(0112),(0111)组分增强,织构组分变得更为复杂多样,且此时出现大量退火孪晶。在再结晶温度260℃下退火1h,板材表面附近晶粒因发生静态再结晶而长大,主要织构为(1212),(1211),(0112),(0111)等锥面织构组分,由于定向形核及核心生长,各组分对应的晶粒取向趋于集中。板材在拉压变形时基面Schmid因子增大,基面滑移系在常温下更容易启动。由于织构状态的改变,在轧制方向(单向多道次弯曲方向)上,板材强度下降,屈强比降低,延伸率最高增加38%。单向多道次弯曲后,板材的各向异性较变形前有一定程度的增大,杯突值最高能增加67%。单向多道次弯曲工艺很好地改善了冷轧退火态AZ31B镁合金板材的织构组分,使成形性能大幅度提高。
     此外,本文还对中高温下单向多道次弯曲工艺进行了初步探索。发现中高温时板材基面织构同样被削弱,但变形过程中发生的动态再结晶使晶粒变得异常粗大。粗大的晶粒成为制约板材成形性能提高的主要因素,使得该工艺对镁合金板材成形性能的改善比较有限,低于常温下的提升幅度。
Magnesium alloys, the lightest constructional metallic material with high strength, good thermal conductivity and the characteristics of the shock absorber, are considered as 21 century’s green materials. However, the applications of magnesium alloys, specially wrought magnesium alloy, are still limited due to their poor formability. Most magnesium alloys were manufactured into electronic product shells by die casting, such as cameras, cell phones and laptops. If these shell products were made by stamping using magnesium alloy sheet, it can not only make full use of excellent mechanical properties of magnesium alloy, but also substantially improve production efficiency and qualification. Thus, research on formability and process of magnesium alloy sheet is the key to expand the application.
     Presently, research of magnesium alloy stamping process has got some achievement, but report on how to improve formability of magnesium alloy is rare. Cold rolled magnesium alloy sheet has strong (0002) textural component, less slip systems and strong anisotropy at room temperature which are harmful to formability. In this paper, a new method, repeated unidirectional bending (RUB) was used to improve the textural components of cold rolled magnesium alloy sheet in order to obtain better formability.
     Focused on development of formability of magnesium alloy sheet, the technological parameters were determined by orthogonal experiment using a homemade RUB equiqment so that optimal RUB method was acquired. Cold rolled AZ31B magnesium alloy sheet was bended using the optimal method mentioned above. By analyzing microstructures, mechanical properties, Erichsen value and textural components of the samples, it was found that grains had rotated after RUB which demonstrated textural components evolution. The strong (0001) textural component which was harmful to post forming had been greatly weakened. And there was no obvious change on microstructure. Lots of ( 1 2 1 2),( 1 2 1 1)and (01 1 0)and a few(01 1 2),(01 1 1)textural components appeared.When annealed at 135℃for an hour, massive annealing twins apperared and(01 1 2)(,01 1 1)components increased. The textural components presented complex and diverse. When annealed at 260℃for an hour, grains near to sheet surface grew up through static recrystallization. Here main textural components were( 1 2 1 2),( 1 2 1 1),(01 1 2),(01 1 1). Grain orientation of corresponding texture focused because of nucleation and directional core growth. Schmid value of basal plane increased when sheet was under tension or compression deformation. Therefore, basal slip system became easier to start. Owing to the change of textural components, strength and yield ratio of the sheet reduced and elongation increased to 38% at most. Anisotropy of the sheet became more obvious after RUB while Erichsen value dramaticly increased to 67% at most. As we can see, RUB can well improve formability of cold rolled AZ31B magnesium alloy sheet.
     Moreover, in this paper, intermediate and high temperature RUB process was also researched preliminarily. Result indicated that (0001) textural component was still weakened, but grains coarsened due to dynamic recrystallization during deformation. Grain size became the chief factor of formability. Thus, the development of magnesium alloy sheet formability of intermediate and high temperature RUB was limited. The RUB process at normal temperature is the better.
引文
[1] Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment [J]. Mater Proce Techn, 2001, 117:381
    [2] Aghion E, Bronfin B. Magnesium alloys development towards the 21th century [J]. Materials Science Forum, 2000, 350-351: 19-28
    [3] Barton T F, Johnson C B. The Effect of Electrolyte on the Anodized Finisl of a VEgnesium Alloy [J]. Plating and Surface Finishing, 1995, 82(5):138-141.
    [4]姚伟,谭惠丰,杜星文.胎面轮廓形状优化技术研究[M].汽车技术, 2000, (12).
    [5]中国科学院. 2003高技术发展报告. Ation in magnesium alloy ZK60[C], Acta Materialia, 2001, 49(7): 1199-1207.
    [6]余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报, 2003. 13(2):278.
    [7] Schumann S,Friodrich F.The Use of Magnesium in Cars-today and in Future[M].In Mordike B L and Hehmann Feds.,Magnesium Alloys and Their Applications. Verlag: Informations gesellschaft, 1992.1-3.
    [8] Pekguleryuz M O, Avedesian M M. Some Potentials for Alloy Development [J]. Light Vbtals, 1992, 42(12):679-686.
    [9]余琨,黎文献,李松瑞.变形镁合金材料的研究进展[J].轻合金加工技术2001(7):6~9,11.
    [10] Mark Colgan, John Monaghan. Deep drawing process: analysis and experiment [J] . Journal of Material ProcessingTechnology, 2002, 132:35-41.
    [11]黄光胜,黄光杰等.变形镁合金塑性的改善[J].材料导报,2006,1(20):39~41
    [12] Iwanaga K, Tashiro H, Okamoto H, et al. Improvement of formability from room temperature to warm temperature in AZ-31 magnesium alloy [J]. J mater Proc Techn, 2004, 155-156:1313
    [13] Szuki M, Sato H, Maruyama K, et al. Creep deformation behavior and dislocation substructures of Mg-Y binary alloys [J]. Mater Sci Eng, 2001,A319-321:751
    [14] Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Mater, 2003,51:2055
    [15] Ono N, Nowak R, Miura S. Effect of deformation temperature on Hal-Petch relationship registered for polycrystalline magnesium [J]. Mater Lett, 2003,58:39
    [16] Staroselsky A, Anand L. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B [J]. Int J Plasticity, 2003,19:1843
    [17] Sean R Agnew, Ozgur Duygulu. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. Int J Plasticity,2005,21:1161
    [18] H. Somekawa, M. Kohzu, S. Tanabe, K. Higashi. The press formability in magnesium alloy AZ31 [J]. Materials Science Forum, 2000, 350-351:177-182.
    [19] K. Iwanaga, H. Tashiro, H. Okamoto, K. Shimizu. Improvement of formability from room temperature to warm temperature in AZ-31 magnesium alloy [J]. Journal of Materials Processing Technology, 2004, 155–156: 1313–1316.
    [20]中国机械工程学会锻压学会编.锻压手册第2卷冲压[M].北京:机械工业出版社, 2002.1.
    [21]陈振华等编著.镁合金[M].北京:化学工业出版社, 2004.7.
    [22]王忠堂,张士宏,徐永超,郑杰,张坤.镁合金板材冲压成形工艺及极限拉延比研究[J].沈阳工业学院学报, 2004, 23(4):1-3.
    [23]张坤,徐永超,张士宏,王忠堂.镁合金板材温热拉深成形工艺的研究.轻合金加工技术, 2004, 32(8):16-19.
    [24] Nobuhiro Koga, Ratchanee Paisarn. Effects of tool radius on formability during deep drawing of AZ31 magnesium alloy sheets [J]. Journal of Japan Institute of Light Metals, 2003, 53(4): 152-156.
    [25] Shoichiro Yoshihara, Ken-ichi Manabea, Hisashi Nishimura. Effect of blank holder force control in deep-drawing process of magnesium alloy sheet [J]. Journal of Materials Processing Technology, 2005, 170: 579–585.
    [26] Fuh-Kuo Chen., Tyng-Bin Huang. Formability of stamping magnesium-alloy AZ31 sheets [J]. Journal of Materials Processing Technology, 2003, 142: 643–647.
    [27]邓明,许洪斌,刘峰.镁合金板材胀形和扩孔性能研究[J].锻压技术, 2004, (4):33-36.
    [28]卢志文,张洪峰,汪凌云.镁合金的冲压成形工艺研究.轻合金加工技术[J].2005,33(6):45-48.
    [29] Yu Yoshida, Keita Arai, Shigeharu Kamado and Yo Kojima. Improvement of Plastic Workability of Rolled AZ31 alloy Sheet by Surface Thermo-mechanical Treatment [J]. Materials Science Forum, 2005, 488-489: 449-452.
    [30] Su-Hyeon Kim, Bong-Sun You, Chang Dong Yim, Young-Myoung Seo. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets [J]. Materials Letters, 2005, 59: 3876–3880.
    [31] Shoichiro Yoshihara, Hisashi Nishimura, Hirokuni Yamamoto, Ken-ichi Manabea. Formability enhancement in magnesium alloy stamping using a local heating and cooling technique: circular cup deep drawing process [J]. Journal of Materials Processing Technology,2003, 142: 609–613.
    [32] W. J. Kim, S. W. Chung, C. S. Chung, D. Kum. Superplasticity In Thin Magnesium Alloy Sheets And Deformation Mechanism Maps For Magnesium Alloys At Elevated Temperatures. Acta Mater [J]. 2001, 49: 3337–3345.
    [33] J.C. Tan, M.J. Tan. Superplasticity in a rolled Mg–3Al–1Zn alloy by two-stage deformation method [J]. Scripta Materialia, 2002, 47: 101–106.
    [34] S.W. Chung, K. Higashi, W.J. Kim. Superplastic gas pressure forming of fine-grained AZ61 magnesium alloy sheet [J]. Materials Science and Engineering A, 2004, 372: 15–20.
    [35] Shyong Lee, Yung-Hung Chen, Jian-Yih Wang. Isothermal sheet formability of magnesium alloy AZ31 and AZ61 [J]. Journal of Materials Processing Technology, 2002, 124: 19–24.
    [36]毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社,1993张信钰.金属和合金的织构[M].北京:科学出版社,1976
    [37] Bunge HJ. Darstellung allgemeiner texture [J]. Mwtallkunde.1965, 56(3): 872-881
    [38] Roe R J. Description of crystallite orientation in polycrystalline materials [J]. Journal of Applied Physics, 1965, 36(6): 2024-2031.
    [39]梁志德等.织构材料的三维取向技术[M].沈阳:东北工学院出版社,1986.
    [40]毛卫民.金属材料的晶体学织构与各向异性[M] .北京:科学出版社, 2002.
    [41] Agnew S R, Yoo M H, Horton J A. Texture analysis as a tool for wrought magnesium alloy development [A]. Mordike B L, Kainer K U. Magnesium Alloys and Their Applications[C]. Weinheim: WIL EV-VCH, 2000, 119-124.
    [42] Agnew S R, Yoo M H, Tom C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Liand Y [J]. Acta Mater, 2001, 49: 4277-4289.
    [43] Huang Z W, Yoshida Y, Cisar L , et al. Microstructures and tensile properties of wrought magnesium alloys processed by ECAE [J]. Materials Science Forum Vols, 2003, 419-422: 243-248.
    [44] Tanno Y, Mukai T, Asakawa M. Study on warm caliber rolling of magnesium alloy [J]. Materials Science Forum Vols, 2003, 419-422: 359-364.
    [45] Wu S K, Chou T S, Wang J Y. The deformation texture in AZ31B magnesium alloy [J]. Materials Science Forum Vols, 2003, 419-422: 527-532.
    [46] Pyzalla A, Brodmann M, Haeffner D. Microstructure, Texture and residual microstrains in MgAl8Zn deformed at very highst rain rates [A]. Magnesium Alloys and Their Applications[C]. Weinheim: WIL EVVCH, 2000, 125-130.
    [47] Takuda H, Kikuchi S, Kubota K, et al. Formability and strain rate sensitivity of a Mg-8.5Li-21Zn alloy sheet [A]. Magnesium Alloys and Their Applications[C]. Weinheim: WIL EV-VCH, 2000. 285-290.
    [48] Koike J. New deformation mechanisms in fine grain Mg alloys [J]. Materials Science Forum Vols, 2003, 419-422: 189-194.
    [49] Ono N, Nakamura K, Miura S. Influence of grain boundaries on plastic deformation in pure Mg and AZ31 Mg alloy polycrystals [J]. Materials Science Forum Vols, 2003, 419-422: 195-200.
    [50] Koike J , Ohyama R , Kobayashi T , et al. Grainboundary sliding in AZ31 magnesium alloys at room temperature to 523K [J]. Materials Transactions, 2003, 44 (4): 445-451.
    [51] Kobayashi T, Koike J, Yoshida Y, et al. Grain size dependence of active slip systems in an AZ31 magnesium alloy [J]. J J apan Inst Metals, 2003, 67 (4):149-152.
    [52] Hanawa S, Sugamata M, Kaneko J. Structures and mechanical properties of rapidly solidified Mg2Y based alloys [J]. J J apan Inst Metals, 1997, 47 (2): 84-89.
    [53] Yu Yoshida, Lawrence Cisar, Shigeharu Kamado, et al .Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy [J]. Materials Transactions, 2003, 44 (4):468-475.
    [54] M.M. Avedesian, H. Baker, eds.——ASM Specialty Handbook—Magnesium and Magnesium alloys [M], ASM International, 1999.
    [55] Dickerson M B, Snyder R. Low2temperature fabrication of dense, near-net-shaped tungsten/ zirconium carbide composites with tailored phase content by t he PRIMA-DCP process [J]. Ceramic Engineering and Science Proceedings, 2001, 22 (1):97-108.
    [56] Segal V M, Reznilkov V I, Kopylov V I, et al. In: processes of plastic transformation of metals [M]. Minsk: Navukai Teknika, 1984
    [57]黄光胜,汪凌云,黄光杰,潘复生.镁合金冷轧板材及其冲压成形[C]. 2004中国材料研讨会.
    [58] M.T. Pérez-Prado, J.A. del Valle, O.A. Ruano. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling [J]. Scripta Materialia, 2004, 50: 667–671.
    [59] J.A. del Valle, M.T. Pérez-Prado, O.A. Ruano. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy [J]. Material Science and Engineering, 2003, A355: 68-78.
    [60]陈振华,夏伟军,程永奇,傅定发.镁合金织构与各向异性[J].中国有色金属学报, 2005, 15(1):1-11.
    [61] Toshiji Mukai, Masashi Yamanoi, Hiroyuki Watanabe, et al. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure [J]. Script Material, 2001, 45:89-94.
    [62] Hiroyuki Watanabe, Akira Takara, Hidetoshi Somekawa, et al. Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy [J]. Script Material, 2005, 52: 449-454.
    [63] W.J. Kim, S.I. Hong, Y.S. Kim, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing [J]. Acta Materialia, 2003, 51: 3293~3307.
    [64] Cahn RW,丁道云等译.非铁合金的结构与性能[M].北京:科学出版社, 1999: 109~115.
    [65] John Wiley. Magnesium and its alloys [M]. USA: Sons, Inc. 1960.
    [66]国家标准局.GB/T228-2002金属材料室温拉伸试验方法.北京,2002.
    [67]国家标准局.GB 5027-99,金属薄板塑性应变比(r值)试验方法.北京,1999.
    [68] C. R. Brooks. Heat Treatment Structure and Properties of Non-ferrous Alloys ASM [J], Metals Park.1982, 55.
    [69] Tome C N, Lenbensohn R A. A model for texture development dominated by deformation twinning: application to Zirconium alloys [J]. Acta. Metal. Mater, 1991, 39(11):2667-2680.
    [70] Hui Boxiang, Li Guogang, Ren Weijie, Lang Lixin. Experiment research for single roll to drive and rolling with different diameter to roll on the mills of neckel strip [J]. Journal of Tianjin Institute of Technology. 1997, 13(4): 35-40.
    [71] Meyers M A, Vohringer O, Lubarda V A. The onset of twinning in metals: a constitutive description [J]. ActaMater, 2001, 49(19): 4025-4039.
    [72] Wen Huang, Xiang Zan, Xu Nie. Experimental study on the dynamic tensile behavior of a polycrystal pure Titanium at elevated temperatures [J]. Mater. Sci. & Eng. A, 2007, 443 (122): 33-41.
    [73] Y.N.Wang and J.C.Huang. Texture analysis in hexagonal materials [J]. Materials Chemistry and Physics, 2003, 81: 11–26.
    [74] Yoshihara S , Yamamoto H , Manabe K1 Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique [J]. Journal of Materials Processing Technology, 2003, (143/ 144) : 612-615
    [75] Yang Ping, Ren Xue ping, Zhao Zu de. Microstructures and Textures in Hot Doformed and Annealed AZ31 Magnesium Alloy [J]. Transactions of Materials and Heat Treatment. 2003,24 (4):12-16
    [76]陈振华,夏伟军.变形镁合金[M].北京:化学工业出版社,2005
    [77] Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phy.,2003, 81 (1): 11
    [78] Yoshida Y, Kamado S, Kojima Y. Application of ECAE processed magnesium alloys[J].Journal of Japan Institute of light metals, 2001,51(10):556

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700