ZM61镁合金均匀化与热变形行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着镁及其合金研究开发与制造技术水平的提高,镁合金的推广呈现高速增长态势,在交通工具、电子、军工等产品上获得越来越广泛的应用。由于镁合金是密排六方结构,滑移少,变形困难,所以镁合金的成形主要是压铸,传统的塑性加工的成形方式较少,但经过塑性加工之后,镁合金在组织性能上,将得到极大的改善。因此,探索和发展镁合金的塑性加工特性,研究适合于镁合金的塑性成形工艺具有非常重要的工程价值和学术意义。
     本文以自主开发的ZM61镁合金为研究对象,对其锭坯均匀化处理工艺和热变形行为进行研究。采用金相、扫面电镜及能谱和差热分析等手段,较为全面系统地研究了ZM61镁合金铸锭在不同均匀化热处理工艺条件下的显微组织和物相变化规律,并得到了在各种工艺条件下材料的显微硬度值随时间和温度的关系曲线,对均匀化的两个重要参数温度和时间进行了详细的探讨,并采用求显微硬度的方差大小的方法来判断热处理后合金的均匀化程度;通过扫描电镜实验,定性研究了ZM61镁合金中主要合金元素的分布规律。确定了ZM61镁合金较优的均匀化工艺参数为330℃×16h+420℃×2h。
     对ZM61镁合金采用较优的均匀化工艺处理后,在温度为300~390℃、应变速率为0.001~0.1s-1的变形条件下,采用Gleele-1500热模拟机对其热压缩变形特性进行了研究。研究发现:ZM61镁合金热压缩变形时的流变应力同应变之间的关系曲线呈现典型的连续动态再结晶特征,即变形初期迅速硬化并达到一个峰值,其后逐渐软化,在达到较大的应变后呈现稳态流变。流态应力随变形温度的升高和变形速率的降低而降低。计算出ZM61镁合金热压缩变形时的材料常数为:Q=201.86kJ/mol;A=1.1915×10~(15)s~(-1);α=0.020756mm~2/N;n=4.3159,并建立了合金的流变应力方程。同时也发现热压缩变形时,合金组织也发生了变化:变形程度增加,晶粒细化,动态再结晶进行的更加完全;温度升高促进动态再结晶进行完全;但是过高温度易使晶粒粗化;变形速率增大晶粒细化但动态再结晶的进行不完全。降低变形温度和提高应变速率可使再结晶晶粒平均尺寸减小,建立了再结晶晶粒大小d与Z参数之间关系模型为: d = 12788·Z~(-2,12)。综合考虑热压缩变形抗力、热压缩组织演化等因素,在本试验条件下,ZM61镁合金的较优加工工艺条件是:变形温度300~330℃,变形速率0.001~0.1s~(-1),并以低速为宜。
Along with the development of the research and manufacture, the magnesium alloys are used in many fields, just as vehicle, electronic products and military industry. Magnesium has hcp crystal structure and little slip system, so its plastic deformation is difficult. The main deformation of magnesium alloys is die-casting and traditional plastic processing is limitedly in magnesium. However, plastic processed magnesium alloys are highly improved in the microstructure and properties compared with die-casting products. So the development of plasticity procsseing is significant theoretical meaning and engineering value for the magnesium alloys.
     In this paper, ZM61 alloy studied by ourselves was chosen to investigate the homogenization and thermaldeformation. The variation of microstructure of ZM61 was discussed under different heat treatment with microscopic examination, SEM, EDS and DTA.Then we get the curve of micro hardness with temperature and time, also the parameter of heat process were carefully studied; Homogeneous level of alloy which had been treated was innovatively judged by the variance of micro hardness distribution; The regularities of distribution of alloying agent were analyzed to provide the attestation in secession by SEM. Final, the better uniformity of the process for ZM61 magnesium alloy is identified.
     Hot compression tests of ZM61 magnesium alloy after homogeneous annealing were performed on Gleeble-1500 at deformation temperature ranged in 300~390℃and strain rates 0.001~0.1s~(-1). The results show that the stress and strain curve of ZM61 magnesium alloy has a typical feature of continuous dynamic recrystallization; first the flow stress rapidly emerged working hardening and reached a peak, then gradually softened and emerged steady-state flow when reached greater stain. The material constants of ZM61 magnesium alloy in the hot compressive deformation are calculated, Q=201.86kJ/mol;A=1.1915×1015s-1;α=0.020756mm2/N; n=4.3159, the flow stress equation was established. Meanwhile the microstructure is changed in the hot compressive deformation. The grain is refined and dynamic recrystallization is fully completed with increase of deformation. Dynamic recrystallization is accelerated with increase of temperature, but at the same time the grain is easy to grow coarse. The grain is refined with increase of the deformation rate, but dynamic recrystallization can’t be fully completed when the deformation rate is too high. The average dynamical recrystallized grian is decreased with reduction of deformation temperature and increase of strain rate. The equation of d and Z is established, d =12788·Z~(-2,12).Tacking the factors such as resistance of compression, microstructure evolvement etc. it is considered that the good deformation condition is temperature of 300~330℃with strain rate 0.001~0.1s~(-1) and the lower strain rate is preferred
引文
[1] Kojima Y. Project of platform science and technology for advanced magnesium alloys [J]. Material Transactions, 2000, 42(7):1154~1159.
    [2] B.L.Mordik, T. Ebert. Magnesium Properties-applications-potential [J]. Materials Science and Engineering, 2001, 302(1):37~45.
    [3] Aghion E, Bronfin B. Magnesium Alloys Development towards 21st Century [J]. Material Science Forum, 2000(350~351):19~28.
    [4] Comstock H B. Magnesium and magnesium compounds——A material survey [C]. U. S. Bureau of Mines Information Circular, 1963:128.
    [5] Avedesian M M, Baker H. Magnesium and magnesium alloys——ASM Specialty Handbook [M]. Ohio, USA: ASM International, 1999.
    [6]黄士坚.国内镁合金产业现况与发展[J].工程,2001,(8):106.
    [7]曾小勤,王渠东,吕宜振,等.镁合金应用进展[J].铸造,1998(11):3943.
    [8]余琨,黎文献等.变形镁合金的研究开发及应用[J].中国有色金属学报.2003.13(2).
    [9] Mukhina, Iu Y. Magnesium alloys for modem techniques [J].Moscow, Izdatel’stvo Nauka, 1992:23-33.
    [10] F.Hollrig, Rosita et al. Magnesium in Volkswagen [J]. Light Metal Age, August, 1980.
    [11]胡赓祥,蔡洵.材料科学基础[M].上海交通大学出版社,2000.
    [12]李宁,黎德育.镁合金压铸件的性能及表面处理[J].电镀与涂饰,2002,21(4):39.
    [13]冶金工业部情报标准研究所.有色金属常识[M].北京:冶金工业部情报标准研究所,1972.
    [14]许小忠,刘强,程军.镁合金在工业及国防中的应用[J].华北工业学院学报,2002,23(3):190.
    [15]邓玉勇,朱江,李立.新型金属材料镁合金的发展前景分析[J].科技导报,2002,10:37.
    [16]叶久新,陈明安,周键,等.镁合金及其成型技术炸开工业中的应用[J].湖南大学学报, 2002,29(3):112.
    [17]张诗昌,段汉桥,蔡启舟,等.主要合金元素对镁合金组织和性能的影响[J].铸造,2001,50(6):30.
    [18]翟春泉,曾小勤,丁文江,等.镁合金的开发与利用[J].机械工程材料,2001,25(1):6.
    [19] Hosoda Koh.The difference of diecasting magnesium application development between American and Japan [J] .J of the Surface Finishing Society of Japan.1993, 44(11):899.
    [20]汪之清.国外镁合金压铸技术的发展[J].铸造,1997,8:48.
    [21] Kojima Yo. Mechanical properties of magnesium [J].J of the Surface Finishing Society of Japan.1993, 44(11):866.
    [22] Takaya Matsufumi. Magnesium diecasting alloy [J]. J of the Surface Finishing Society of Japan.1993, 44(11):890.
    [23]王怀国,张果新,张奎,等.高硅镁合金的制备工艺及显微组织分析[J].稀有金属,2003,27(4):500.
    [24]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M]北京:机械工业出版社,2002.9.
    [25]陈振华等.镁合金[M].化学工业出版社, 2004.
    [26]美国金属学会主编,金属手册第二卷性能与选择:有色合金及纯金属[J]北京:机械工业出版社,1994.
    [27] www.intlmag.org
    [28] Kojima Y.Platform Science and Technology for Advanced Magnesium Alloy.Mater [J].Sci.Forum.2000, 350-351:3.
    [29] ASM International. Magnesium and Magnesium Alloy [M]. OH: Metal Park, 1999.
    [30] Polmear I J. Magnesium alloy and applicatons [J]. Mater. Sci & Tech, 1994, (10):1-4.
    [31]周海涛,马春江,曾小勤,等.变形镁合金材料的研究进展[J].材料导报,2003,17(11):16-18.
    [32]郭学锋,魏建锋,张忠明.镁合金与超高强度镁合金[J].铸造技术,2002,23(3):133-136.
    [33]黄薇,张露芳等.一种新的造型材料――镁合金[J].机械工程,2001(4):5-7.
    [34]沈健.铝锂合金高温塑性变形行为的研究[D].中南工业大学博士学位论文,1996.
    [35]袁鸽成,张新民.新型Al-Sn-Si合金高温塑性变形流变应力的研究.实验力学,2001,16(1):34.
    [36] YU WANG, DONGLING LIN, A correlation between tensile flow stress and Zenner-Hollomon factor in Tial alloy at high temperatures [J].Mat.Sci, 2000,19,1185.
    [37]罗丰成,尹志民,左铁慵.CuZn(Cr,Zr)合金的热变形行为[J].中国有色金属学报,2000,2,12.
    [38]樊百林,黄钢汉.紫铜热塑性变形的研究[J].塑性工程学报,2002,9,37-39.
    [39]陈良生,徐有容,王德英,等.高钼不锈钢热加工与综合流变应力模型[J].钢铁,2000,5,55.
    [40]洪权,张振祺,赵永庆,等.Ti-6Al-2Zr-1Mo-1V合金的热变形行为[J].航空材料学报,2001,3,10.
    [41]洪权,张振祺.Ti-6Al-2Zr-1Mo-1V合金的热压缩变形特性及塑性流动方程[J].广东有色金属学报,2001,11,129.
    [42]赵同春,张麦仓,董建新等.60Si2MnA弹簧钢的热变形行为[J].钢铁研究学报,2002,4,28.
    [43]林启权,张辉,彭大署等.热压缩2519铝合金流变应力特征[J].矿冶工程,2002,6,100.
    [44] Zenner C, Holloman J.H. Effect of Strain Rate upon the Plastic Flow of Steel [J].Appl.Phys. 1994, 15(1):22-32.
    [45] Sheikhahmad J Y, Bailey J A.A constitutive model for commercially pure titanium [J]. Eng Mater Technol, 1995, 117:139-144.
    [46]沈健.热压缩2091Al-Li合金的流变应力行为[J].稀有金属,1998,22(1):197-202.
    [47] J.R.K lepaczko. Mech.Work.Technol. 1987, 15:143.
    [48] E.A.Davis and A.Nadai.Appl.Mech. 1936, 3:A25.
    [49] Z.Marciniak, K.Kuczynski and T.Pokora.Int.Mech.Sci. 1973, 15:789.
    [50] S.L.Semiatin and J.J.Jonas.Formability and Workability of Metals [J]. American Society for Metals, Metals Park, Ohio, 1984, 48.
    [51] E.Lach and K.Pohlandt.J.Mech. Work. Technol., 1984, 9:67.
    [52] J.W.Hurchinson and K.W.Neale.Acta Metall., 1997, 25:839.
    [53] R.J.Clifton, J.Duffy, K.A.Hartley and T.C.Shawki.Scr. Metall., 1984, 18:443.
    [54] W.I.Zuzin, M.Ya.Browman and A.F.Metallurgy, Moscow, 1964(in Russian).
    [55] J.Litonski.Bull.Acad .Pol.Sci. 1997, 2:7.
    [56] J.R.Klepaczko.Eng .Trans. 1965, 13:561.
    [57]刘淑云,安希镛,崔怀玲.纯铝动态再结晶研究[J].轻合金加工技术,1987,4:36-41.
    [58]杨觉先.金属塑性变形的物理基础[M].北京:冶金工业出版社,1988.
    [59] S.E. Ion, F.J. Humphreys and S.H. White, Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium [J]. Acta Metallurgical et Material, 1982, 30, 1909-1919.
    [60] Galiyev A, Kaibyshev R, Gottestein G. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60 [J].Acta Mater, 2001; 49:1199-1207.
    [61] Bannett M R. Recrystallization during and following hot working of magnesium alloy AZ31 [J].Mater Sci Forum, 2003; 419-422:503-508.
    [62] Sitdikov O, Kaibyshev R, Sakai T. Dynamic Recrystallization Based on Twinning in Coarse-Grained Magnesium [J]. Mater Sci Forum, 2003; 419-422:521-526.
    [63] Myshlyaev M M, McQueen H J, Mwembela A, Konopleva E. Twinning, dynamic recovery and recrystallizaition in hot worked Mg-Al-Zn alloy [J].Mater Sci Eng A, 2002; 337:121-133.
    [64] Kaibyshev R O, Sitdikov O S. Structural changes during plastic deformation of pure magnesium.Phys [J].Met.Metall.1992; 73:635-642.
    [65] Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet [J].Mater Sci Eng A, 2003; 339:124-132.
    [66] Tan J C, Tan M J. Superplasticity and grain boundary sliding characteristics in deformation of Mg-3Al-1Zn alloy sheet [J].Mater Sci Eng A, 2003; 339:81-89.
    [67]楊続躍,三浦博己,酒井拓. AZ31マグネシウム合金の高温変形による動的微細粒組織の生成[J].軽金属. 2002; 52: 318-323.
    [68] Yang X,Miura H,Sakai T.Dynamic evolution of new grains in magnesium alloy during hot deformation [J].Mater Trans.2003;419-422:509-514.
    [69] Galiyev A, Kaibyshev R, Sakai T.Continuous dynamic recrystallization in magnesium alloy [J].Mater Sci Forum. 2003; 419-422:509-514.
    [70] Yang X, Miura H. Sakai T. Dynamic nucleation of new grains in magnesium alloy during hot deformation [J]. Mater Sci Forum.2003; 419-422:515-520.
    [71] Yi S B, Zaefferer S, Brokmerier H-G.Mechanical behavior and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures [J]. Mater Sci Eng A. 2006; 424:275-281.
    [72] Kaibyshev R O, Sitdikov O S.The relation of crystallographic slip and dynamic recrystallization to the local migration of grain boundaries.I.Experimental Results [J].Phys Met Metall.1994; 78:420.
    [73] Pérez-Prado M T, Valle J A, Ruano O A. Effect of sheet thickness on the microstructure evolution of an Mg alloy during large strain hot rolling [J]. Scripta Mater.2004; 50:667-671.
    [74]崔中圻.金属学与热处理[M].哈尔滨:哈尔滨工业大学,1989.
    [75] M.Hillert.合金中的扩散性相变与合金热力学(李清斌) [M].沈阳:辽宁科学技术出版社,1984.
    [76]冯端.金属物理学——结构与缺陷[M].北京:科学出版社,1998.
    [77] David.P.Phase Trans In Metals and alloys [J].Oxford: Alden Press, 1987.
    [78] Smallman.R.E.Mordon Physical Metallurgy [J].Londen: Butterworth Press, 1985.
    [79]曹明盛.物理冶金基础[M].北京:出版社,1985.
    [80]田村今男.高强度低合金钢的控制和控制冷却[M].王国栋译.北京:冶金工业出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700