基于液态结构变化的金属熔体热处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用高温DSC差热分析、热速处理、快速凝固等方法对Al-12wt.%Sn、Al-12wt.%Sn-4wt.%Si合金熔体进行了细致研究,并分析了合金熔体结构变化与凝固组织的关系。另外利用自行研制的电阻率测量仪采用直流四电极法测量了Ga-Sb合金熔体在不同成分和温度下的电阻率。
     对Al-12wt.%Sn合金进行了DSC测试,发现在DSC曲线温度点735-750℃和845-858℃左右存在着吸热峰,由此确定合金热速处理的过热温度为900℃和780℃。热速处理的结果显示经过热速处理的合金组织明显细化。组织中的Sn相也趋于均匀细小。同时,通过研究保温时间对合金熔体热速处理的影响发现,经900℃快速激冷到700℃时,由于驰豫现象的存在,保温时间短的熔体大部份保留了900℃的熔体结构,试样的组织比较细小。
     利用高温熔体黏度仪对Al-12wt.%Sn-4wt.%Si合金熔体进行了黏度测试。结果证明随着温度的降低,合金熔体黏度在998K-968K和1138K-1103K处出现不连续的变化。而利用DSC对Al-12wt.%Sn-4wt.%Si进行测试时发现合金熔化以后,在1013K和1083K处,曲线上仍然出现了吸热峰,说明合金熔体出现了不连续结构转变。分析认为,共价结合的Si-Si、Sn-Sn原子团簇的形成和Al、Si和Sn原子结合成原子团簇并迅速长大,分别是引起这两个温度区间内熔体结构不连续转变的原因。由黏度突变所反映出的熔体结构不连续转变温度和由DSC分析所得的熔体结构不连续转变温度虽然相近,但是还是存在一定的温度差。这是由于试验过程中,两种测量方法的升温制度以及它们所反映的物理性质不同引起的。找到异常温度点之后利用快速凝固的方法观察Al-12wt.%Sn-4wt.%Si合金在963K、1100K和1200K温度下快速凝固的铸态组织发现,熔体过热温度越高,快速凝固后组织越细小,尤其是含量较高的白色Sn相,在1200K下快速凝固后呈现接近弥散分布的颗粒状。这是由于温度越高,合金熔体中原子团簇的尺寸越小,在较高的温度下原子团簇可能分解,熔体趋于均匀,快速凝固可以将熔体的这些特征保留到铸态。因此,在试验温度范围内,过热度越高,熔体快速凝固后组织越均匀细小。
     使用自行研制的电阻率测量仪采用直流四电极法测量了液态III-V族体系的Ga-Sb合金熔体不同成分电阻率-温度曲线。研究发现,随着Sb含量的增加,Ga-Sb合金熔体的电阻率升高。Ga_(50)Sb_(50)合金熔体的电阻率在715-735℃温度区间内出现了异常变化,其余几个成分点的电阻率-温度曲线在熔点以上50-100℃的范围内由于有大量原子团簇的产生不成线性关系。由于Ga_(50)Sb_(50)是一种比较特殊的化合物,晶体属于半导体化合物,熔化后该合金的电阻率及其温度系数呈现典型的金属特征,原子之间的作用力为金属键。当温度降至735℃时,金属键开始大量向共价键转变,此时原子分布处于混乱状态,电子运动受到阻碍,随着共价键量的增加,熔体中原本处于自由态的电子逐渐被束缚,使电子输运性能下降,所以电阻率在735℃时升高,当熔体温度达到723℃时共价键基本形成,原子分布处于有序状态,电子运动的阻力减小,继而随温度的降低电阻率随之降低,直到降至熔点。
The melts of Al-12wt.%Sn, Al-12wt.%4wt.%Si alloy have been researched using the methods such as high temperature DSC, differential thermal analysis, thermal rate treatment processing and rapid solidification.The relationship of the structure and the solidification of the melts has also been analysised. the resistivity of Ga-Sb alloy in different ingredients and in different temperature was studied by the method of DC Four electrodes using the resistivity measuring instrument .
     The Al-12wt.%Sn alloy was tested by the DSC, there exist heat-sink valleys in temperature of 735-750℃and 845-858℃in the DSC curve, from which the overheating temperature of thermal rate treatment of alloy was determined that is 900℃and 780℃. The results of the thermal rate treatment showed that the structure of the alloy is refined obviously.The Sn phase also tend to be evenly tiny. At the same time, through studies influence of the time of preservation to the hot speed processing of alloy, the most melt that the holding time is short retained the structure of melt at 900℃, and the structure of sample melts is small in the process of quickly quenching to 700℃, due to the existence of relaxation phenomenon.
     The viscosity of Al-12wt.%Sn-4wt%Si melt was tested by viscosity measurement.The results proved that the viscosity of the melt appear discontinuous changes in 998K-968K and 1138K- 1103K with the drop of the temperature. The Al-12wt.%Sn-4wt.%Si alloy also was tested using DSC, the results proved that the curve still appeared absorptionn in 1013K and 1083K after the alloy was melted , these proved that there exists discontinuous structural transformations in the melt. The formation of Si-Si and Sn-Sn clusters with covalent binding,and Al, Si and Sn atoms combine into clusters and grow rapidly respectively caused discontinuous structural transformations in the melt in the two range of temperature. The temperature of mutations structural transition reflected by the viscosity and the temperature of discontinuous structural transformations attained by DSC are similar, but there are still some difference. This because that the heating system of the two kinds of measurement and the physical properties reflected by them are different during the test process. The solidification of Al-12wt.%Sn-4wt.%Si alloy at 963K, 1100K and 1200K was observed using the method of rapid Solidification after finding abnormal temperature,the results displayed that the higher of the overheating temperature,the tinier of the rapid solidification, especially the high content of white Sn phase, which present diffuse distribution of granular in 1200K after rapid solidification. This is due to the higher of the temperature, the smaller of the size of clusters of atoms in alloy melt, the clusters of atoms can decompose at higher temperatures,the melt tends to be uniform, rapid solidification can retain these characteristics of the melt to as-cast. Therefore, the higher of overheat, the more uniform and fine of the solidification in the range of test temperature .
     The resistivity- temperature curve of Ga-Sb melts in different ingredientsin was measured by d.c four-probe methord. The instrument was developed by ourselves. It was found that the resistivity of Ga-Sb melts increased with the increase of content of sb.The resitivity-temperature curves of Ga-Sb alloys keep linearity relation, besides that of Ga_(50)Sb_(50) melt shows an anomalous change in 989-1008 K, The resitivity-temperature curves of the rest of the components are inlinear in the range above the melting temperature 50-100℃due to the produce of clusters of atoms. Ga_(50)Sb_(50) is a kind of special compound, of which, crystal belongs to semiconductor compound, and acting force among atoms is of covalent bond with covalent tetrahedron coordination structure, but after melting, the electric resistance and temperature coefficient of this alloy displays typical metal characteristics, with acting force among atoms is of metallic bond. When the temperature drops to 1008K, the metallic bonds start to transform to covalent bonds at large quantity, at this moment, atom distribution is in confusional state, and the electronic movement is hindered. With increase of amount of covalent bonds, the electrons in melt that are originally in freedom state are gradually restricted, making motion ability of electrons decrease;therefore, the electric resistance will rise at 1008 K. The covalent bond is basically formed when the melt temperature reaches 998 K, by now, the atom distribution is in ordered state, and the resistance of electronic movement is reduced. Afterwards, the electric resistance will decrease with the reduction of the temperature till the melting point.
引文
[1]陆坤权.液态物理发展展望.物理,1997,26(1);23.
    [2]黄兴章.生机勃勃的凝聚态物理.现代物理知识,1996,8(6):14.
    [3]刘应开,侯得东.非晶、纳米晶材料的历史与现状.现代物理知识,1999,11(1):7.
    [4]耿浩然,孙春静.Sb和Bi熔体的密度变化.科学通报, 2007, 52(7):756-759.
    [5]耿浩然,王桂珍,亓效刚,等. Ga熔体的密度-温度特性.稀有金属材料与工程, 2008, 37(10):1742-1745.
    [6] B.Lenoir,M.Cassart, J.P. Michenaud, H. Scherrer, S. Scherrer.Transport Properties of Bi-Rich Bi-Sb Alloys.Phys. Chem. Solids. 1996, 57(1):89-99.
    [7] D. J. Lacks. First-Order Amorphous-Amorphous Transformation in Silica. Phys. Rev. Lett. 2000, 84: 4629.
    [8]C. A. Angell, K. L. Ngci, G. B. Mckenna, et al. Relaxation in glassforming liquids and amorphous solids[J].Appl Phys, 2000, 88(6): 3113.
    [9]Y.Katayama, T. Mizatanl, W. Utsuml, et al. A first order liquid-liquid transition in phosphorus[J]. Nature, 2000, 403(13):170.
    [10]T.Morishita. Liquid-liquid phase transition of phosphorus via constant-pressure first-principles molecular dynamics simulations. Phys Rev Lett, 2001,(87) : 1.
    [11]边秀房,刘相法,马家骥.铸造金属遗传学.济南:山东科学技术出版社,1999.
    [12]郭景杰,,傅恒志.合金熔体及其处理.北京:机械工业出版社,2005.
    [13] Iida T,Guthrie R I L.The physical properties of liquid metals.Oxford:Clarendon Press,1993.
    [14] Bakhtiyarov S I,Overfelt R A. Measurement of liquid metal viscosity by rotational technique. Acta mater. 1999, 47(17):4311-4319.
    [15]耿红霞.Sb-Bi合金熔体粘滞行为及特性[硕士学位论文].济南:山东大学,2004.
    [16] A. I. Bachinskii, Selected Worked. Izd. An SSSR, Moscow 1960.
    [17] E. Stewart. Gyromagnetic and Electron-Inertia Effects. Phy,Rev. 1935,(7):129.
    [18] J. Bernal. Trans. Faraday. Soc. 1934, (33) :27.
    [19]秦敬玉,边秀房,王伟民.Al和Sn液态结构的温度变化特性.物理学报,1998,47:3.
    [20]孙民华,耿浩然,边秀房,等.Al熔体黏度的突变点及与熔体微观结构的关系.金属学报, 2000,36(11):1134-1138.
    [21]王焕荣,叶以富,闵光辉,等.共晶Ga-In合金的液态结构与黏度研究.金属学报, 2001,37(8).
    [22]程素娟,秦绪波,边秀房.In-5%Cu合金的液态结构与粘滞性研究.稀有金属材料与工程, 2003,32(11).
    [23]杨中喜,耿浩然,陶珍东,等.液态Sn的黏度及其熔体微观结构的变化.原子与分子物理学报,2004,21(4).
    [24]田学雷,陈熙琛.过冷状态下的Cu70Ni30合金的液态结构.中国科学,2000,30(9).
    [25]边秀房,潘学民.金属熔体中程有序结构.中国科学,2002,32(2).
    [26]孟庆格,边秀房.Al-Si合金熔体中氢含量与Si含量的关系.金属学报,2001,37(3).
    [27]T.Iida. The Physical Properties of Liquid Metals. Oxford: Claraendon Press. 1993:70-71.
    [28] A.L.Hines, T.W.Chung. Prediction of liquid metal viscosity using an adjustable hard sphere radial distribution curve.Metall, trans.B. 1996, 27:29-34.
    [29] Chhabra R P,Sheth D K. Viscosity of molten metals and its temperature dependence. Z. Metallkd, 1990, 81(4):264-271.
    [30] Hildebrand J H. Viscosity and diffusivity: A predictive treatment. New York: Wiley,1997.
    [31] R. M. J. Cotleril. The physics of melting. J.Cryst.Growth, 1980, 48: 582.
    [32] F. Spaepen. Five-fold symmetry in liquids. Nature, 2000, 408: 781.
    [33] M.Shimoji, T.Itami. Atomic transportion liquid Metals. Switzerland: Trans. Tesh. Pub, 1986.
    [34] M. Hirai. Estimation of Viscosities of Liquid Alloys. ISU International, 1993, 33 (2): 251.
    [35]刘让苏,李基永.液态金属高温结构转变特性的模拟研究.物理学报,1995,(44):1582-1587.
    [36]李辉,边秀房.金属间化合物Al3Fe熔体结构的温度变化特性研究.化学学报,1999,57: 775-781.
    [37] E.Clementi, G.Corongiu, etc. Parallelism in computations in quantum and statistical mechanics. Computation Physics Communal. 1985, 37:287-294.
    [38] W.deitz, W.O.Riedeand, etc. Molecular Dynamics Simulation of an Aqueous MgCl2 Solution. Z.Naturforsch. 1982, 37:1038-1048.
    [39] D.J.Evans, S.Murade. Singularity Free Algorithm for Molecular Dynamics Simulation of Rigid Polyatomics. Mol. Phys. 1977, 34:327-331.
    [40] Film. Optimization of the Ewald Sum for Large Systems. Mol. Simul. 1994, 13:1-9.
    [41]王强,陆坤权,李言祥.液态纯锑电阻率随温度的反常变化.科学通报,2001,46 (12):990-992.
    [42]Shen R R , Zu F Q , Li Q. Study on temperature depend2 ence of resistivity in liquid In2Sn alloy.Phys Scr,2006 ,73 : 184-187.
    [43]益汛,李先芬.液态InSn49.11和InSn70合金熔点附近电阻率的反常变化.合肥工业大学学报(自然科学版),2008,31(1):82-85.
    [44]Zu F Q ,Li X F. Temperature dependence of liquid structures in In2Sn20 : diff raction experimental evidence.Phys.Lett .A ,2004 ,324 :472-478.
    [45]Zu F Q ,Zhu Z G,Guo L J , et al . Observation of an anomalous discontinuous liquid structure change with temperature. Phys Rev Lett , 2002 ,89 :125505.
    [46]庄国波,徐为博.表面张力测定的几种方法.江苏广播电视大学学报,1994,(4)60-63.
    [47]孙本良,翟玉春,田彦文.NaCl-KCl(1:1)-ScCl3体系密度及表面张力的测定.中国稀土学报, 1999,17(1):90-93.
    [48]边秀房,王伟民,李辉,等.金属熔体结构.上海:上海交通大学出版社,2003.
    [49]王广厚.团簇物理的新进展.物理学进展,1994, 14(2):121-171.
    [50] Vineyard.GH. Liquid Metal sand Solidification.ASM,Cleveland.1958: 11(1): 44-48.
    [51]蔡英文,范新会,李建国,等.原子簇在熔体晶体生长中的作用.西北工业大学学报,1996, 14:323-324.
    [52]关绍康.熔体热历史对快凝铝铁基合金显微结构影响的研究[博士论文].北京:北京科技大学,1995.
    [53]谭敦强,黎文献,张迎元.铝及铝合金熔体结构研究.材料导报, 2004, 18(5): 27-40.
    [54] LI Y Y. The present and future of t he magnesium alloy researches. China Founday. 2004 (1) :125.
    [55] Bian xiu-fang, Wang wei-min, Yuan shujuan, et al. Structu refactord of modified liquid. Sci and tech of Adv Mater 2001, (2): 19-23.
    [56] FROES F H, KM Y W. Rapid solidification of Al,Mg and Ti. Journal of Matels, 1987, 39(8): 14-21.
    [57] SKNNER D J. The physical metallurgy of dispersion strengened Al-Fe-Si alloys[A]. Didpersion Strengthened Aluminum Alloys. Warrendale,USA:The Mineral, Metals&Materials Society, 1988,10:181-197.
    [58]胡汉起,沈宁富,王自东,等.金属凝固原理,北京:机械工业出版社, 2000.
    [59]N H March, M P Tosi. Introduction to Liquid State Physics. Beijing, World Scientific, 2002.
    [60] Xianfen Li, Fangqiu Zu, Jin Yu, et al. Effect of liquid-liquid transition on solidification of Bi-Sb10 wt% alloy. Phase transitions, 2008, 81(1): 43-45.
    [61] Emadi D, Gruzleski J E, and Toguri J M. The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metall. Trans. B, 1993, (24): 1055-1059.
    [62] Peter H. Poole, Tor Grande, C. Austen Angell et al. Polymorphic Phase Transitions in Liquids and Glasses. Science, 1997, 275(5298): 322-323.
    [63]A. Il’inskii, I. Kaban, Yu. Koval et al. On thermodynamic properties and atomic structure of amorphous and liquid alloys. J. Non-Cryst. Solids, 2004, (345-346C): 251.
    [64] I. Kaban, W. Hoyer, A. Il’inskii et al. Temperature-dependent structural changes in liquid Ge15Te85, J. Non-Cryst. Solids, 2007, (353): 1808-1812.
    [65] F.S. Yin, X.F. Sun, H.R. Guan et al. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963. Journal of Alloys and Compounds, 2004, (364): 225-228.
    [66] Chen Zhong-wei, Jie Wan-qi and Zhang Rui-jie. Superheat treatment of Al–7Si–0.55Mg alloy melt. Materials Letters, 2005, 59(17): 2183-2185.
    [67] Tetsuichi Motegi. Grain-refining mechanisms of superheat-treatment of and carbon addition to Mg–Al–Zn alloys. Materials Science and Engineering A, 2005, (413-414): 408-411.
    [68] Xiufang Bian and Weimin Wang. Thermal-rate treatment and structure transformation of Al–13 wt.% Si alloy melt. Materials Letters, 2000, (44): 54-58.
    [69] Jun Wang, Shuxian He, Baode Sun et al. Effects of melt thermal treatment on hypoeutectic Al-Si alloys. Materials Science and Engineering A, 2002, (338): 101-107.
    [70] Qin Jing-Yu, Bian Xiu-Fang, and Wang Wei-Min. Characteristic of temperature-induced change on the structure of liquid Al and Sn. ACTA PHYSICA SINICA, 1998, 47(3): 438-444.
    [71]李培杰,桂满昌,贾均,等. Al-16%Si合金熔体的电阻率及其结构遗传.铸造, 1995, 15(9): 15-20.
    [72]桂满昌,李庆春,贾均.液态过热对亚共晶Al-Si合金凝固组织与凝固过程的影响.航空材料学报,1996,16(1):26-31.
    [73]Sette F, Krisch M H, Masciovecchio C, et al. Dynamics of Glasses and Glass-Forming Liquids Studied by Inelastic X-ray Scattering. Science, 1998, 280(5369): 1550-1555.
    [74]Cotterill R M J, Kristensen J K. A transmission electron microscopy investigation of the melting transition. Philosophical Magazine, 1977, 36(2): 453-462.
    [75] Palle N, Dantzig J A. An Adaptive Mesh Refinement Scheme for Solidification Problems.Metallurgical and Materials Transactions A, 1996, 27(3): 707-717.
    [76]Kaukler W F, Rosenberger F, Curreri P A. In situ studies of precipitate formationin Al-Pb monotectic solidification by X-ray transmission microscopy. Metallurgical and Materials Transactions A, 1997, 28(8): 1705-1710.
    [77]ZU Fang-qiu, DING Guo-hua, LI Xian-fen. Change in solidification behavior of Bi-Sb10 alloy after liquid structural transition. Journal of Crystal Growth, 2008, 310(2): 397-403.
    [78]SUN Qi-qiang, LIU Lan-jun, LI Xian-fen, et al. A new understanding of melt overheating treatment of Sn-20wt.%Sb from the viewpoint of the TI-LLST, Materials Science and Technology, 2009, 25(1): 35-38.
    [79]P.G.Debenedetti, F.H.Stillinger. Supercooled liquids and the glass transition Nature. 2001, 410:259-267.
    [80]葛培文,西永颂,李超荣,等.GaSb单晶空间生长.中国科学,2001,31(1):56.
    [81]黎建明,屠海令,郑安生,等.掺锌(100)GaSb单晶的生长.稀有金属,2001, 25(5):321~324.
    [82]毕叔和.几种Ⅲ~Ⅴ族化合物半导体材料的研究热点.热固性树脂,1999(4):114~114.
    [83]李冰寒.GaAs、GaSb基材料生长及其器件研究[博士学位论文].北京:中科院,2004.
    [84] Tu hai-ling, Deng zhi-jie, Zheng an-sheng etc. Characterization of MLEC GaSb crystal. Rare Metals. 1998,17(1):1~3.
    [85] I. Nicoara, D. Nicoara, A.G. Ostrogorsky etc. Growth and characterization of shaped GaSb crystals.2000,20:1~5.
    [86] Koichi Kakimoto. Heat and mass transfer in semiconductor melts during single-crystal growth processes. Appl.Phys,1995.77(5):1827~1842.
    [87] Michael A.Gevelber. Dynamics and Control of the Czochralski Process. I. Modelling and dynamic characterization. Journal of Crystal Growth, 1987, 4:647~668.
    [88]李培杰.铝硅和金熔体的物性及结构遗传[博士学位论文].哈尔滨:哈尔滨工业大学,1994.
    [89]陆坤权.用EXAFS方法研究液态GaSb和InSb结构.物理.1998,27(6):321-322.
    [90]陈坚邦,砷化镓材料发展和市场前景.稀有金属,2000,24(3):208-216.
    [91]杨树人.半导体材料,(第二版),北京:科学出版社,2004.
    [92]陆秀梅,高温熔体性质测量仪及若干熔体性质的研究[博士学位论文].中科院物理研究所,1999.
    [93]王桂珍.Ga-Sb合金熔体的密度、黏度特性研究[硕士学位论文].济南:济南大学,2008.
    [94]吉蕾蕾.Ga-Sb熔体的黏度特性和液态结构[硕士学位论文].济南:济南大学,2007.
    [95] Hirokatsu Aoki, Koichi Hotoduka, Toshio Itami ,The hidden structure in liquid IIIB–VB alloys.Journal of Non-Crystalline Solids, 2002,(312–314):222–226.
    [96] M. Dzugutov, B.Sadgh, S.R. Elliott. Medium-range order in a simple monatomic liquid. Non-Cryst. Solids, 1998, (232-234): 20-24.
    [97] I. Kaban, Th. Halm and W. Hoyer. Structure of molten copper–germanium alloys. Non-Cryst. Solids, 2001, 288(1-3): 96-102.
    [98] G. Sivkov, D. Yagodin, S. Kofanov et al. Physical properties of the liquid Pd–18 at.% Si alloy. J. Non-Cryst. Solids, 2007, 353(32-40):3274-3278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700