特超稠油的胶体化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中轻质原油可利用量的逐渐减少,稠油在我国石油行业中所占的比例越来越大。黏度大于100000mPa·s的特超稠油是稠油中黏度更高、密度更大、沥青质胶质含量更高的部分,是稠油中最典型的代表。但由于其黏度过高,国内外仅有的少量报道集中于其开采驱替,对其从化学本质的角度进行的研究鲜有报道,对这类稠油胶体体系的胶体化学性质进行研究,进而指导解决其开采加工过程中遇到的难题显得日益重要。
     论文以稠油的胶体结构理论为基础,选用8种稠油(特超稠油)为研究对象,关联其宏观物性和微观性质,实现了对稠油的微观性质、胶体性质、宏观物性系统地综合研究,在此基础上研究添加剂等处理前后体系物理化学性质的变化,掌握其变化规律及作用机理。
     对特超稠油微观性质的研究包括组分组成、性质和平均结构的研究。利用分子量、介电常数和折光率数据计算平均偶极矩,得到四组分的极性变化规律,并研究了各组分分子的元素组成和结构。结果表明,沥青质的高极性是由其高芳烃含量、高杂原子和金属含量引起的,这是研究稠油其它性质的基础。
     黏度是反映稠油流变性能的基本参数,胶体稳定性是研究胶体分散体系的基础。用Brookfield布氏数字流变仪和质量分率电导率法分别考察了特超稠油的黏温性质和胶体稳定性,并从组分组成和组分性质的角度分析了其影响因素。研究表明,组分组成及含量对稠油的黏度具有决定作用,高分子量的胶质沥青质组分的含量之和越大,体系黏度越大;组分间的相互作用是形成稳定胶体体系的重要原因,胶质沥青质的含量之比越大、相容匹配性越好,体系胶体稳定性越高。
     添加剂、高温蒸汽及二氧化碳处理是稠油降黏的有效手段,研究了添加剂等处理前后特超稠油黏度、黏温性质和胶体稳定性的变化规律。采用红外光谱、同步荧光光谱及激光粒度分析等表征手段研究了添加剂对沥青质的作用机理。结果显示添加剂处理后的沥青质红外及荧光光谱图和粒度均有不同变化,说明添加剂对沥青质的作用存在且有一定的强度,粒度变化说明添加剂可以改变沥青质的缔合程度。此外,高温蒸汽可能通过使沥青质发生烷基侧链断裂反应降低沥青质含量而CO2通过溶解作用改变胶团结构来实现降黏作用。
Heavy crude oil will cover a larger proportion of petroleum trade in our country with the consuming of light crude oil. The super-heavy crude oil with viscosity above 100000 mPa·s is the most typical one. No mature study methord has been developed home and abord because of its higher viscosity, bigger density and higher content of resin and asphaltene. Most of the study are about its displacement mechanism.Study of its colloid properties for such kind of reservoirs are in urgent need in order to find reasonable producing and fining technology.
     In this paper,based on the colloidal structures theories of heavy crude,the microscopic nature, colloidal properties and the macroscopic properties of the eight Super-heavy oil samples were studied systematicly and comprehensively, and the relationship among them were explored.On this basis, the effect of additives on the viscosity, or physical and chemical properties of the super-heavy oil were studied.
     The macroscopic properties of heavy oil includ the fraction composition, properties and mean structures of fractions.The mean dipole moment values of fractions were computed from the data of molecular weight, dielectric constant and refractive index. On this basis, the element composition and mean structure were also studied. The results showed that the aromatic ratio, heteroatom and metal contents contribute to the high polarity of the asphaltenes. This is the basis of other properties of heavy oil.
     Viscosity is the basic parameters reflecting the rheological properties, and colloidal stability is the basis of colloidal dispersion. The Brookfield rotary viscometer was used to measure the rheological properties, and Mass Fraction Normalized Conductivity method was used to study the colloidal stability of samples. The fraction composition and properties of fractions were studied to explore the factors impacting the viscosity-temperature properties and colloid stability. It can be concluded that the fraction characteristics and content paly the decisive role in the viscosity and colloidal stability of super-heavy oil. The samples with greater heavy components have greater viscosity value, and the samples with high contents ratio and high properties Intermateability of resins and asphaltenes have the greater value of colloidal stability.
     Additives, high temperature steam and CO2 are effective methods to reduce the viscosity. The viscosity property and colloidal stability variation of samples with or without additive were studied. Fourier transform infra-red spectrometer, the synchronous fluorescence spectumeter and the Zetasizer Nano ZS particle size analyzer were used to analyse the effect of addictives on the asphaltenes. The results showed that the effect of addictives on the asphaltenes is strong and the reduce of the viscosity is achieved by the changing of the asphaltenes’particle size. In addition, the viscosity-reducing effect of high temperature steam and CO2 is achieved by breaking asphaltenes’alkyl-side-chain and by changing micellar structure.
引文
[1]李勇志,邓先梁,余惟乐.同步荧光光谱法检测按芳环数分离重质油中的芳烃[J].燃料化学学报,1998,26(3):280-283.
    [2] Corbett LW.Composition of asphalt based on generic fractionation[J].Anal.Chem,1969, 41(4):576-579.
    [3]杨翠定,顾侃英,吴文辉.石油化工分析方法[M].北京:科学出版社,1990:25-60.
    [4]邓文安,刘晨光,沐宝泉.石油化学实验讲义[M].石油大学出版社,1999:4-6.
    [5]梁文杰,阙国和,陈月珠.我国原油减压渣油的化学组成与结构I.减压渣油的化学组成[J].石油学报,1991,7(3):1-7.
    [6] Boduszynski M M.Composition and Analysis of Heavy Petroleum Fractions[J].Energy & Fuels,1987,1(1):2-11.
    [7]阙国和,陈月珠,梁文杰.胜利减压渣油溶剂抽提各组分性质的考察[J].华东石油学院学报,1984,8(4),383.
    [8] Speight J G.The chemistry and Technology of Petroleum[M].Marcel Dekker.New York.1980.
    [9]张艳芳,刘晨光,梁文杰.道路沥青的组成和使用性能(三)[M].1988.
    [10]王仁安,胡云翔,许志明,等.超临界流体萃取分流法分离石油重质油[J].石油学报(石油加工),1997,13(1):53-59.
    [11]高金森,徐春明,Luba S K.Athabasca油砂沥青中重组分的分子模拟[J].化工学报,2003,54(1):9-l7.
    [12]王艳秋,王枫,宗志敏,等.重油特征分子群的研究进展[J] .精细石油化工,2007,24(2):74-78.
    [13] Boduszynski M M.Composition of Heavy Petroleums 2.molecular characterization[J]. Energy & Fuels,1998,(5):597-613.
    [14] Green J B, Reyonolds J W, Yu S K-T.Liquid chromatographic separations as a basis for improving asphalt composition-physical property correlations[J].Fuel,1989,7(9):1327 -1363.
    [15] Sanford E C.Processabi1ity of Athabasca oil sand:inter-relationship between oil sand fine solids, process aids, mechanical energy and oil sand age after mining[J].C.J.ChE., 1983,61:554-467.
    [16]梁文杰.重质油化学[M].石油大学出版社,2003:169-180.
    [17] Sanford E C, Seyer F A.Processabi1ity of Athabasca tar sands using a batch extraction un:the role of NaOH[J].CIM Bull,1979,72:91-164.
    [18] Beown J K, Ladner W R.A study of the hydrogen distribution in coal-like materials by high-resolution nucleat magnetic resonance spectroscopy.A comparison with infra-red measurement and the conversion to carbon structure[J].Fuel,1960,39:87-96.
    [19] Williams R B.Characterization of hydrocarbons in petroleum by nuclear magnetic resonance.Symposition of petroleum Oils.ASTM,Spec.Tech.Publ.,224,1958.
    [20]梁文杰,阕国和,陈月珠.用1H-核磁共振波谱法对几种国产减压渣油化学结构的初步研究[J].石油炼制,1982,(1):24.
    [21]龚剑洪,陆善祥,崔建等.国产重油组成的表征[J].石油炼制与化工,2000,31(10):48-52.
    [22]柳风秋,王京,田松柏.核磁共振分析技术在重油表征中的应用[J].分析测试学报,2007,26(6):933-939.
    [23] YANG Y,LIU B,XI H T,eta1[J].Fuel,2003,82(6):721-727.
    [24]林德莲,苗德玉.用核磁共振谱测定单家寺稠油的平均结构参数[J].分析化学,2001, 29(6):736.
    [25]董喜贵,雷群芳,俞庆森.石油沥青质的NMR测定及其模型分子推测[J].燃料化学学报2004,32(6):671-672.
    [26]刘晨光,阕国和,陈月珠,等.减压渣油芳碳率的两个经验计算方法[J].石油炼制,1987(12):53.
    [27]张寿增,岳淑范,沈家珍,等.大庆、胜利及任丘渣油的组成研究[J].石油炼制,1982(1):24.
    [28]王子军.钌离子选择性氧化法研究石油重质组分的化学结构.石油大学博士论文[D].1996.
    [29]王子军,梁文杰,阕国和等.钌离子催化氧化法研究胜利减压渣油组分的化学结构[J].石油学报,1997,13(4):1-9.
    [30]范维玉,杨秋水.高锰酸钾氧化法对孤岛原油沥青质结构的研究[J].燃料化学学报,1988,16(3):237-243.
    [31] Green J B.Yu S K-T, Pearson C D,etal.Analysis of sulfur compound types in asphalt [J].Energy & Fuels,1993,7(1):119.
    [32] Zhao SQ,Xu ZM,Xu CM,etal.Systematic characterize- ation of petroleum residua based on SFEF[J].Fuel,2005,84:635-645.
    [33] Mullins O C.Sulfur and nitrogen molecular structures in asphaltenes and related materials quantified by XANES spectroscopy.In:Asphaltenes:Fundamentals and Applications.Plenum Press NY[J].1995:53-96.
    [34]王继池.石墨炉原子吸收直接测定原油中痕量镍钒[M].理化检验-化学分册,2000,35(1):34-36.
    [35]朱玉霞,汪卿.我国原油中的钙含量及其分布的初步研究[J] .石油学报,1998,14(3):57-61.
    [36] Nellensteyn F J.The colloidal nature of bitumens[J].In: The Science of Petroleum, vol. 4,edited by A E Dunston. Oxford University Press,London, 1938
    [37] Nellensteyn F J.The constitution of asphalt[J].Inst.Petro.Technologists.1924,10(43): 311-325.
    [38] Mack C.Colloidal chemistry of asphalts[J].Phys.Chem.,1932,36(3):2901-2914.
    [39] Pfeiffer J P,Van Doormaal P M.The rheological properties of asphalties bitumens[J]. Inst.Pet.Tech.,1936,22:414-440.
    [40] Yen T F.The colloidal aspects of a macrostructure of petroleum asphalt[J].Fuel, 1992, 10(4):723-733.
    [41] Li S,liu C,Que G,etal.Colloidal structures of three Chinese petroleum vacuum residues[J].Fuel,1996,75(8):1025-1029.
    [42]李生华,刘晨光,阙国和,等.减压渣油的胶体结构及其形成[J].石油大学学报(自然科学报),1997,21(6):71-75.
    [43]梵西惊.石油胶体分散体系的稳定性[J].油田化学,1999,16(1):72-76.
    [44] Yen T F, G V Chilingarian.Multiple structural orders of asphaltenes.In:Asphaltenes and Asphalts I[M].Elsevier Science.1994.
    [45] Yen T F,Erdman J G,Pollack S S.Investigation of the structure of petroleum asphaltenes by X-ray diffraction[J].Anal.Chem,1961(33):587-1594.
    [46] Lin J-R,Lian H,Chen J,Yen T F.Morphological size of asphaltene micelles in asphalt and heavy residue . In:Partical Technology and Surface Phenomena in Minerals and Petroleum.Petroleum Press[M].1991.
    [47] Norman F Carnahan.Properties of resins extracted from Boscan crude oil and their effect on the stablity of asphsltenes in boscan and Hamaca crude oils[J].Energy & Fuels,1999, 13(2):309-314.
    [48]李美霞,刘晨光,梁文杰.用黏度法研究石油中沥青质沉积的起始点[J].石油大学学报(自然科学版).1997,21(5):75-78.
    [49]张会成,颜涌捷,齐邦峰,等.渣油加氢处理对渣油胶体稳定性的影响[J].石油与天燃气化工,2007,36(3):197-200.
    [50]李生华,刘晨光,阙国和等.渣油单油热反应体系中第二液相的形成特性[J].石油化工高等学校学报,1998,11(3):1-4.
    [51]李生华,刘晨光等.渣油热反应体系中第二液相形成与热处理温度的关系[J].石油学报(石油加工),1998,14(1):11-16.
    [52]李美霞,梁文杰.用电导率法研究石油中沥青质沉积问题[J].石油学报,1998,14(4): 74-79.
    [53]张龙力,杨国华,孙在春等.质量分率电导率法研究中东常压渣油中的沥青质聚沉[J].石油学报(石油加工),2002,18(6):56-60.
    [54]张龙力,张世杰,杨国华等.常压渣油热反应过程中胶体的稳定性[J].石油学报(石油加工),2003,19(2):82-87.
    [55]张龙力,杨国华,孙在春等.质量分率电导法研究几种不同渣油的胶体稳定性[J].燃料化学学报,2003,31(2):115-118.
    [56]张龙力,杨国华,阙国和.中东常压渣油热反应样品Zeta电位的研究[J].燃料化学学报,2005,33(33):125-128.
    [57] Hussam H,I brahim, Raphael O.Idem . Interralationships between Asphaltene Precipitation Inhibitor Effectiveness, Asphaltenes Characteristics,and Precipitation Behabior during n-Heptane (Light Paraffin Hydrocarbon)-Induced Asphaltene Precipitation[J].Energy&Fuels,2004,18:1038-1048.
    [58]张韶辉.原油中沥青质的稳定性[J].国外油田工程,2002,18(6):16-19.
    [59]张欣哉.流变学及黏度检测技术新发展[J].石油仪器,1997,11(1):7-11.
    [60]冯兵,董凤娟,张华,等.剪切和降凝剂作用对含蜡原油流变性的影响[J].西安石油大学学报(自然科学版),2007,22(1):64-67.
    [61]李向良,李相远,杨军,等.单6东超稠油黏温及流变特征研究[J].油气采收率技术,2000,9:12-14.
    [62]李玉华,郑玉泉,吕莉莉,等.稠油流变性研究[J].油气地面工程,2007,26(11):12-13.
    [63]刘国祥,胡平,巩春伟,等.几种国产渣油黏度的研究[J].石油大学学报,1996,20(2): 80-84.
    [64]苏铁军,郑延成.稠油族组成与黏度关联研究[J].长江大学学报(自科版)理工卷, 2007,4(1):60-62.
    [65]范晓娟,王霞,陈玉祥,等.稠油化学降黏方法研究进展[J].化工时刊,2007,21(3):46-49.
    [66]赵晓非,刘永建,范洪富,等.稠油水热裂解可行性的研究[J].燃料化学学报,2002,30(4):381-383.
    [67]葛际江,李德胜,张贵才.新型耐温稠油降黏剂的制备与评价[J].西南石油大学学报,2007,29(5):113-115.
    [68]胡忠前,马喜平,李永强.原油降凝降黏剂的合成与性能评价[J].石油与天然气化工,36(1):37-41.
    [69]吴本芳,张敏.复配型特稠原油降黏剂研究[J].洛阳师范学院学报,2003(2):45-49.
    [70]权忠舆.有关原油流变性与石油化学的讨论[J].油气储运,1996,15(10):1-6.
    [71]常运兴,张新军.稠油油溶性降黏剂降黏机理研究[J] .油气田地面工程,2006,25(4):8-9.
    [72]周灿,吴承君,任双双,等.稠油降黏方法的概述[J].内蒙古石油化工,2007(4):128-129.
    [73]孙慧,张付生.稠油化学降黏研究进展[J].精细与专用化学品,2005(12),13(23):16-20.
    [74]张付生,王彪.几种原油降凝降黏剂作用机理的红外光谱和X射线衍射研究[J].油田化学,1995,12(4):25-29.
    [75]王大喜,陈秋芬,赵玉玲,等.油溶性降黏剂作用机理的密度泛函计算[J].石油学报(石油加工),2005,21(6):36-41.
    [76] DORON P.A three-layer model for solid-liquid flow in horizontal pipes[J].Int’J Multiphase Flow,1993,19(6):1029-1043.
    [77]李振泉.油藏条件下溶解CO2的稀油相特性实验研究[J].石油大学学报(自然科学版),2004,28(3):44-48.
    [78]周正平.稠油井CO2吞吐采油技术[J].海洋石油,2003(9):72-76.
    [79] Kellomaki A.Molar polarization and dipole moments of bitumens[J].Fuel,1991,70: 1103-1104.
    [80]刘晨光,阙国和,陈月珠,等.用液相色谱法及H1-NMR波谱评价减压渣油[J].石油学报(石油加工),1987,3(1):90-98.
    [81]戴维.P.休梅尔等著,俞鼎琼等译.物理化学实验[M].北京:化学工业出版社,1990:379-390.
    [82] Guggenheim E. A. .A proposed simplication in the procedure for computing electric dipole moments[J].Trans.Faraday Soc,1949,45:14-720.
    [83] Smith J W.Some developments of Guggenheim’simplied procedure for computing electric dipole moments[J].Trans.Faraday Soc,1949,45:394-399.
    [84] Thompson H. B..The determination of dipole moments in solution[J].Chemical Education,66-73.
    [85]朱战军,林壬子,汪双清.稠油主要族组分对其黏度的影响[J].新疆石油地质,2004,25(5):16-18.
    [86]张龙力,杨国华,孙在春,等.超声波对沥青质分散作用的研究进展.应用声学,2002, 21(2):30-34.
    [87]敬加强,罗平亚,朱毅飞.原油组成对其黏度影响的灰色关联分析[J].油气田地面工程,2000,19(6):12-14.
    [88]丁福臣,魏洁,王宇航,等.石油沥青质胶体分散特性的研究[J].石油化工高等学校学报,2001,4(3):7-9.
    [89]何天白,胡汉杰.海外高分子科学的新进展[M].北京:化学工业出版社,1997:101-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700