高温再生光纤光栅的制作与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤布拉格光栅(Fiber Bragg Grating, FBG)是沿光纤轴向在纤芯内形成周期性折射率调制分布的光纤无源器件,具有抗电磁干扰、插入损耗低、质量轻、体积小、易于组成阵列、波长编码和灵敏度高等诸多优点,因此作为重要的元器件广泛应用于光纤通信和光纤传感领域。但普通FBG耐高温性能差,长时间工作在高温环境下会逐渐衰退直至被完全擦除,这极大地限制了FBG在航空、冶金和石化等高温环境中的应用,亟需研制出性能稳定的耐高温光纤光栅。通过高温退火形成的再生光纤光栅能够工作在大于1100℃的高温中且性质稳定,很适合应用于高温环境。
     本文针对高温再生光纤光栅进行了深入的理论和实验研究,论文的主要工作归纳如下:
     使用四种不同型号的光纤制作出再生光纤光栅并加以比较,使用不同的高温退火方案制作再生光栅并比较,研究影响光栅再生的各种因素。
     通过批量制作光纤光栅进行分组实验研究了光栅再生的可控性和可重复性,分析并通过实验证实了影响光栅再生重复性的因素,为该技术的批量生产提供依据。
     测量并对比了普通光栅、再生光栅和后退火处理过的再生光栅的性质,包括耐高温性能、温度特性、应变特性和应变断裂点。讨论了再生光栅在其他传感领域的应用可能。
     研究了施加应力情况下的光栅再生,通过使用两种不同的光纤、改变应力大小和后退火温度进行多组对比实验,研究了施加应力对光栅再生的影响。首次发现了在后退火过程中的波长漂移现象,通过理论分析和实验验证确定该现象的产生原因。
Fiber Bragg Grating (FBG) is one kind of optical fiber passive device in which there is a refractive periodic distribution in formed along the core. FBG have lots of advantages such as Electromagnetic immunity, low insertion loss, light weight, small dimension, wavelength encoding and high sensitivity, making it an important element in the field of Optical fiber communication and optical fiber sensing. But the performance of normal FBG in high temperature is poor, because the grating structure would be erased when working a long time in high temperature, which limit the application of FBG in the field of high temperature environment such as aerospace, metallurgy, and petrochemical industry. So it is urgently to develop a high temperature resistant grating. The performance of regenerated grating formed by high temperature annealing is stable in the environment of over1100℃, making it ideal choice for high temperature sensing.
     In this thesis, grating regeneration was studied both theoretically and experimentally. The main work is as followed:
     Four different types of fiber were used to fabricate the regenerated grating and compared. Regenerated grating formed with different annealing recipe were compared to find the various factors in grating regeneration.
     By mass fabrication, Grouping experiment was conducted to research the controllability and repeatability in grating regeneration. We analyzed and verified the factors of grating repeatability to provide a basis for the technology of mass production.
     The properties of seed grating, regenerated grating and regenerated grating with post-annealing were measured and compared, including temperature resistance, temperature characteristic, strain characteristics and breaking point.
     Grating regeneration under strain was studied. Opposite experiments with gratings based on two types of fiber has been done to find the influence of strain and post-annealing temperature in grating regeneration. The wavelength shift in post-annealing was firstly observed and explained with theoretical analysis and experimental verification.
引文
[1]HILL K, FUJⅡ Y, JOHNSON D, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication [J]. Applied Physics Letters,1978,32(647.
    [2]LAM D, GARSIDE B K. Characterization of single-mode optical fiber filters [J]. Applied Optics,1981,20(3):440-5.
    [3]MELTZ G, MOREY W W, GLENN W. Formation of Bragg gratings in optical fibers by a transverse holographic method [J]. Optics letters,1989,14(15):823-5.
    [4]HILL K, MALO B, BILODEAU F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask [J]. Applied Physics Letters,1993, 62(10):1035-7.
    [5]LEMAIRE P J, ATKINS R, MIZRAHI V, et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres [J]. Electronics Letters,1993,29(13):1191-3.
    [6]KASHYAP R, MCKEE P, ARMES D. UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks [J]. Electronics Letters,1994,30(23): 1977-8.
    [7]IBSEN M, EGGLETON B, SCEATS M, et al. Broadly tunable DBR fibre laser using sampled fibre Bragg gratings [J]. Electronics Letters,1995,31(1):37-8.
    [8]MOREY W W, BALL G A, SINGH H. Applications of fiber grating sensors; proceedings of the SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, F,1996 [C]. International Society for Optics and Photonics.
    [9]KERSEY A D, DAVIS M A, BERKOFF T A, et al. Progress toward the development of practical fiber Bragg grating instrumentation systems; proceedings of the SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, F,1996 [C]. International Society for Optics and Photonics.
    [10]FERDINAND P, MAGNE S, DEWYNTER-MARTY V, et al. Applications of Bragg grating sensors in Europe; proceedings of the Optical Fiber Sensors, F,1997 [C]. Optical Society of America.
    [11]OTHONOS A, KALLI K. Fiber Bragg gratings:fundamentals and applications in telecommunications and sensing [M], Artech House Boston,1999.
    [12]黄权,秦子雄,曾庆科,et al.光纤光栅制作技术的最新进展[J].光通信技术,2006,30(6):19-21.
    [13]贾宏志,李育林,忽满利.光纤光栅的制作方法[J].激光技术,2001,1
    [14]王义平.新型长周期光纤光栅特性研究[D];重庆大学,2003.
    [15]ERDOGAN T. Fiber grating spectra [J]. Lightwave Technology, Journal of,1997,15(8): 1277-94.
    [16]HILL K O, MELTZ G. Fiber Bragg grating technology fundamentals and overview [J]. Lightwave Technology, Journal of,1997,15(8):1263-76.
    [17]OTHONOS A. Fiber bragg gratings [J]. Review of scientific instruments,1997,68(12): 4309-41.
    [18]GILES C. Lightwave applications of fiber Bragg gratings [J]. Lightwave Technology, Journal of,1997,15(8):1391-404.
    [19]MIZRAHI V, SIPE J E. Optical properties of photosensitive fiber phase gratings [J]. Lightwave Technology, Journal of,1993,11(10):1513-7.
    [20]OGUNSOLA O I, WILLIAMS P C. Particle size effects on compositional analyses of Nigerian tarsands [J]. Journal of African Earth Sciences (and the Middle East),1988,7(4):653-5.
    [21]HILL K, BILODEAU F, MALO B, et al. Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion [J]. Optics letters,1994,19(17):1314-6.
    [22]CHOTARD H, PAINCHAUD Y, MAILLOUX A, et al. Group delay ripple of cascaded Bragg grating gain flattening filters [J]. Photonics Technology Letters, IEEE,2002,14(8):1130-2.
    [23]LOH W, LAMING R.1.55μm phase-shifted distributed feedback fibre laser [J]. Electronics Letters,1995,31(17):1440-2.
    [24]HAUS H, SHANK C. Antisymmetric taper of distributed feedback lasers [J]. Quantum Electronics, IEEE Journal of,1976,12(9):532-9.
    [25]WANG X, MATSUSHIMA K, KITAYAMA K-I, et al. High-performance optical code generation and recognition by use of a 511-chip,640-Gchip/s phase-shifted superstructured fiber Bragg grating [J]. Optics Letters,2005,30(4):355-7.
    [26]NASU Y, YAMASHITA S. Multiple phase-shift superstructure fibre Bragg grating for DWDM systems [J]. Electronics Letters,2001,37(24):1471-2.
    [27]ZHAO C-L, YANG X, DEMOKAN M, et al. Simultaneous temperature and refractive index measurements using a 3 slanted multimode fiber Bragg grating [J]. Journal of lightwave technology,2006,24(2):879.
    [28]KASHYAP R, WYATT R, CAMPBELL R. Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating [J]. Electronics Letters,1993,29(2):154-6.
    [29]LEE K S, ERDOGAN T. Transmissive tilted gratings for LP01 to LP11 mode coupling [J]. Photonics Technology Letters, IEEE,1999,11(10):1286-8.
    [30]CAI J-X, FENG K-M, WILLNER A, et al. Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating [J]. Photonics Technology Letters, IEEE,1999,11(11):1455-7.
    [31]邵理阳.光纤光栅器件及传感应用研究[D];杭州:浙江大学信息科学与工程学院博士学位论文,2008.
    [32]LIU H, PENG G, CHU P, et al. Photosensitivity in low-loss perfluoropolymer (CYTOP) fibre material [J]. Electronics Letters,2001,37(6):347-8.
    [33]XIONG Z, PENG G, WU B, et al. Highly tunable Bragg gratings in single-mode polymer optical fibers [J]. Photonics Technology Letters, IEEE,1999,11(3):352-4.
    [34]ARCHAMBAULT J-L, REEKIE L, RUSSELL P S J.100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses [J]. Electronics Letters,1993,29(5):453-5.
    [35]DOUAY M, XIE W, TAUNAY T, et al. Densification involved in the UV-based photosensitivity of silica glasses and optical fibers [J]. Lightwave Technology, Journal of,1997, 15(8):1329-42.
    [36]WILLIAMS J, BENNION I, SUGDEN K, et al. Fibre dispersion compensation using a chirped in-fibre Bragg grating [J]. Electronics Letters,1994,30(12):985-7.
    [37]PETER D, ONISHCHUKOV G, HODEL W, et al.570 fs pulses from a Pr3+-doped fibre laser modelocked by pump pulse induced cross-phase modulation [J]. Electronics Letters,1994, 30(19):1595-6.
    [38]MIZRAHI V, ERDOGAN T, DIGIOVANNI D, et al. Four channel fibre grating demultiplexer [J]. Electronics Letters,1994,30(10):780-.
    [39]KRINGLEBOTN J, ARCHAMBAULT J-L, REEKIE L, et al. Highly-efficient, low-noise grating-feedback Er3+:Yb3+ codoped fibre laser [J]. Electronics Letters,1994,30(12):972-3.
    [40]AGRAWAL G P, RADIC S. Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing [J]. Photonics Technology Letters, IEEE,1994,6(8):995-7.
    [41]DONG X, LI S, CHIANG K, et al. Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror [J]. Electronics Letters,2000,36(19):1609-10.
    [42]栾桂冬,张金铎,物理学,et al.传感器及其应用[M].西安电子科技大学出版社,2002.
    [43]何道清.传感器与传感器技术[M].科学出版社,2004.
    [44]靳伟,阮双琛.光纤传感技术新进展[M].科学出版社,2005.
    [45]廖延彪,金慧明.光纤光学[M].清华大学出版社有限公司,1992.
    [46]杜善义,冷劲松,王殿富,et al.智能材料系统和结构[M].科学出版社,2001.
    [47]MEASURES R M. Structural monitoring with fiber optic technology [M]. Academic, 2001.
    [48]张劲松,光通信,陶智勇,et al.光波分复用技术[M].北京邮电大学出版社,2002.
    [49]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子·激光,2002,13(4):
    [50]刘海涛.光纤光栅制作工艺及其在光纤传感中的应用研究[D];上海交通大学,2007.
    [51]MOREY W W, MELTZ G, GLENN W H. Fiber optic Bragg grating sensors; proceedings of the OE/FIBERS'89, F,1990 [C]. International Society for Optics and Photonics.
    [52]WILLSCH R. Application of optical fiber sensors:technical and market trends; proceedings of the Symposium on Applied Photonics, F,2000 [C]. International Society for Optics and Photonics.
    [53]RAO Y-J. In-fibre Bragg grating sensors [J]. Measurement science and technology,1997, 8(4):355.
    [54]KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors [J]. Lightwave Technology, Journal of,1997,15(8):1442-63.
    [55]赵雪峰,田石柱,周智,et al.钢片封装光纤光栅监测混凝土应变试验研究[J].光电子·激光,2003,2(
    [56]于秀娟,余有龙,张敏,et al.钛合金片封装光纤光栅传感器的应变和温度传感特性研究[J].光电子·激光,2006,17(5):
    [57]FOOTE P D, READ I J. Applications of optical fiber sensors in aerospace:the achievements and challenges; proceedings of the Symposium on Applied Photonics, F,2000 [C]. International Society for Optics and Photonics.
    [58]HJELME D, BJERKAN L, NEEGARD S, et al. Application of Bragg grating sensors in the characterization of scaled marine vehicle models [J]. Applied optics,1997,36(1):328-36.
    [59]HILL D J, NASH P J, JACKSON D A, et al. Fiber laser hydrophone array; proceedings of the Photonics East'99, F,1999 [C]. International Society for Optics and Photonics.
    [60]HAMMON T, STOKES A. Optical fibre Bragg grating temperature sensor measurements in an electrical power transformer using a temperature compensated optical fibre Bragg grating as a reference; proceedings of the Optical Fiber Sensors, F,1996 [C]. Optical Society of America.
    [61]NIEWCZAS P, DZIUDA L, FUSIEK G, et al. Design and evaluation of a pre-prototype hybrid fiber-optic voltage sensor for a remotely interrogated condition monitoring system; proceedings of the Instrumentation and Measurement Technology Conference,2004 IMTC 04 Proceedings of the 21st IEEE, F,2004 [C]. IEEE.
    [62]HENDERSON P, FISHER N, JACKSON D. Current metering using fibre-grating based interrogation of a conventional current transformer; proceedings of the Optical Fiber Sensors, F, 1997 [C]. Optical Society of America.
    [63]SHLYAGIN M G, MIRIDONOV S V, SPIRIN V V, et al. Fiber Bragg grating sensor for liquid hydrocarbon detection; proceedings of the Symposium on Applied Photonics, F,2000 [C]. International Society for Optics and Photonics.
    [64]KERSEY A D. Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry [J]. IEICE transactions on electronics,2000,83(3):400-4.
    [65]ZHANG Z, SIRKIS J S. Temperature-compensated long period grating chemical sensor; proceedings of the Proc 12th Int Conf Optical Fibre Sensors, F,1997 [C].
    [66]周智,欧进萍.土木工程智能健康监测与诊断系统[J].传感器技术,2001,20(11):1-4.
    [67]LI H-N, LI D-S, SONG G-B. Recent applications of fiber optic sensors to health monitoring in civil engineering [J]. Engineering structures,2004,26(11):1647-57.
    [68]CAI H, XIA Z, GENG J, et al. Fiber grating sensors system for civil structural stain monitoring; proceedings of the Proc of SPIE Vol, F,2004 [C].
    [69]CAPONERO M A, COLONNA D, GRUPPI M, et al. Use of FBG sensors for bridge structural monitoring and traffic control; proceedings of the Second European Workshop on Optical Fibre Sensors, F,2004 [C]. International Society for Optics and Photonics.
    [70]CHAN T H, YU L, TAM H-Y, et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge:Background and experimental observation [J]. Engineering structures,2006,28(5):648-59.
    [71]MITA A, YOKOI I. Fiber Bragg grating accelerometer for buildings and civil infrastructures; proceedings of the SPIE's 8th Annual International Symposium on Smart Structures and Materials, F,2001 [C]. International Society for Optics and Photonics.
    [72]www.tkyb.com/cpyy.htm [M].
    [73]FERDINAND P, MAGNE S, MARTY V, et al. Optical fibre Bragg grating sensors for structure monitoring within th nuclear power plants; proceedings of the Optical Fibre Sensing and Systems in Nuclear Environments, F,1994 [C]. International Society for Optics and Photonics.
    [74]GUO T, ZHAO Q, DOU Q, et al. Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam [J]. Photonics Technology Letters, IEEE,2005,17(11): 2400-2.
    [75]ZHANG Y, LI S, YIN Z, et al. Fiber-Bragg-grating-based seismic geophone for oil/gas prospecting [J]. Optical Engineering,2006,45(8):084404--4.
    [76]LAUDATI A, MENNELLA F, ESPOSITO M, et al. A fiber optic Bragg grating seismic sensor; proceedings of the Third European Workshop on Optical Fibre Sensors, F,2007 [C]. International Society for Optics and Photonics.
    [77]MOHANTY L, TJIN S C, LIE D T, et al. Fiber grating sensor for pressure mapping during total knee arthroplasty [J]. Sensors and Actuators A:Physical,2007,135(2):323-8.
    [78]WEBB D J, RAO Y-J, HATHAWAY M, et al. Medical temperature profile monitoring using multiplexed fiber Bragg gratings; proceedings of the Photonics East (ISAM, VVDC, IEMB), F, 1999 [C]. International Society for Optics and Photonics.
    [79]WEBB D J, HATHAWAY M, JACKSON D A, et al. First in-vivo trials of a fiber Bragg grating based temperature profiling system [J]. Journal of biomedical optics,2000,5(1):45-50.
    [80]FISHER N E, WEBB D J, PANNELL C N, et al. Medical ultrasound detection using fiber Bragg gratings; proceedings of the Photonics East (ISAM, VVDC, IEMB), F,1999 [C]. International Society for Optics and Photonics.
    [81]BAKER S R, ROURKE H N, BAKER V, et al. Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber [J]. Lightwave Technology, Journal of,1997, 15(8):1470-7.
    [82]ERLANDSEN S, VOLD G, MAKIN G D. World's first multiple fiber-optic intelligent well:Intelligent wells [J]. World oil,2003,224(3):29-32.
    [83]PATRICK H, GILBERT S L. Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber [J]. Optics letters,1993,18(18):1484-6.
    [84]RIANT I, HALLER F. Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension:type Ila aging [J]. Lightwave Technology, Journal of,1997,15(8):1464-9.
    [85]柳阳.一种低成本高温FBG传感器的研究[D];大连理工大学,2009.
    [86]KONDO Y, NOUCHI K, MITSUYU T, et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses [J]. Optics Letters,1999,24(10):646-8.
    [87]KAWAMURA K, OGAWA T, SARUKURA N, et al. Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses [J]. Applied Physics B,2000,71(1):119-21.
    [88]MIHAILOV S J, SMELSER C W, LU P, et al. Fiber Bragg gratings (FBG) made with a phase mask and 800 nm femtosecond radiation; proceedings of the Optical Fiber Communications Conference,2003 OFC 2003, F,2003 [C]. IEEE.
    [89]MIHAILOV S J, SMELSER C W, GROBNIC D, et al. Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask [J]. Journal of Lightwave Technology,2004,22(1):94.
    [90]DRAGOMIR A, NIKOGOSYAN D N, ZAGORULKO K A, et al. Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation [J]. Optics letters,2003,28(22):2171-3.
    [91]MIHAILOV S J, SMELSER C W, LU P, et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation [J]. Optics Letters,2003,28(12):995-7.
    [92]GUAN B-O, ZHANG Y, WANG H-J, et al. High temperature resistant fiber Bragg grating lasers for sensing applications; proceedings of the Proc of SPIE Vol, F,2009 [C].
    [93]BANDYOPADHYAY S, CANNING J, STEVENSON M, et al. Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm [J]. Opt Lett, 2008,33(16):1917-9.
    [94]BECKLEY K, HERMAN P. Fiber photosensitivity using 157-nm radiation from a F2 laser; proceedings of the Lasers and Electro-Optics,1997 CLEO'97, Summaries of Papers Presented at the Conference on, F,1997 [C]. IEEE.
    [95]GOLANT K M, DIANOV E M, KHRAPKO R, et al. Nitrogen-doped silica fibers and fiber-based optoelectronic components; proceedings of the Advances in Fiber Optics, F,2000 [C]. International Society for Optics and Photonics.
    [96]BUTOV O, DIANOV E, GOLANT K. Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures [J]. Measurement Science and Technology,2006,17(5): 975.
    [97]DIANOV E M, GOLANT K M, KHRAPKO R R, et al. Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD [J]. Lightwave Technology, Journal of,1995,13(7):1471-4.
    [98]GUAN B-O, TAM H-Y, LU C, et al. Postfabrication wavelength trimming of fiber Bragg gratings written in H2-loaded fibers [J]. Photonics Technology Letters, IEEE,2001,13(6):591-3.
    [99]FOKINE M. Formation of thermally stable chemical composition gratings in optical fibers [J]. JOSA B,2002,19(8):1759-65.
    [100]FOKINE M. Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers [J]. Optics letters,2002,27(22):1974-6.
    [101]张法.耐高温光纤光栅传感器的研究[D];大连理工大学,2007.
    [102]SHEN Y, SUN T, GRATTAN K T, et al. Highly photosensitive Sb/Er/Ge-codoped silica fiber for writing fiber Bragg gratings with strong high-temperature sustainability [J]. Optics letters,2003,28(21):2025-7.
    [103]SHEN Y, HE J, SUN T, et al. High-temperature sustainability of strong fiber Bragg gratings written into Sb-Ge-codoped photosensitive fiber:decay mechanisms involved during annealing [J]. Optics letters,2004,29(6):554-6.
    [104]SHEN Y, XIA J, SUN T, et al. Photosensitive indium-doped germano-silica fiber for strong FBGs with high temperature sustainability [J]. Photonics Technology Letters, IEEE,2004, 16(5):1319-21.
    [105]GROBNIC D, MIHAILOV S J, SMELSER C W, et al. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications [J]. Photonics Technology Letters, IEEE,2004,16(11):2505-7.
    [106]ZHANG B, KAHRIZI M. High-temperature resistance fiber Bragg grating temperature sensor fabrication [J]. Sensors Journal, IEEE,2007,7(4):586-91.
    [107]BANDYOPADHYAY S, CANNING J, STEVENSON M, et al. Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm [J]. Opt Lett,2008,33(16):1917-9.
    [108]CANNING J, STEVENSON M, BANDYOPADHYAY S, et al. Extreme Silica Optical Fibre Gratings [J]. Sensors (Basel, Switzerland),2008,8(10):6448-52.
    [109]CANNING J, BANDYOPADHYAY S, BISWAS P, et al. Regenerated Fibre Bragg Gratings [M].2010.
    [110]BANDYOPADHYAY S, CANNING J, BISWAS P, et al. A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing [J]. Opt Express,2011, 19(2):1198-206.
    [111]CANNING J, LINDNER E, COOK K, et al. Regeneration of gratings by post-H2 loading; proceedings of the Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM),2011, F Aug.28 2011-Sept.1 2011,2011 [C].
    [112]CANNING J. Regenerated Gratings for Optical Sensing in Harsh Environments, F, 2012 [C]. Optical Society of America.
    [113]ASLUND M L, CANNING J, CANAGASABEY A, et al. Mapping the thermal distribution within a silica preform tube using regenerated fibre Bragg gratings [J]. International Journal of Heat and Mass Transfer,2012,55(11-12):3288-94.
    [114]LAFFONT G, COTILLARD R, FERDINAND P. Multiplexed regenerated Fiber Bragg Gratings for high temperature measurement; proceedings of the Proc of SPIE Vol, F,2012 [C].
    [115]CHEN T, CHEN R, JEWART C, et al. Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing [J]. Opt Lett,2011,36(18):3542-4.
    [116]YARIV A. Coupled-mode theory for guided-wave optics [J]. Quantum Electronics, IEEE Journal of,1973,9(9):919-33.
    [117]YARIV A, YEH P. Photonics:Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) [M]. Oxford University Press, Inc.,2006.
    [118]李玉权,崔敏,光学.光波导理论与技术[M].人民邮电出版社,2002.
    [119]贾宏志,李育林,忽满利.光纤Bragg光栅温度和应变的灵敏度分析及应用探讨[J].激光杂志,1999,20(5):12-4.
    [120]ATKINS R, MIZRAHI V, ERDOGAN T.248 nm induced vacuum UV spectral changes in optical fibre preform cores:support for a colour centre model of photosensitivity [J]. Electronics Letters,1993,29(4):385-7.
    [121]HAND D, RUSSELL P S J. Photoinduced refractive-index changes in germanosilicate fibers [J]. Optics letters,1990,15(2):102-4.
    [122]FIORIC, DEVINE R. Ultraviolet irradiation induced compaction and photoetching in amorphous, thermal SiO2; proceedings of the MRS Proceedings, F,1985 [C]. Cambridge Univ Press.
    [123]THOMCRAFT D, SCEATS M, POOLE S. TH1.4 An Ultra High Resolution Distributed Temperature Sensor; proceedings of the Optical Fiber Sensors, F,1992 [C]. Optical Society of America.
    [124]PAYNE F. Photorefractive gratings in single-mode optical fibres [J]. Electronics Letters,1989,25(8):498-9.
    [125]LAWANDY N. Light induced transport and delocalization in transparent amorphous systems [J]. Optics communications,1989,74(3):180-4.
    [126]BILODEAU F, HILL K, MALO B, et al. High-return-loss narrowband all-fiber bandpass Bragg transmission filter [J]. Photonics Technology Letters, IEEE,1994,6(1):80-2.
    [127]WILLIAMS D, AINSLIE B, ARMITAGE J, et al. Enhanced UV photosensitivity in boron codoped germanosilicate fibres [J]. Electronics Letters,1993,29(1):45-7.
    [128]ALBERT J, MALO B, BILODEAU F, et al. Photosensitivity in Ge-doped silica optical waveguides and fibers with 193-nm light from an ArF excimer laser [J]. Optics letters,1994, 19(6):387-9.
    [129]DYER P, FARLEY R, GIEDL R, et al. High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser [J]. Electronics Letters,1994,30(11):860-2.
    [130]KASHYAP R, ARMITAGE J, WYATT R, et al. All-fibre narrowband reflection gratings at 1500 nm [J]. Electronics Letters,1990,26(11):730-2.
    [131]OTHONOS A, LEE X. Narrow linewidth excimer laser for inscribing Bragg gratings in optical fibers [J]. Review of scientific instruments,1995,66(5):3112-5.
    [132]ANDERSON D, MIZRAHI V, ERDOGAN T, et al. Production of in-fibre gratings using a diffractive optical element [J]. Electronics Letters,1993,29(6):566-8.
    [133]WANG T, SHAO L-Y, CANNING J, et al. Temperature and strain characterization of regenerated gratings [J]. Optics letters,2013,38(3):247-9.
    [134]http://www.newrise-llc.com/fused-silica.html. [M].
    [135]FOKINE M. Thermal stability of oxygen-modulated chemical-composition gratings in standard telecommunication fiber [J]. Optics letters,2004,29(11):1185-7.
    [136]TRPKOVSKI S, KITCHER D J, BAXTER G W, et al. High-temperature-resistant chemical composition Bragg gratings in Er3+ -doped optical fiber [J]. Optics letters,2005,30(6): 607-9.
    [137]BOWEI Z, MOJTABA K. High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication [J]. Sensors Journal, IEEE,2007,7(4):586-91.
    [138]RAINE K W, FECED R, KANELLOPOULOS S E, et al. Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers [J]. Applied Optics,1999,38(7):1086-95.
    [139]LI-YANG SHAO J C, TAO WANG. KEVIN COOK, HWA-YAW TAM. The Viscosity of Silica Optical Fibres Characterised Using Regenerated Gratings [J]. Journal of Chemical Physics,2013,
    [140]LINDNER E, CHOJETZKI C, BR CKNER S, et al. Thermal regeneration of fiber Bragg gratings in photosensitive fibers [J]. Optics express,2009,17(15):12523-31.
    [141]COOK K, SHAO L-Y, CANNING J. Regeneration and helium:regenerating Bragg gratings in helium-loaded germanosilicate optical fibre [J]. Opt Mater Express,2012,2(12): 1733-42.
    [142]SHAO L-Y, WANG T, CANNING J, et al. Bulk regeneration of optical fiber Bragg gratings [J]. Appl Opt,2012,51(30):7165-9.
    [143]MELTZ G, MOREY W W. Bragg grating formation and germanosilicate fiber photosensitivity [J].1991,185-99.
    [144]KIM Y-J, PAEK U-C, LEE B H. Measurement of refractive-index variation with temperature by use of long-period fiber gratings [J]. Opt Lett,2002,27(15):1297-9.
    [145]SHIMA K, HIMENO K, SAKAI T, et al. A novel temperature-insensitive long-period fiber grating using a boron-codoped-germanosilicate-core fiber; proceedings of the Optical Fiber Communication OFC 97, Conference on, F 16-21 Feb 1997,1997 [C].
    [146]YOFFE G W, KRUG P A, OUELLETTE F, et al. Passive temperature-compensating package for optical fiber gratings [J]. Appl Opt,1995,34(30):6859-61.
    [147]AVRAMOV I, VASSILEV T, PENKOV I. The glass transition temperature of silicate and borate glasses [J]. Journal of Non-Crystalline Solids,2005,351(6-7):472-6.
    [148]CAVALEIRO P M, ARAUJO F M, FERREIRA L A, et al. Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers [J]. Photonics Technology Letters, IEEE,1999,11(12): 1635-7.
    [149]WANG T, HE J, QUAN Y, et al. Investigation of strain sensors based on fiber Bragg grating used for steelwork; proceedings of the Photonics Asia 2010, F,2010 [C]. International Society for Optics and Photonics.
    [150]WANG T, HE D, WANG Z, et al. Strain test of metalwork using FBG and FEA; proceedings of the Electronics, Communications and Control (ICECC),2011 International Conference on, F,2011 [C]. IEEE.
    [151]TAO W, DAWEI H, ZIQIAN W, et al. A novel temperature self-compensation FBG vibration sensor; proceedings of the Journal of Physics:Conference Series, F,2011 [C]. IOP Publishing.
    [152]WANG T, SHAO L-Y, CANNING J, et al. The regeneration of fiber Bragg gratings under strain [J]. Applied Optics,2013,52(10):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700