高温光纤光栅的飞秒激光制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苛刻环境广泛存在于工业、国防、航空航天等诸多领域,这包括高温、高压、强辐射、强电磁干扰等,如何在该极端条件下实现精确、瞬时的物理量感知和测量是横亘在科学界和工业界上的难题。
     光纤光栅作为光纤传感领域的一支生力军,因其具有无源、抗电磁干扰、插入损耗低、波长选择性好以及可实现远程遥感和分布式传感等优点,为该问题的解决提供了契机。光纤Bragg光栅(FBG)的传统制备采用UV激光刻写技术,其诱导的折射率变化(仅为10-4~10-3量级)强烈依赖于光纤光敏性,并在温度高于400℃时极易被擦除/漂白,这限制其在冶金、石油开采、火力发电、核能等苛刻环境中的传感应用。因此,迫切需要一种耐高温的“极端”FBG,已有的成栅方法有高温再生技术和超快激光加工技术,前者形成的再生光栅存在反射率低、光谱特性差、损耗大等缺点,这会增加信号探测难度并影响分辨率。超快激光微加工技术已被证明可以在任何透明电介质(石英、硅酸盐玻璃、非线性晶体等)中诱导永久性折射率变化(10-3~10-2量级),与材料的光敏性和化学构成无关,这归因于高能超快脉冲的高非线性效应,该技术为耐高温FBG的制备带来了崭新的生机。
     本文既是以飞秒(fs)激光微加工技术为手段,以制备耐高温FBG为目标,旨在解决苛刻环境传感问题。本文主要研究内容和成果如下:
     (1)探讨了光纤光栅的耦合模理论,分析了均匀FBG和TFBG中模式之间的耦合特性。分析了影响光栅反射率、带宽的因素,包括光栅长度、直流和交流折射率变化、交流耦合系数等,并对FBG的反射谱进行理论仿真。阐述了飞秒激光诱导透明电介质折射率变化的主要机制——高非线性效应。阐述了相位掩模板刻写技术和逐点刻写技术,探讨了光栅刻写涉及的关键问题:如何通过优化的掩模板获得纯正双光束干涉、如何精确地控制聚焦位置等。
     (2)利用飞秒激光的高非线性效应和高阶相位掩模板(pm=3.33m)制备了均匀高阶FBG和非均匀高阶TFBG,其中高阶TFBG属首次报道,它们均具有高达1000℃的高温稳定性。提出利用单一高阶FBG实现苛刻环境中的轴向应变和温度的辨别。对于高阶TFBG,研究了同级Bragg衍射对应同阶包层模(m-LPvu)谐振的传感特性;通过溅射金反射镜制作了反射型TFBG传感器,并提出基于相对峰值功率-波长解调技术实现应变和高温(800℃)辨别。
     (3)基于飞秒激光逐点刻写技术的灵活性制备了高局域化FBG,包括低阶和高阶Bragg光栅结构,由于高局域化折射率调制引起的高方位角光纤模式的耦合,其特征光谱呈现了宽带高阶包层模式谐振特性。证实了一种具有多反射峰特性的新颖的类啁啾高阶FBG。多反射峰以准周期或组(系列)的形式分布于1200~1700nm的超宽频范围,其适宜于苛刻环境的多参数传感。并利用9阶类啁啾FBG实现了多波长光纤激光器。
     (4)利用飞秒激光结合相位掩模扫描技术在单晶蓝宝石光纤(直径250m)中刻写了高阶SFBG。提出石英光纤与蓝宝石光纤直接熔接耦合技术,理论模拟了蓝宝石光纤中多导模激励特性和多模式谐振光谱。证实了SFBG至少可用于高达1600℃苛刻环境中传感应用。
     本文利用飞秒激光制作传统均匀和非均匀FBG的同时,利用逐点刻写技术的灵活性设计和制作了具有特殊结构、新颖光谱特性的高局域化FBG,这拓展了光纤光栅的功能性。Fs-FBG不仅能够用于苛刻环境传感,亦在高功率和多波长光纤激光器领域展现了广阔的应用前景和商业价值。
Harsh surroundings are widely existed in industry, national defense, aviation area, this includes high temperature, pressure, strong radiation and electromagnetic interference, et al. How to realize precise, transient physical quantity sensing and measurement in harsh condition is a problem that blocks the way of science and industry.
     As a fresh troop in fiber sensing area, fiber gratings have the merits of passivity, anti‐electromagnetic interference, low insert loss, good wavelength selectivity and can realize long haul and distributed sensing that provide an opportunity for solving the above problems. The traditional fabrication of fiber Bragg gratings (FBG) is based on UV laser writing technology, the induced refractive index (10‐4‐10‐3) strongly depends on the photosensitivity of the fiber, which is readily erased when the temperature is more than400℃, limiting its sensing applications in hash environment, such as metallurgy, oil exploration, thermal power generation and nuclear energy. Therefore, the need for a high‐temperature resisting “extreme” FBG is urgent. The existed fabrication method includes high temperature re‐generated method and ultrafast laser machining method, the formed re‐generated gratings of the former have the defects of low reflectivity, bad spectrum characteristics and big loss that will increase the signal detecting difficulty and affects the resolution. The ultrafast laser micro‐machining technology have been proven to induce perpetual index changes (10‐3‐10‐2) in any transparent dielectrics (quartz, silicate glass, non‐linear crystal) that has nothing to do with the photosensitivity and chemical composition, which is ascribed to the high non‐linear effects of the high‐powered ultrafast pulse. This technology brings new vitality for the fabrication of high temperature resisting FBG.
     This paper is based on the method of femtosecond laser (fs) micro‐machining and aimed at fabricating high temperature resisting FBG to solve the harsh environment sensing problems. The study contents and achievements of the paper is listed as bellows:
     (1) Discussed the coupled mode theory of fiber gratings, analyzed the coupling characteristics among modes of uniform FBG and TFBG. Analyzed the factors that influence the grating reflectivity and bandwidth, which contain grating length, DC and AC index changes and AC coupling coefficients, then conducted the simulation to the reflection spectrum of FBG. Described the main mechanism of femtosecond laser induced index modulation to transparent dielectric medium, which is the high nonlinear effects. Described the phase mask and point‐by‐point writing technology and discussed the main problems of gratings writing: how to get pure double beam interference with the optimized phase mask and how to control the focal position precisely.
     (2) Fabricated the uniform high order FBG and non‐uniform high order TFBG by means of the high nonlinear effects of fs laser and high order phase mask(pm=3.33
     m), among which the high order TFBG was reported for the first time, they all have the high temperature stability up to1000℃. Realized the discerning of axial strain and temperature in harsh environment with single high order FBG. For high order TFBG, studied the sensing characteristics of the same order cladding mode (m‐LPvu) resonances corresponding to the peer Bragg diffraction; fabricated the reflective TFBG sensor by sputtering the gold reflective mirror, proposed the discerning of strain and high temperature (800℃) based on relative peak power‐wavelength demodulation technology.
     (3) Fabricated the high localized FBG based on the flexibility of fs laser PbP technology, which contains the low order and high order Bragg gratings structure, because the coupling of the high azimuth angle fiber mode caused by high localized index modulation, its characteristic spectrum showed wideband high order cladding mode resonance. Confirmed a kind of novel quasi‐chirped high order FBG that has multi‐reflective peaks. Multi‐reflective peaks distributed in the ultra‐wide frequency range of1200~1700nm in the form of quasi‐period or groups (series), which is suitable for the multi‐parameter sensing in harsh environment. Realized the multi‐wavelength fiber laser by using the9order quasi‐chirped FBG.(4) Inscribed high order SFBG in Single‐crystal sapphire fiber (250m) by means of fs laser combined to phase mask scanning technology. Proposed the direct fusing coupling method between the silica fiber and sapphire fiber, simulated the multi guiding mode stimulating characteristics and multi‐modes resonance spectra. Proved SFBG can be used in the sensing application in harsh environment at least as high as1600℃.
     This paper described the fabrication of the traditional uniform and non‐uniform FBG, at the same time, we devised and fabricated highly localized FBG with special structure and novel spectral characteristics taking advantage of the flexibility of PbP technology, which expanded the functionality of fiber gratings. Fs‐FBG can not only be used to sense in harsh environment, but also shows wide application prospect and commercial value in high power and multi‐wavelength fiber laser area.
引文
[1] Kao K C, Hoekham G A. Dielectric-fibre surface waveguides for opticalfrequencies[J]. Proceedings of the institution of electrical engineers,1966,113(7):1151-1158.
    [2]祝宁华,闫连山,刘建国,.光纤光学前沿[M].北京:科学出版社,2011.
    [3] Kashyap R, Fiber Bragg Gratings (Second Edition)[M]. USA: Academic Press,2009.
    [4] Bennion I, Williams J A R, Zhang L, et al. UV-written in-fibre Bragg gratings[J].Optical and Quantum Electronics,1996,28(2):93-135.
    [5] Rao Y J. In-fibre Bragg grating sensors[J]. Measurement science and technology,1997,8(4):355-375.
    [6] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J].Journal of lightwave technology,1997,15(8):1263-1276.
    [7] Kersey A D, Davis M A, Patrick H J, et al. Fiber grating sensors[J]. Journal oflightwave technology,1997,15(8):1442-1463.
    [8] Helsby S, Corbari C, Ibsen M, et al. Fiber Bragg gratings for atom chips[J].Physical Review A,2007,75(1):13618-1-7.
    [9] Nikogosyan D N. Multi-photon high-excitation-energy approach to fibre gratinginscription[J]. Measurement Science and Technology,2007,18(1): R1-R29.
    [10]Venghaus H (Ed.). Wavelength Filters in Fibre Optics[M]. Berlin: Springer,2006.
    [11]饶云江,王义平,朱涛,光纤光栅原理及应用[M].北京:科学出版社,2006.
    [12]靳伟,阮双琛,等,光学传感技术新进展[M].北京:科学出版社,2005.
    [13]Pulliam W J, Russler P M, Fielder R S. High-temperature high-bandwidth fiberoptic MEMS pressure-sensor technology for turbine engine component testing[C],Environmental and Industrial Sensing. International Society for Optics andPhotonics,2002:229-238.
    [14]Mihailov S J. Fiber Bragg grating sensors for harsh environments[J]. Sensors,2012,12(2):1898-1918.
    [15]Udd E,25years of structural monitoring using fiber optic sensors[C]. SPIEProceedings, Smart sensor phenomena, technology, networks, and systems2011,7982:7982F.
    [16]López-Higuera J M, Rodriguez Cobo L, Quintela Incera A, et al. Fiber opticsensors in structural health monitoring[J]. Journal of Lightwave Technology,2011,29(4):587-608.
    [17]Mihailov S J, Grobnic D, Smelser C W, et al. Induced Bragg gratings in opticalfibers and waveguides using an ultrafast infrared laser and a phase mask[J]. LaserChemistry,2008:416251.
    [18]Canning J. Fibre gratings and devices for sensors and lasers[J]. Laser&Photonics Reviews,2008,2(4):275-289.
    [19]Rao Y J, Ran Z L. Optic fiber sensors fabricated by laser-micromachining[J].Optical Fiber Technology,2013,19(6):808-821.
    [20]Smelser C W, Mihailov S J, Grobnic D, et al. Multiple-beam interference patternsin optical fiber generated with ultrafast pulses and a phase mask[J]. Optics letters,2004,29(13):1458-1460.
    [21]Smelser C W, Grobnic D, Mihailov S J. Generation of pure two-beaminterference grating structures in an optical fiber with a femtosecond infraredsource and a phase mask[J]. Optics letters,2004,29(15):1730-1732.
    [22]Voigtl nder C, Becker R G, Thomas J, et al. Ultrashort pulse inscription oftailored fiber Bragg gratings with a phase mask and a deformed wavefront[J].Optical Materials Express,2011,1(4):633-642.
    [23]Bernier M, Gagnon S, Vallée R. Role of the1D optical filamentation process inthe writing of first order fiber Bragg gratings with femtosecond pulses at800nm[J]. Optical Materials Express,2011,1(5):832-844.
    [24]Mihailov S J, Grobnic D, Smelser C W, et al. Bragg grating inscription in variousoptical fibers with femtosecond infrared lasers and a phase mask[J]. OpticalMaterials Express,2011,1(4):754-765.
    [25]Liao C R, Wang D N. Review of femtosecond laser fabricated fiber Bragggratings for high temperature sensing[J]. Photonic Sensors,2013,3(2):97-101.
    [26]Zhu Y, Wang A. Miniature fiber-optic pressure sensor[J]. IEEE PhotonicsTechnology Letters,2005,17(2):447-449.
    [27]Zhu Y, Cooper K L, Pickrell G R, et al. High-temperature fiber-tip pressuresensor[J]. Journal of lightwave technology,2006,24(2):861-869.
    [28]Wang X, Xu J, Zhu Y, et al. All-fused-silica miniature optical fiber tip pressuresensor[J]. Optics letters,2006,31(7):885-887.
    [29]Wu C, Fu H Y, Qureshi K K, et al. High-pressure and high-temperaturecharacteristics of a Fabry–Perot interferometer based on photonic crystal fiber[J].Optics letters,2011,36(3):412-414.
    [30]Choi H Y, Park K S, Park S J, et al. Miniature fiber-optic high temperature sensorbased on a hybrid structured Fabry–Perot interferometer[J]. Optics letters,2008,33(21):2455-2457.
    [31]Rao Y J, Deng M, Zhu T, et al. In-line Fabry–Perot etalons based on hollow-CorePhotonic bandgap fibers for high-temperature applications[J]. Journal ofLightwave Technology,2009,27(19):4360-4365.
    [32]Chen T, Wang Q, Chen R, et al. Distributed high-temperature pressure sensingusing air-hole microstructural fibers[J]. Optics letters,2012,37(6):1064-1066.
    [33]Kou J, Feng J, Ye L, et al. Miniaturized fiber taper reflective interferometer forhigh temperature measurement[J]. Optics express,2010,18(13):14245-14250.
    [34]Wei T, Han Y, Tsai H L, et al. Miniaturized fiber inline Fabry-Perot interferometerfabricated with a femtosecond laser[J]. Optics letters,2008,33(6):536-538.
    [35]Wang Y, Li Y, Liao C, et al. High-temperature sensing using miniaturized fiberin-line Mach–Zehnder interferometer[J]. IEEE Photonics Technology Letters,2010,22(1):39-41.
    [36]Liu Y, Qu S, Li Y. Single microchannel high-temperature fiber sensor byfemtosecond laser-induced water breakdown[J]. Optics letters,2013,38(3):335-337.
    [37]Zhang Y, Yuan L, Lan X, et al. High-temperature fiber-optic Fabry–Perotinterferometric pressure sensor fabricated by femtosecond laser[J]. Optics letters,2013,38(22):4609-4612.
    [38]Hu T Y, Wang Y, Liao C R, et al. Miniaturized fiber in-line Mach–Zehnderinterferometer based on inner air cavity for high-temperature sensing[J]. Opticsletters,2012,37(24):5082-5084.
    [39]Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity on optical fibre waveguides:application to reflection filter fabrication[J]. Applied Physics Letters,1978,32(10):647-649.
    [40]Meltz G, Morey M M, Glenm W H, Formation of Bragg gratings in optical fibresby a transverse holographic method[J]. Optics letters,1989,14(15):823-825.
    [41]Morey W W, Meltz G, Glenn W H, Fiber optic Bragg grating sensors[C]. SPIEProceedings, Fiber Optic and Laser Sensors,1989,1169:988-107.
    [42]Lemaire P J, Atkins R M, Mizrahi V, et al. High-pressure H2load as a techniquefor achieving UV photosensitivity and thermal sensitivity in GeO2doped opticalfibres[J]. Electronics Letters,1993,29:1191-1193.
    [43]Hill K O, Malo B, Bilodeau F, et al. Bragg gratings fabricated in monomodephotosensitive optical fibre by UV exposure through a phase mask[J]. AppliedPhysics Letters,1993,62(10):1035-1037.
    [44]Malo B, Hill K O, Bilodeau F, et al. Point-by-point fabrication of micro-Bragggratings in photosensitive fiber using single excimer pulse refractive indexmodification techniques[J]. Electronics Letters,1993,29(18):1668-1669.
    [45]Rathje J, Kristensen M, and Pedersen J E, et al. Continuous anneal method forcharacterizing the thermal stability of ultraviolet Bragg gratings[J], Journal ofApplied Physics,2000,88(2):1050-1055.
    [46]Chen T, Chen R, Jewart C, et al. Regenerated gratings in air-hole microstructuredfibers for high-temperature pressure sensing[J]. Optics letters,2011,36(18):3542-3544.
    [47]Canning J, Bandyopadhyay S, Biswas P, et al. Regenerated fibre Bragggratings[J]. Frontiers in Guided Wave Optics and Optoelectronics,2010:363-384.
    [48]Mihailov S J. Fiber Bragg grating sensors for harsh environments[J]. Sensors,2012,12(2):1898-1918.
    [49]Lindner E, Chojetzki C, Brückner S, et al. Thermal regeneration of fiber Bragggratings in photosensitive fibers[J]. Optics express,2009,17(15):12523-12531.
    [50]Wang T, Shao L Y, Canning J, et al. Regeneration of fiber Bragg gratings understrain[J]. Applied optics,2013,52(10):2080-2085.
    [51]Shao L Y, Wang T, Canning J, et al. Bulk regeneration of optical fiber Bragggratings[J]. Applied optics,2012,51(30):7165-7169.
    [52]zczurowski M, Urbanczyk W, Napiorkowski M, et al. Differential Rayleighscattering method for measurement of polarization and intermodal beat length inoptical waveguides and fibers[J]. Applied optics,2011,50(17):2594-2600.
    [53]Barrera D, Finazzi V, Villatoro J, et al. Packaged optical sensors based onregenerated fiber bragg gratings for high temperature applications[J]. IEEESensors Journal,2012,12(1):107-112.
    [54]Yang H Z, Chong W Y, Cheong Y K, et al. Thermal regeneration in etched-corefibre bragg grating[J]. IEEE Sensors Journal,2013,13(7):2581-2585.
    [55]Bueno A, Kinet D, Mégret P, et al. Fast thermal regeneration of fiber Bragggratings[J]. Optics letters,2013,38(20):4178-4181.
    [56]Zhu J J, Zhang A P, Zhou B, et al. Effects of doping concentrations on theregeneration of Bragg gratings in hydrogen loaded optical fibers[J]. OpticsCommunications,2011,284(12):2808-2811.
    [57]Lindner E, Canning J, Chojetzki C, et al. Thermal regenerated type IIa fiberBragg gratings for ultra-high temperature operation[J]. Optics Communications,2011,284(1):183-185.
    [58]Lindner E, Chojetzki C, Brückner S, et al. Thermal regeneration of fiber Bragggratings in photosensitive fibers[J]. Optics express,2009,17(15):12523-12531.
    [59]Bandyopadhyay S, Canning J, Biswas P, et al. A study of regenerated gratingsproduced in germanosilicate fibers by high temperature annealing[J]. Opticsexpress,2011,19(2):1198-1206.
    [60]Chen T, Chen R, Jewart C, et al. Regenerated gratings in air-hole microstructuredfibers for high-temperature pressure sensing[J]. Optics letters,2011,36(18):3542-3544.
    [61]Marques C A F, de Oliveira V, Kalinowski H J, et al. Production of optical notchfilters with fine parameter control using regenerated fiber Bragg gratings[J].Optics letters,2012,37(10):1697-1699.
    [62]Lindner E, Chojetzki C, Brückner S, et al. Thermal regenerated fiber Bragggratings in non-hydrogen loaded photosensitive fibers[C]. Bragg Gratings,Photosensitivity, and Poling in Glass Waveguides. Optical Society of America,2010, BTuB: BTuB3.
    [63]Bandyopadhyay S, Canning J, Stevenson M, et al. Ultrahigh-temperatureregenerated gratings in boron-codoped germanosilicate optical fiber using193nm[J]. Optics letters,2008,33(16):1917-1919.
    [64]Malo B, Hill K O, Bilodeau F, et al. Point-by-point fabrication of micro-Bragggratings in photosensitive fibre using single excimer pulse refractive indexmodification techniques[J]. Electronics Letters,1993,29(18):1668-1669.
    [65]Martinez A, Dubov M, Khrushchev I, et al. Direct writing of fibre Bragg gratingsby femtosecond laser[J]. Electronics Letters,2004,40(19):1170-1172.
    [66]Martinez A, Khrushchev I Y, Bennion I. Thermal properties of fibre Bragggratings inscribed point-by-point by infrared femtosecond laser[J]. Electronicsletters,2005,41(4):176-178.
    [67]Zhou K, Dubov M, Mou C, et al. Line-by-line fiber Bragg grating made byfemtosecond laser[J]. IEEE Photonics Technology Letters,2010,22(16):1190-1192.
    [68]Koutsides C, Davies E, Kalli K, et al. Superstructure fiber gratings via single stepfemtosecond laser inscription[J]. Journal of lightwave technology,2012,30(8):1229-1236.
    [69]Lai Y, Zhou K, Sugden K, et al. Point-by-point inscription of first-order fiberBragg grating for C-band applications[J]. Optics express,2007,15(26):18318-18325.
    [70]Kondo Y, Nouchi K, Tsuneo Mitsuyu, et al. Fabrication of long-period fibregratings by focused irradiation of infrared femtosecond laser pulses[J]. Opticsletters,1999,24(10):646-648.
    [71]Ken O, Barnier F, Obara M. Fabrication of fibre Bragg grating by femtosecondlaser interferometry[C]. Lasers and electro-optics society, The14th annualmeeting of the IEEE,2001,2:776-777.
    [72]Thomas J, Jovanovic N, Becker R G, et al. Cladding mode coupling in highlylocalized fiber Bragg gratings: modal properties and transmission spectra[J].Optics express,2011,19(1):325-341.
    [73]Thomas J U, Jovanovic N, Kr mer R G, et al. Cladding mode coupling in highlylocalized fiber Bragg gratings II: complete vectorial analysis[J]. Optics express,2012,20(19):21434-21449.
    [74]Thomas J U, Voigtl nder C, Nolte S, et al. Mode selective fiber Bragg gratings[C],SPIE Proceedings, Frontiers in ultrafast optics: biomedical, scientific, andindustrial applications X,2010,7589:75890J.
    [75]Nemanja N, Groothoff N, Canning J, et al. Optical loss mechanisms infemtosecond laser-written point-by-point fibre Bragg gratings[J]. Optics express,2008,16(18):14248-14254.
    [76]Williams R J, Jovanovic N, Marshall G D, et al. Optimizing the net reflectivity ofpoint-by-point fiber Bragg gratings: the role of scattering loss[J]. Optics express,2012,20(12):13451-13456.
    [77]Koutsides C, Kalli K, Webb D J, et al. Characterizing femtosecond laser inscribedBragg grating spectra[J]. Optics express,2011,19(1):342-352.
    [78]Jovanovic N, Williams R J, Thomas J, et al. Temperature and straindiscriminating sensor based on the monitoring of cladding modes of a singlefemtosecond inscribed grating[C],20th International Conference on Optical FibreSensors. International Society for Optics and Photonics,2009:750336.
    [79]Marshall G D, Williams R J, Jovanovic N, et al. Point-by-point writtenfiber-Bragg gratings and their application in complex grating designs[J]. Opticsexpress,2010,18(19):19844-19859.
    [80]Thomas J, Voigtlaender C, Becker R G, et al. Femtosecond pulse written fibergratings: a new avenue to integrated fiber technology[J]. Laser&PhotonicsReviews,2012,6(6):709-723.
    [81]Williams R J, Voigtl nder C, Marshall G D, et al. Point-by-point inscription ofapodized fiber Bragg gratings[J]. Optics letters,2011,36(15):2988-2990.
    [82]Kinet D, Wuilpart M, et al. Femtosecond-laser-induced highly birefringent Bragggratings in standard optical fiber[J]. Optics letters,2013,38(4):594-596.
    [83]Williams R J, Kr mer R G, Nolte S, et al. Femtosecond direct-writing of low-lossfiber Bragg gratings using a continuous core-scanning technique[J]. Optics letters,2013,38(11):1918-1920.
    [84]Mihailov S J, Smelser C W, et al. Fibre Bragg gratings made with a phase maskand800-nm femtosecond radiation[J]. Opt. Lett,2003,28(12):995-997.
    [85]Smelser C W, Mihailov S J, Grobnic D, et al. Formation of type I-IR and typeII-IR gratings with an ultrafast IR laser and a phase mask[J]. Opt. Express.2006,13(14):5377-5386.
    [86]Mihailov S J, Smelser C W, Grobnic D, et al. Bragg gratings written in all-corefibers with800-nm femtosecond radiation and a phase mask[J]. Optics letters,2004,22(1):94-100.
    [87]Smelser C W, Mihailov S J, Grobnic D. Hydrogen loading for fibre gratingwriting with a femtosecond laser and a phase mask[J]. Optics letters,2004,29(18):2127-2129.
    [88]Grobnic D, Smelser C W, Mihailov S J, et al. Fibre Bragg gratings withsuppressed cladding modes made in SMF-28with a femtosecond IR laser and aphase mask[J]. IEEE Photonics Technology Letters,2004,16(8):1864-1866.
    [89]Mihailov S J, Grobnic D, Smelser C W. Efficient grating writing through fibrecoating with femtosecond IR radiation and phase mask[J]. Electronics Letters,2007,43(8):442-443.
    [90]Grobnic D, Mihailov S J, et al. Ultrafast IR Laser Writing of strong Bragggratings through the coating of high Ge-doped optical fibers[J], IEEE PhotonicsTechnology Letters,2008,20(12):973-975.
    [91]Grobnic D, Mihailov S J, et al. Sapphire fibre Bragg grating sensor made usingfemtosecond laser radiation for ultrahigh temperature application[J]. IEEEPhotonics Technology Letters,2004,16(11):2505-2507.
    [92]Bernier M, Faucher D, et al. Bragg gratings photoinduced in ZBLAN fibres byfemtosecond pulses at800nm[J]. Optics letters,2007,32(5):454-456.
    [93]Yuhua L, D. N. Wang, Long Jin. Single-mode grating reflection in all-solidphotonic bandgap fibers inscribed by use of femtosecond laser pulse irradiationthrough a phase mask[J]. Optics letters,2009,34(8):1264-1266.
    [94]Wang A B, GollapudiS, et al. Sapphire-fiber-based intrinsic Fabry-Perotinterferometer[J]. Optics letters,1992,17:1021-1223.
    [95]Jundt D H, Fejer M M, Byer R L. Characterization of single‐crystal sapphirefibers for optical power delivery systems[J]. Applied Physics Letters,1989,55(21):2170-2172.
    [96]Merberg G N, Harrington J A. Optical and mechanical properties of single-crystalsapphire optical fibers[J]. Applied optics,1993,32(18):3201-3209.
    [97]Barnes A E, May R G, Gollapudi S, et al. Sapphire fibers: optical attenuation andsplicing techniques[J]. Applied optics,1995,34(30):6855-6858.
    [98]Nubling R K, Harrington J A. Optical properties of single-crystal sapphirefibers[J]. Applied optics,1997,36(24):5934-5940.
    [99]Nubling R K, Harrington J A. Single-crystal laser-heated pedestal-growthsapphire fibers for Er: YAG laser power delivery[J]. Applied optics,1998,37(21):4777-4781.
    [100] Nam S H, Chavez J, Yin S. Fabricating in-fiber gratings in single-crystalsapphire fiber[C]. Integrated Optoelectronic Devices2004. InternationalSociety for Optics and Photonics,2004:58-65.
    [101] Nam S H, Zhun C, Yin S. Recent advances on fabricating in-fiber gratings insingle-crystal sapphire fiber[C]. Optical Science and Technology, the SPIE49thAnnual Meeting. International Society for Optics and Photonics,2004:147-155.
    [102] Grobnic D, Mihailov S J, Smelser C W, et al. Sapphire fiber Bragg gratingsensor made using femtosecond laser radiation for ultrahigh temperatureapplications[J]. IEEE Photonics Technology Letters,2004,16(11):2505-2507.
    [103] Grobnic D, Mihailov S J, Ding H, et al. Single and low order modeinterrogation of a multimode sapphire fibre Bragg grating sensor with taperedfibres[J]. Measurement Science and Technology,2006,17(5):980-984.
    [104] Zhan C, Kim J H, Yin S, et al. High temperature sensing usinghigher-order-mode rejected sapphire fiber gratings[J]. Optical Memory andNeural Networks,2007,16(4):204-210.
    [105] Busch M, Ecke W, Latka I, et al. Inscription and characterization of Bragggratings in single-crystal sapphire optical fibres for high-temperature sensorapplications[J]. Measurement Science and Technology,2009,20(11):115301.
    [106] Mihailov S J, Grobnic D, Smelser C W. High-temperature multiparametersensor based on sapphire fiber Bragg gratings[J]. Optics letters,2010,35(16):2810-2812.
    [107] Villiers G J, Treurnicht J, Dobson R T. In-core high temperature measurementusing fiber-Bragg gratings for nuclear reactors[J]. Applied Thermal Engineering,2012,38:143-150.
    [108] Elsmann T, Habisreuther T, Graf A, et al. Inscription of first-order sapphireBragg gratings using400nm femtosecond laser radiation[J]. Optics express,2013,21(4):4591-4597.
    [109] Habisreuther T, Elsmann T, Pan Z, et al. Optical sapphire fiber Bragg gratingsas high temperature sensors[C]. Fifth European Workshop on Optical FibreSensors. International Society for Optics and Photonics,2013:87940B.
    [110] Feigelson R S, Pulling optical fibers[J]. Journal of Crystal Growth,1986,79:669-680.
    [111] LaBelle H E. EFG, the invention and application to sapphire growth[J], Journalof Crystal Growth,1980,50:8-17.
    [112] El-Sherif M A, Kamel I L, Ko F K, et al. A novel sapphire fiber-optic sensor fortesting advanced ceramics[C], Ceramic Engineering and Science Proceedings,1993,14:437-444.
    [113] Zhan C, Femtosecond laser inscribed fiber Bragg grating sensors[D], TheCollege of Engineering, The Pennsylvania State University,2007.
    [114] Dils R R. High‐temperature optical fiber thermometer[J]. Journal of AppliedPhysics,1983,54(3):1198-1201.
    [115] Zhou B k. Fiber blackbody temperature sensor[P]. China Patent: CN2046210U,1989.
    [116] Grattan K T V, Zhang Z Y, Sun T, et al. Sapphire-ruby single-crystal fibre forapplication in high temperature optical fibre thermometers: studies attemperatures up to1500℃[J]. Measurement Science and Technology,2001,12(7):981-986.
    [117] Cai P, Zhen D, Xu X, et al. A novel fiber-optic temperature sensor based onhigh temperature-dependent optical properties of ZnO film on sapphirefiber-ending[J]. Materials Science and Engineering: B,2010,171(1):116-119.
    [118] Raml C, He X, Han M, et al. Raman spectroscopy based on a single-crystalsapphire fiber[J]. Optics letters,2011,36(7):1287-1289.
    [119] Liu T, Han M, Raml C, et al. Fiber-optic Raman probe based on single-crystalsapphire fiber[C]. SPIE Proceedings, Next-generation spectroscopictechnologies V,2012,8374:83740P.
    [120] Sharp J H, Shi C W P, Seat H C. Er-doped sapphire fibre temperature sensorsusing upconversion emission[J]. Measurement and Control,2001,34(6):170-174.
    [121] Wang A, Zhu Y, Pickrell G. Optical fiber high-temperature sensors[J]. Optics&Photonics News,2009,20:26-31.
    [122] Wang A, Gollapudi S, May R G, et al. Sapphire optical fiber-basedinterferometer for high temperature environmental applications[J]. SmartMaterials and Structures,1995,4(2):147-151.
    [123] Zhu Y, Wang A. Surface-mount sapphire interferometric temperature sensor[J].Applied optics,2006,45(24):6071-6076.
    [124] Zhu Y, Huang Z, Shen F, et al. Sapphire-fiber-based white-light interferometricsensor for high-temperature measurements[J]. Optics letters,2005,30(7):711-713.
    [125] Wang J, Dong B, Lally E, et al. Multiplexed high temperature sensing withsapphire fiber air gap-based extrinsic Fabry–Perot interferometers[J]. Opticsletters,2010,35(5):619-621.
    [126] Murphy K A, Koob C E, Plante A J, et al. High-temperature sensingapplications of silica and sapphire optical fibers[C]. SPIE Proceedings, Fiberoptic smart structures and skins III,1990,1370:169-178.
    [127] Xiao H, Deng J, Pickrell G, et al. Single-crystal sapphire fiber-based strainsensor for high-temperature applications[J]. Journal of lightwave technology,2003,21(10):2276-2283.
    [128] Zhang Y, Pickrell G R, Qi B, et al. Single-crystal sapphire-based opticalhigh-temperature sensor for harsh environments[J]. Optical Engineering,2004,43(1):157-164.
    [129] Yi J, Lally E, Wang A, et al. Demonstration of an all-sapphire Fabry–Pérotcavity for pressure sensing[J]. IEEE Photonics Technology Letters,2011,23(1):9-11.
    [130] Wang J, Lally E M, Dong B, et al. Fabrication of a miniaturized thin-filmtemperature sensor on a sapphire fiber tip[J]. IEEE Sensors Journal,2011,11(12):3406-3408.
    [131] Wang J, Lally E M, Wang X, et al. ZrO2thin-film-based sapphire fibertemperature sensor[J]. Applied optics,2012,51(12):2129-2134.
    [132] Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology,1997,15(8):1277-1294.
    [133] Erdogan T. Cladding-mode resonances in short-and long-period fiber gratingfilters[J]. Journal of the Optical Society of America A,1997,14(8):1760-1773.
    [134] Erdogan T, Sipe J E. Tilted fiber phase gratings[J]. Journal of the OpticalSociety of America A,1996,13(2):296-313.
    [135] Yamada M, Sakuda K, Analysis of almost-periodic distributed feedback slabwaveguide via a fundamental matrix approach[J]. Applied Optics,1987,26(16):3474-3478.
    [136] Winick K A, Effective-index method and couple-mode theory for almostperiodic waveguide gratings: a comparison[J]. Applied Optics,1992,31(6):757-764.
    [137] Weller-Brophy L A, Hall D G. Analysis of waveguide gratings: application ofrouard’s method[J]. Journal of the Optical Society of America A,1985,2(6):863-871.
    [138] Weller-Brophy L A, Hall D G, Analysis of waveguide gratings: a comparison ofthe results of Rouard's method and coupled-mode theory[J]. Journal of theOptical Society of America A,1987,4(1):60-65.
    [139] Wang Z H, Peng G D, Chu P L, Improved Rouard's method for fiber andwaveguide gratings[J]. Optics Communications,2000,177:245-250.
    [140]张自嘉.光纤光栅理论基础与传感技术[M].北京:科学出版社,2009.
    [141]陈超. Bragg光纤光栅飞秒激光微纳制备及其应用的研究[D].长春:吉林大学电子科学与工程学院,2010.
    [142] Kogelnik H, Filter response of nonuniform almost-periodic structures[J]. BellSystem Technical Journal,1976,55(1):109-126.
    [143] Erdogan T, Sipe J E. Radiation-mode coupling loss in tilted fiber phasegratings[J]. Optics letters,1995,20(18):1838-1840.
    [144] Dong L, Ortega B, Reekie L. Coupling characteristics of cladding modes intilted optical fiber Bragg gratings[J]. Applied Optics,1998,37(22):5099-5115.
    [145] Lee K S, Erdogan T. Fiber mode coupling in transmissive and reflective tiltedfiber gratings[J]. Applied Optics,2000,39(9):1394-1404.
    [146] Koyamada Y. Analysis of Core-Mode to Radiation-Mode Coupling in FiberBragg Gratings with Finite Cladding Radius[J]. Journal of LightwaveTechnology,2000,18(9):1220-1225.
    [147] Grobnic D, Mihailov S J, Smelser C W, et al. Multiparameter sensor based onsingle high-order fiber bragg grating made with IR-femtosecond radiation insingle-mode fibers[J]. IEEE Sensors Journal,2008,8(7):1223-1228.
    [148] Ams M, Marshall G D, Dekker P, et al. Investigation of ultrafast laser-photonicmaterial interactions: Challenges for directly written glass photonics[J]. IEEEJournal of Selected Topics in Quantum Electronics,2008,14(5):1370-1388.
    [149] Chan J, Huser T, Risbud S, et al. Modification of the fused silica glass networkassociated with waveguide fabrication using femtosecond laser pulses[J].Applied Physics A,2003,76(3):367-372.
    [150] Chan J, Huser T, Risbud S, et al. Waveguide fabrication in phosphate glassesusing femtosecond laser pulses[J]. Applied Physics Letters,2003,82(15):2371-2373.
    [151] Sudrie L, Franco M, Prade B, et al. Study of damage in fused silica induced byultra-short IR laser pulses[J]. Optics Communications,2011,191:333-339.
    [152] Shimotsuma Y, Kazansky P G, Qiu J R, et al. Self-organized nanogratings inglass irradiated by ultrashort light pulses[J]. Physical Review Letters,2003,91(24):247405-1-4.
    [153] Glezer E N, Mazur E, Ultrafast-laser driven micro-explosions in transparentmaterials[J]. Applied Physics Letters,1997,71(7):882-884.
    [154] Schaffer C B, Jamison A O, Mazur E, Morphology of femtosecondlaser-induced structural changes in bulk transparent materials[J]. AppliedPhysics Letters,2004,84(9):1441-1443.
    [155] Thomas J. Mode control with ultra-short pulse written fiber Bragg gratings[D].Germany: Friedrich-Schiller University,2012.
    [156] Nishii J, Kitamura N, et al. Ultraviolet-raditationinduced chemical reactionsthrough one-and two-photon absorption processes in GeO2-SiO2glasses[J].Optics letters,1995,20(10):1184-1186.
    [157] Mihailov S J, Smelser C W, Grobnic D, et al. Bragg gratings written in All-SiO2and Ge-doped core fibers with800-nm femtosecond radiation and a phasemask[J]. Journal of Lightwave Technology,2004,22(1):94-100.
    [158] Wikszak E, Inscription of fiber Bragg gratings in non-photosensitive andrare-earth doped fibers applying ultrafast lasers[D]. Germany:Friedrich-Schiller University,2009.
    [159] Mills J D, Hillman C W J, Blott B H, et al. Imaging of free-space interferencepatterns used to manufacture fiber Bragg gratings[J]. Applied Optics,2000,39(33):6128-6135.
    [160] Smelser C W, Mihailov S J, Grobnic D, et al. Multiple-beam interferencepatterns in optical f iber generated with ultrafast pulses and a phase mask[J].Optics letters,2004,29(13):1458-1460.
    [161] Smelser C W, Grobnic D, Mihailov S J, Generation of pure two-beaminterference grating structures in an optical fiber with a femtosecond infraredsource and a phase mask[J]. Optics letters,2004,29(15):1730-1732.
    [162] Thomas J, Wikszak E, Clausnitzer T, et al. Inscription of fiber Bragg gratingswith femtosecond pulses using a phase mask scanning technique[J]. AppliedPhysics A,2007,86(2):153-157.
    [163] Zhou K M, Dubov M, Mou C, et al. Line-by-Line fiber Bragg grating made byfemtosecond laser[J]. IEEE Photonics Technology Letters,2010,22(16):1190-1192.
    [164] Cerullo G, Osellame R, Taccheo S, et al. Femtosecond micromachining ofsymmetric waveguides at1.5μm by astigmatic beam focusing[J]. Optics letters,2002,27(21):1938-1940.
    [165] Malo B, Johnson D C, Bilodeau F, et al. Single-excimer-pulse writing of fibergratings by use of a zero-order nulled phase mask: grating spectral response andvisualization of index perturbations[J]. Optics letters,1993,18(15):1227-1229.
    [166] Yang R, Yu Y Sen, Chen C, et al. Rapid fabrication of micro-hole arraystructured optical fibers[J]. Optics letters,2011,36(19):3879-3881.
    [167] Xu M G, Archambault J L, Reekie L, et al. Discrim-ination between strain andtemperature effects using dual-wavelength fibre grating sensors[J]. ElectronicsLetters,1994,30(13):1085-1087.
    [168] James S W, Dockney M L, Tatam R P, et al. Simultaneous independenttemperature and strain measurement using infibre Bragg grating sensors[J].Electronics Letters,1993,32(12):1133-1134.
    [169] Echevarria J, Quintela A, Jauregui C, et al. Uniform fiber Bragg grating first-and second-order diffraction wavelength experimental characterization forstrain-temperature discrimination[J]. IEEE Photonics Technology Letters,2001,13(7):696-698.
    [170] Urbanczyk W, Chmielewska E, Bock W J, Measurements of temperature andstrain sensitivities of a two-mode Bragg grating imprinted in a bow-tie fibre[J].Measurement Science and Technology,2011,12(7):800-804.
    [171] Fraz o O, Ferreira L A, Araujo F M, et al. Applications of fiber optic gratingtechnology to multi-Parameter measurement[J]. Fiber and Integrated Optics,2005,24(3-4):227-244.
    [172] Laffont G. Ferdinand P, Tilted short-period fibre-Bragg-grating-inducedcoupling to cladding modes for accurate refractometry[J]. MeasurementScience and Technology,2001,12(7):765-770.
    [173] Alberto N J, Marques C A, Pinto J L. et al, Three-parameter optical fiber sensorbased on a tilted fiber Bragg grating[J]. Applied Optics,2010,49(31):6085-6091.
    [174] Chan C F, Chen C, Jafari A, et al, Optical fiber refractometer using narrowbandcladding-mode resonance shifts[J]. Applied Optics,2007,46(7):1142-1149.
    [175] Shevchenko Y Y, Albert J, Plasmon resonances in gold-coated tilted fiber Bragggratings[J]. Optics letters,2007,32(3):211-213.
    [176] Wong A C L, Chung W H, Tam H, et al. Single tilted Bragg reflector fiber laserfor simultaneous sensing of refractive index and temperature[J]. Optics Express,2011,19(2):409-414.
    [177] Yan Z, Wang H, Zhou K, et al. Broadband tunable all-fiber polarizationinterference filter based on45°tilted fiber gratings[J]. Journal of LightwaveTechnology,2013,31(1):94-98.
    [178] Thomas J, Voigtl nder C, Schimpf D, et al. Continuously chirped fiber Bragggratings by femtosecond laser structuring[J]. Optics letters,2008,33(14):1560-1562.
    [179] Voigtl nder C, Thomas J, Wikszak E, et al. Chirped fiber Bragg gratings writtenwith ultrashort pulses and a tunable phase mask[J]. Optics Letters,2009,34(12):1888-1890.
    [180] Fang X, He X Y, Liao C R, M. Yang, et al. A new method for sampled fiberBragg grating fabrication by use of both femtosecond laser and CO2laser[J].Optics Express,2010,18(3):2646-2654.
    [181] G. D. Marshall, R. J. Williams, N. Jovanovic, et al. Point-by-point writtenfiber-Bragg gratings and their application in complex grating designs[J]. OpticsExpress,2010,18(19):19844-19859.
    [182] Smelser C W, Grobnic D, Mihailov S J, Self focusing behavior in thefabrication of fiber Bragg gratings with an ultrafast laser and a phase mask[C],Quantum electronics and aaser science conference (IEEE),2005, JWB: JWB16.
    [183] Chehura E, James S W, Tatam R P, Temperature and strain discrimination usinga single tilted fibre Bragg grating[J]. Optics Communications,2007,275(2):344-347.
    [184] Chen C, Albert J, Strain-optic coefficients of the individual cladding modes of asingle mode fiber: theory and experiment[J]. Electronics Letters,2006,42(18):2027-2028.
    [185] Albert J, Shao L Y, Caucheteur C, Tilted fiber Bragg grating sensors[J]. LaserPhotonics Rev.2013,7(1):83-108.
    [186] Paladino D, Quero G, Caucheteur C, et al. Hybrid fiber grating cavity formulti-parametric sensing[J]. Optics Express,2010,18(10):10473-10486.
    [187] Laffont G, Ferdinand P, Sensitivity of slanted fibre Bragg gratings to externalrefractive index higher than that of silica[J]. Electronics Letters,2001,37(5):289-290.
    [188] Jin W, Michie W C, Thursby G, et al. Simultaneous measurement of strain andtemperature: Error analysis[J]. Optical Engineering.1997,36(2):598-609.
    [189] Will M, Nolte S, Chichkov B N, et al. Optical properties of waveguidesfabricated in fused silica by femtosecond laser pulses[J]. Applied Optics,2002,41(21):4360-4364.
    [190] Eaton S, Zhang H, Herman P, et al. Heat accumulation effects in femtosecondlaser-written waveguides with variable repetition rate[J]. Optics Express,2005,13(12):4708-4716.
    [191] Othonos A, Lee X, Measures R M, Superimposed multiple Bragg gratings[J].Electronics Letters,1994,30(23):1972-1974.
    [192] Eggleton B J, Krug P A, Poladian L, et al. Long periodic superstructure Bragggratings in optical fibres[J]. Electronics Letters,1994.30(19):1620-1622.
    [193] Mizunami T, Djambova T V, Niiho T, et al. Bragg gratings in multimode andfew-mode optical fibers[J]. Journal of Lightwave Technology,2000,18(2):230-235.
    [194] Jovanovic N, Fuerbach A, Marshall G D, et al. Stable high-powercontinuous-wave Yb3+-doped silica fiber laser utilizing a point-by-pointinscribed fiber Bragg grating[J]. Optics Letters,2007,32(11):1486-148.
    [195] Jovanovic N, Thomas J, Williams R J, et al. Polarization-dependent effects inpoint-by-point fiber Bragg gratings enable simple, linearly polarized fiberlasers[J]. Optics Express,2009,17(8):6082-6095.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700