基于光纤光栅的铝电解槽高温在线监测技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝是当今世界最常用的工业金属之一,是国民经济发展的重要基础原材料。自1886年美国的霍尔和法国的埃鲁特同时发明了电解法制铝工艺之后,铝电解工艺得到了迅速发展,但对铝电解槽槽壳温度的测量,仍采用人工间断测量技术,该技术落后,投入人力物力大、精度低,不能及时发现漏槽病槽故障隐患。因此,迫切需要实现对铝电解槽槽壳温度的自动连续实时监测。
     论文首先介绍了光纤、光栅的基本结构和应用现状,以及高温光纤光栅传感器的研究和应用现状。然后重点论述了光纤光栅的理论模型,推导得出了基于耦合模理论的温度传感模型。根据光纤光栅传感器体积小、灵敏度高、稳定可靠、抗电磁干扰、易于构成多点分布式测量系统等的优点,又对比目前常用的几种温度检测技术,论文提出了基于光纤光栅传感技术的铝电解槽槽壳温度的实时在线监测系统方案。项目的研究实现,将填补国内空白,为铝电解槽槽壳温度检测提供一种有效的技术手段,可及时避免漏槽事故的发生。
     通过长达一年的技术方案可行性调研和基础研究、设计工作,根据兖矿科澳铝业有限公司铝电解槽槽壳测温点的测温要求,对系统的综合布线、传感器的封装与现场安装、光信号传输系统的各部分进行了优化设计,并分别从光功率损耗和波分复用技术要求两方面详细分析了该系统的可行性和可靠性。针对光纤光栅温度传感器进行了测高温实验,搭建了温度校验平台,并对实验数据进行了详细分析。
     本系统的软件分为LabVIEW数据采集系统、监控系统终端软件以及SQL数据库三个部分。由于解调仪sm125自带解调软件不能满足系统的功能需求,因此对其二次开发,加入了光开关控制程序和数据存储等功能,光开关控制程序包括手动控制及自动控制两部分。通过设定门限实现超温预警、报警,系统具有声、光报警装置。可根据现场需要对某一特定测温点实现连续测温、记录、显示及历史数据查询。
     通过系统的现场运行,得知光纤传感器的连续测温不仅及时观测了温度的变化,还能通过连续记录的温度变化趋势分析槽内的反应情况,为安全生产起到了重要作用。
Aluminum is one kind of the most commonly used metals and an important basic raw material for our country's economy development. Since Charles Martin Hall from the USA and Paul Louis Heroult from the France invented the electrolysis technics to produce aluminum at the same time in 1886, Aluminum-electrolysis technology has been developed rapidly, but the temperature measurement of Aluminum-electrolysis trough is still using the technology of continuous measurement., which is very behindhand, wastes manpower and material resources but low effects, This technique also harms worker's body health and couldn't measure hidden trouble in time. So it's cry for realize automatically, continuously and real-time measurement to the Aluminum-electrolysis trough's temperature.
     In this paper, the fiber Bragg grating's basic configuration, appling actuality and the research and application's actuality of the FBG high temperature sensors were introduced. Then the theory model of fiber Bragg grating was discussed and a temperature model which is based on coupling model theory was deduced. The fiber Bragg grating sensor has many advantages such as small volume, high sensitive, steady, re-electromagnetically, be prone to composing distributed measure system etc. Contrast several high temperature measure techniques commonly used presently. Develop a system that could measure the Aluminum-electrolysis trough's temperature automatically, continuously and real-time, it's based on the fiber grating sensing technology. This project's research and actualization would fill up the domestic blankness, provide a techno-instrument to measure the aluminum electro-bath's temperature, and avoid occuring accident in time.
     The investigation of the technical scheme's feasibility and the work of basic research, design have taken a whole year. On the basis of the temperature points' measure requests in the plants Yankuang Ke-Ao Aluminum Ltd, the paper optimally designs the integrated wiring system, the sensor package and on-site installation, the various parts of optical signal transmission system, then discusses in detail and proves the feasibility of system design from optical power loss and technical requirements for WDM. A measuring high-temperature experiment using FBG temperature sensors had been done, temperature calibration platform was founded and a detailed analysis of experimental data was carried out.
     The software system of the project contains LabVIEW data acquisition system, terminal monitoring and control system software, SQL databases. Demodulating procedure is quadratic designed based on the sm125's primary procedure, joined the optical switch's automatic control procedure. The system achieves over-temperature warning and alarm by setting a threshold, and has sound and light alarm device. The system can achieve continuous measurement, recording, display and query historical data for a specific temperature point according to the necessary of the site.
     Through the system running at the scene, we inform that FBG sensor for temperature measurement is not only timely observation of the temperature changes, but also an analysis of the response to Aluminum-electrolysis trough through the continuous record of temperature changes in trend. The system has played an important role for the safe yielding.
引文
[1]邱竹贤.铝电解[M].北京:冶金工业出版社.1993.3-6.
    [2]刘新星.用可持续发展理论分析我国电解铝行业的发展[D].北京化工大学硕士学位论文.2005-01-09:19-20.
    [3]K.格罗泰姆.铝冶金原理.北京:冶金工业出版社.1982,3.
    [4]张明谦.大型预焙铝电解槽早期破损初探[J].有色金属.2005,2:16-17/20.
    [5]郭晓燕,田大鹏.大型预焙铝电解槽槽寿命延长的途径[J].山西冶金.2005,1:53-55.
    [6]李世军.大型预焙铝电解槽破损的检测、判断及维护[J].有色金属(冶炼部分).1999,3:33-36.
    [7]张凤炳,王再云.铝电解槽炉底破损的检测与诊断[J].轻金属.1997,6:41-42.
    [8]兖矿科澳电解铝厂操作规程手册.
    [9]王绍鹏.大型电解槽温度管理[J].轻金属.2005,11:35-41.
    [10]廖延彪.光纤光学.北京:清华大学出版社.2000:131-139.
    [11]GB/T 18901.1-2002.光纤传感器第1部分:总规范[S].北京:中国标准出版社.2002.
    [12]李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用[M].北京:科学出版社:2005.222.
    [13]Kersey A D,Davis M A,Patrick H J,et al.Fiber grating sensors[J].Journal of Lightwave Technology.1997,15(8):1442-1463.
    [14]Rao Y J.In-fiber Bragg grating sensors[J].Measurment Science and Technology.1997,8(4):355-375.
    [15]Rao Y J.Recent progress in applications of in-fiber Bragg grating sensors[J].Optics and Lasers in Engineering.1999,31(4):297-324.
    [16]Nasa.Pressure Sensor Using Fiber Bragg Gratings[EB/OL].2008.7.14.http://ti.arc.nasa.gov/ic/projects/photonics/OS/Proposed/Bragg/bragg.html.
    [17]Trutzel M,Betz D,Holz M,et al.Investigation of fiber optic Bragg grating sensors for applications in the aviation industry[C].Kyongju,South Korea:Proceedings of SPIE-The International Society for Optical Engineering.1999:3746,624-627.
    [18]Roger G.Duncan,Dawn K.Gifford,Brooks A.Childers etc.A distributed sensing technique for aerospace applications[C].42~(nd) AIAA Aerospace Sciences Meeting and Exhibit 5-8 January,Reno,Nevada
    [19]Hjelme D R,Bjerkan L,Neegard S,et al.Application of Bragg grating sensors in the characterization of scaled marine vehicle models[J].Applied Optics.1997,36(1):328-336.
    [20]Prohaska J D,Snitzer E,Chen B.Fiber optic Bragg grating strain sensor in large scale concrete structures[C].1992,286-294.
    [21]梁磊,姜德生,周雪芳,等.光纤Bragg光栅传感器在桥梁工程中的应用[J].光学与光电技术.2003,1(02):36-39.
    [22]赵星光,邱海涛.光纤Bragg光栅传感技术在隧道监测中的应用[J].岩石力学与工程学报.2007,26(03):587-593.
    [23]林枫,蔡海文,夏志平,等.光纤光栅滤波的瓦斯传感系统的研究[J].中国激光.2005,32(04):549-552.
    [24]李川,张以谟,赵永贵,李立京.光纤光栅:原理、技术与传感应用[M].北京:科学出版社.2005.
    [25]毕卫红,张闯.光纤布拉格光栅的反射谱特性研究[J].光通信技术.2003,6:45-46.
    [26]黄章勇编著.光纤通信用新型光无源器件[M].北京邮电大学出版社.2003,18-20.
    [27]靳伟,廖延凯,张志鹏.导波光学传感器:原理与技术[M].北京:科学出版社.1998,320-347.
    [28]K.O.Hilletal.Photosensitivity in optical fiber waveguides:application filter fabrication.Appl.Phys.Lett.1978,32:647-649.
    [29]孙东亚.光纤智能材料、器件与智能锚索结构系统的研究[D].武汉理工大学博士论文,2001,11:37-66.
    [30]姜德生等.智能材料器件结构与应用[M].武汉工业大学出版社,2000.
    [31]Silvana Donati.光电仪器:激光传感与测量[M].西安:西安交通大学出版社.2006.
    [32]王玉田等编著.光电子学与光纤传感器技术[M].北京:国防工业出版社.2003,137-140.
    [33]Yariv A.Coupled-Mode Theory for Guided-Wave Optics,IEEE Journal of Quantum Electronics.1973,9:919-933.
    [34]Turan Erdogan.Fiber Grating Spectra[J].IEEE Journal of Lightwave Technology.1997,15(8):1277-1291.
    [35]王昆.窄带FBG滤波器切趾函数的研究[J].光纤与电缆及其应用技术.2006,2:22-26.
    [36]汤树成.光纤光栅谱特性的数值模拟[J].现代有线传输.2002,2:23.28.
    [37]李惠萍,王庆亚,秦莉等.光纤光栅特性分析[J].光电子激光.2001,12(1):26-29.
    [38]陈超.光纤光栅光谱特性及调谐技术的研究.西北工业大学硕士毕业论文.20050301:48-49.
    [39]廖延彪.光纤光学[M]第一版.北京:清华大学出版社.2000.
    [40]郭照华,李晓龙.表面贴装光纤应变传感器设计[J].湘潭大学自然科学学报.1996,18:90-93.
    [41]杨建良,黄德修.表面贴装光纤布拉格光栅应变传感器[J].光通信技术.1996,2:170-172.
    [42]张晓晶,武湛君,张博明等.光纤布拉格光栅温度灵敏性的实验研究[J].2005,31(4):497-499.
    [43]贾宏志.光纤光栅传感器的理论和技术研究.中国可学院西安光学精密机械研究所博士学位论文.20000801:70-71.
    [44]Ball G A,Morey W W,Cheo P K.Fiber Laser Source/Analyzer for Bragg Grating Sensor Array Interrogation,IEEE Journal of Lightwave Technology.1994,12:700-703.
    [45]Kersey A D.Interrogation and Multiplexing Techniques for Fiber Bragg Grating Strain-Sensors,Society of Photo-Optical Instrumentation Engineers,Distributed and Multiplexed Fiber Optic Sensors Ⅲ,Boston.1993,2071:30-48.
    [46]Davis M A,Bellemore D G,Putnam M A et al.Interrogation of 60 Fibre Bragg Grating Sensors with Microstrain Resolution Capability,Electronics Letters.1996,32:1392-1394.
    [47]Geiger H,Xu M G,Dakin J Petal.Progress on Grating Interrogation Schemes Using a Tunable Filter,Proceedings of the Optical Fiber Sensors Conferences (OFS-11),Sapporo,Japan.1996:376-379.
    [48]Micron Optics Inc.sm125 Optical Sensing Interrogator Product Manual and Technical Reference.2005.
    [49]C.C.Chan,W.Jin,H.L.Ho,D.N.Wang,Y.Wang.Improvement of measurement accuracy of fiber Bragg grating sensors systems by use of gas absorption lines as multi-wavelength reference[J].ELECTRONICS LETTERS.2001,37(12):742-743.
    [50]Snyder A W and Lov J D.Optical Waveguide Theory(London,Chapman and Hall),1983.
    [51]兖州矿业集团科澳铝业有限公司操作规程手册.
    [52]张佐,张伶,陈维胜,郭霓.铝电解槽温度在线检测传感器研制取得进展[J].世界有色金属.1997,8:39-40.
    [53]邱竹贤.铝电解原理与应用[M],徐州:中国矿业大学出版社,1998.
    [54]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006.
    [55]Adams J B.A Probability model of medical reasoning and the MYCIN model[J].Maghmatical Biosciences,1976,(32):177-186.
    [56]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1998.
    [57]蔡自兴.高级专家系统:原理、设计及应用[M].北京:科学出版社,2005.
    [58]吴泉源,刘江宁.人工智能与专家系统[M].长沙:国防科技大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700