移动制氢过程变换催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究制备了一种适合移动制氢过程的Pt/CeO_2-ZrO_2变换催化剂。
     采用共沉淀法和浸渍法制备了颗粒变换催化剂,改变载体组成和活性组分担载量,对催化剂组分进行了筛选,得到了优化的催化剂组成。在此基础上以浸涂技术制备了整体变换催化剂,优化了催化剂的结构,为该催化剂的应用奠定了基础。
     在不同条件下对上述催化剂进行评价,实验结果表明:该催化剂具有较宽的操作温度窗口,优化之后的催化剂在250℃以上具有较高的活性;提高汽/气比,转化率得到明显提高;催化剂能适应较大范围CO浓度(4 vol%~10 vol%)的变化。
     在300℃下对催化剂床层通空气的实验结果表明,催化剂具有抗高温氧化冲击的能力,在300℃下接触空气而不失活。经历多次开停车实验,催化剂活性基本不变:进行了160多小时的寿命实验,结果表明催化剂具有很好的稳定性,可望应用于移动制氢过程。
     对催化剂进行XRD、TEM等表征,结果表明富铈固溶体的形成有利于提高催化剂的活性。通过氢吸附法测定了催化剂中活性金属的分散度,并与催化活性相关联,结果表明具有较高金属分散度的催化剂其活性也较高。
     研究了该催化剂上的CO变换反应本征动力学,建立了幂函数型本征动力学模型方程:
     经过初步分析,认为该催化剂上的变换反应符合氧化-还原机理。
In this paper, Pt/CeO2-ZrO2 water gas shift catalysts were developed for the onboard fuel processing in PEM fuel cell vehicles.
    The pellet catalysts were prepared by co-precipitation and impregnation. The best catalysts composition was achieved by screening the catalysts with different support and active metal loading. The monolithic catalysts were prepared by coating technology and the composition was also optimized.
    These catalysts were tested under different operation conditions. It is shown that the best catalyst is active in a wide temperature window above 250 ℃. The conversion was increased greatly by increasing the ratio of steam to gas. The catalysts can be operated while CO concentration varies from 4 vol% to 10 vol%.
    The catalysts are stable at high temperature in oxidation/reduction cycling that may occur in an automotive fuel processor. Both the pellet and monolithic catalysts are stable when exposed to air at 300℃ and the high activity remains in several start-up and shutdown cycles. The stability of the monolithic catalyst was tested for 160h, without deactivation.
    The formation of CeO2-rich solid solution in the CeO2-ZrO2 composite oxides gives better performance, as shown by XRD carried out on the aged catalysts, and this is similar to the case in automotive three-way catalysts. The correlation between the metal dispersion determined by H2-adsorption and the activity of catalyst was
    
    
    
    investigated. It is shown that the higher metal dispersion results in the better activity. The intrinsic kinetics of water gas shift reaction over the catalyst was investigated and a power-type rate model was established:
    The water gas shift reaction over this catalyst agrees well with the redox mechanism.
引文
[1] 衣宝廉.燃料电池.北京:化学工业出版社,2000.1—10
    [2] 燃料电池汽车氢源基础设施工程前期研究课题验收总报告.2002
    [3] 王艳辉.汽油氧化重整制氢反应过程研究:[博士学位论文].辽宁大连:中科院大连化物所,2001
    [4] 王胜年.Cr-Zn催化剂上甲醇水蒸汽重整制氢反应动力学研究:[硕士学位论文].辽宁大连:中国科学院大连化学物理研究所,2000
    [5] URL: http://www.gmfuelcell.com/w_shoop/pdf/Andrew Bosco Gasoline(E).pdf. Andrew Bosco. Current Status of Gasoline Reforming Activities.
    [6] URL: http://www.gmfuelcell.com/w_shoop/pdf/Udo Winter(E).pdf. Udo Winter. GM's Fuel Cell Vehicle Program.
    [7] Norihiko Nakamura. Working Towards Market: Introduction of FC Vehicles. In: Future Car Congress, Arlington, VA, 2002
    [8] 姜圣阶等.合成氨工学第二卷.北京:石油化学工业出版社,1976:129-199
    [9] 赵骧.催化剂.北京:中国物资出版社,2001:414-437
    [10] 荣德显.CO变换催化剂技术进展.大氮肥,1994,2:83-88
    [11] 张剑锋.国外水煤气变换催化剂新进展.化肥与催化,1991,1
    [12] 欧晓佳,程极源.铁铬系高(中)温变换催化剂研究现状.化学研究与应用,1999(11),2:126-131
    [13] 冯树波,董献登,马天妍.高温变换催化剂新进展.化肥工业,23(2):11-13
    [14] 赵志利,何观伟,霍尚义.高温变换催化剂的发展方向.工业催化,1998,2:30-34
    [15] 赵喜宝,郭志新,韩芹.耐硫变换催化剂的进展.河南化工,1997,9:8-9
    [16] 路春荣,李芳玲,王岱玲,宋晓军,陆为民.国内外耐硫变换催化剂现状.化肥工业,1997(24),6:13-17
    [17] U.S. Department of Energy. FY 2002 Progress Report for Hydrogen, Fuel Cells, and Infrastructure Technologies Program. November 2002
    [18] U.S. Departmem of Energy. FY 2001 Progress Report for Hydrogen, Fuel Cells, and Infrastructure Technologies Program.
    [19] U.S. Department of Energy. FY 2000 Progress Report for Hydrogen, Fuel Cells, and Infrastructure Technologies Program.
    [20] Bunluesin T, Gorte R J. and Graham G W. Studies of the water-gas-shift reation on ceria-supported Pt, Pd and Rh: implications for oxygen-storage properties. Appl. Catal. B, 1998, 15:107-114
    [21] Hilaire S, Wang X, Luo T, Gorte R J, Wagner J. A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. Appl. Catal. A, 2001, 215:271-278
    
    
    [22] Wang X, Gorte R J, Wagner J P. Deactivation Mechanisms for Pd/Ceria during the Water -Gas-Shift Reaction. J. Catal., 2002, 212:225-230
    [23] Luo T, Gorte R J. A mechanistic study of sulfur poisoning of the watergas-shift reaction over Pd/ceria. Catal. Lett., 2003, 85:139-146
    [24] Wang X, Gorte R J. The effect of Fe and other promoters on the activity of Pd/ceria for the water-gas shift reaction. Appl. Catal. A, 2003, 8543:1-6
    [25] Li Y, Fu Q, Flytzani-Stephanopoulos M. Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl. Catal. B, 2000, 27:179-191
    [26] Fu Q, Weber A, and Flytzani-Stephanopoulos M. Nanostructured Au-CeO_2 catalysts for low-temperature water-gas shift. Catal. Lett., 2001, 77:87-94
    [27] Fu Q, Kudriavtseva S, Saltsburg H, Flytzani-Stephanopoulos M. Gold-ceria catalysts for low-temperature water-gas shift reaction. Chem. Eng. J., 2003, 93:41-53
    [28] Swartz S L, Seahaugh M M, Holt C T and Dawson W J. Fuel processing catalysts based on nanoscale ceria. Fuel Cells Bulletin, 2001, 30:7-10
    [29] Swartz S L. Nanoscale water gas shift catalysts, in: Proceeding of DOE Fuel Cells Review Meeting, Golden, Colorado, 2002
    [30] Swartz S L, Seahaugh M M and Dawson W J. Ceria-based water-gas shift catalysts, in: Proceedings of the 2002 Fuel Cell Seminar, Palm Springs, CA, 2002
    [31] Myers D J, Krebs J F, Carter J D, Kumar R, Krumpelt M. Metal/Ceria Water-Gas Shift Catalysts for Automotive Polymer Electrolyte Fuel Cell Systems. in: Proceedings of the AIChE Spring National Meeting on Fuel Cell Technology, New Orleans, 2002
    [32] Myers D, Krebs J, Krumpelt M. Water gas shift catalysis, in: Proceedings of the Annual National Laboratory R&D Meeting DOE Fuel Cells for Transportation Program, 2002.
    [33] Luengnaruemitchai A, Osuwan S, Gulari E. Comparative studies of low-temperature water-gas shift reaction over Pt/CeO_2, Au/CeO_2, and Au/Fe_2O_3 catalysts. Catal. Comm., 2003, 4:215-221
    [34] Farrauto R J, Ruettinger W F, Korotkikh O. Non-pyrophoric water-gas shift reaction catalysts. WO 0226619, 2002-4-4
    [35] Farrauto R J, Ruettinger W F, Korotkikh O. Non-pyrophoric water-gas shift reaction catalysts. US 2002061277, 2002-05-23
    [36] Ruettinger W F, Liu X, Farrauto R J. Enhanced stablility water-gas shift reaction catalysts. US 20020141938, 2002-10-3
    [37] Ruettinger W F, Liu X, Farrauto R J. Enhanced stablility water-gas shift reaction catalysts. US 20020147103, 2002-10-10
    [38] Korotkikh O, Ruettinger W F, Farrauto R J. Suppression of methanation activity by a water gas shift reaction catalyst. WO 0226618, 2002-04-04
    [39] Ruettinger W F, Korotkikh O, Farrauto R J. Suppression of methanation activity by a water gas shift reaction catalyst. US 2003064887, 2003-04-03
    
    
    [40] Teshigawara Satoshi, Matsuhisa Toshio, Itami Hirohiko. Method for preparing catalyst for carbon monoxide shift reaction. WO 03039742, 2003-05-15
    [41] Igarashi Akira, Hashimoto Noboru, Higashi Hirokazu, Kinugawa Kensaku, Mizobuchi Manabu. Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell. EP 1161991, 2001-12-12
    [42] Igarashi Akira, Hashimoto Noboru, Higashi Hirokazu, Kinugawa Kensaku, Mizobuchi Manabu. Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell. WO 0054879, 2000-9-21
    [43] Igarashi Akira, Hashimoto Noboru, Higashi Hirokazu, Kinugawa Kensaku, Mizobuchi Manabu. Water gas shift reaction catalyst, method for removing carbon monoxide in hydrogen gas and fuel cell power generation system. WO 0103828, 2001-01-18
    [44] Yamazaki Kiyoshi, Nomura Kazuhiro, Takahashi Naoki, Yokota Koji. Catalyst for co shift reaction. JP 2001347166, 2001-12-18
    [45] Aoyama, Satoru; Iguchi, Akira. Catalysts for water gas shift reaction, method and apparatus for decrease of carbon monoxide in gases, and fuel cell systems.JP 2002066326, 2002-3-5
    [46] Hirabayashi T. Shift catalyst, fuel cell and production method for the catalyst. US 20020028365, 2002-5-7
    [47] Yamazaki K, Hatanaka M, Suda A, Fukui M. Titania-based porous substance and catalyst. US 20020107142, 2002-8-8
    [48] Hirabayashi, Takeshi. Heat-resistant catalysts for water gas shift reaction carried out under high space velocity and shift reactors. JP 2002066320, 2002-3-5
    [49] Wang Y, Tonkovich A L. Catalysts, reactors and methods for producing hydrogen via the water-gas shift reaction. US 20020114762, 2002-8-22
    [50] Patt J, Moon D J, Phillips C and Thompson L T. Molybdenum carbide catalysts for water-gas shift. Catal. Lett., 2000, 65:193-195
    [51] Thompson L T, Patt J, Moon D J, Philips C. Transition metal carbides, nitrides and borides and their oxygen containing analogs useful as water gas shift catalysts. WO 0174484, 2001-10-11
    [52] 李淑莲,李时瑶,吴春田,孙来生.汽车尾气净化用Pt/Zr-CeO2催化剂的表征与性能.催化学报,1999,20(1):67
    [53] 王尚弟,孙俊全.催化剂工程导论.北京:化学工业出版社,2001.99-115
    [54] M. Hirano, T. Miwa and M. Inagaki. Low-Temperature Direct Synthesis of Nanoparticles of Fluorite-Type Ceria-Zirconia Solid Solutions by "Forced Cohydrolysis"at 100℃. J. Solid State Chem., 2001, 158, 112.
    [55] Trovarelli, A., Catalysis by Ceria and Related Materials. London Imperial College Press,2002
    [56] 吴刚.材料结构表征及应用.北京:化学工业出版社,2002.224-225
    
    
    [57] 陈诵英等.吸附与催化.郑州:河南科学技术出版社,2001:124-127
    [58] Herwijnen T V, De Jong W A. Kinetics and mechanism of the CO shift on Cu/ZnO. I. Kinetics and the forword and reverse CO shift reactio. J. Catal.,1980,63: 83-93.
    [59] Grenoble D C, Estadt M M, Ollis D F. The Chemistry and catalysis of the water gas shift reaction. I. The kinetics over supported metal catalysts. J. Catal.,1981, 67: 90-102.
    [60] Salmi T, Hakkarainen R. Kinetic Study of the Low-Temperature Water-Gas Shift Reaction over a Cu/ZnO Catalyst. Appl. Catal., 1989, 49:285.
    [61] Ovesen C V, Stoltze P, Nφrskov J K, Campbell C T. A kinetics model of the water gas shift reaction. J. Catal., 1992, 134:445-468.
    [62] Ovesen C V, Clausen B S, Hammershoei B S, Steffensen G, Askgaard T, Chorkendorff I, Nφrskov J K, Rasmussen P B, Stoltze P, Taylor P J. A Microkinetic Analysis of the Water-Gas Shift Reaction under Industrial Conditions. J. Catal., 1996, 158:170.
    [63] 崔波,张青瑞,曹长青,刘新鹏,张洪全,陈开泰.B117催化剂上一氧化碳中温变换的本征动力学,高校化学工程学报,1997,11(1):55—62
    [64] Newsome D S. Water gas shift reaction. Catal. Rev.- Sci. Eng.,1980, 21(2): 275—318
    [65] 刘全生,金恒芳,王国军,张晓娜.BX型中温变换催化剂上CO变换反应本征动力学研究,工业催化,1999,4:13-19
    [66] 腾素珍.数理统计.大连:大连理工大学出版社,2000:343-390
    [67] 王玲玲,周纪芗.常用统计方法.上海:华东师范大学出版社,1994
    [68] 李绍芬.化学与催化反应工程.北京:化学工业出版社,1986:468-490
    [69] TeGrotenhuis W E, Brooks K P, King D L, Pederson L R, Wegeng E S and Whyatt G A. Differential temperature water-gas shift reactor, in: Proceedings of the Annual National Laboratory R&D Meeting DOE Fuel Cells for Transportation Program, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700