CO+H_2O系统中褐煤直接液化的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤直接液化工艺大多采用氢气作为氢源,并以循环油为溶剂,本课题与此不同的是通过水煤气变换反应产生的氢气作为氢源,在CO和H2O系统中进行非常规加氢达到煤炭液化的目的。工业上CO的价格远远低于氢气,故可降低煤炭液化的成本,亚临界和超临界水对于有机物有很好的溶解性,用水替代循环油作为溶剂,一方面能进一步降低液化成本,另一方面,对于含水量较高的低阶煤——褐煤,在预处理过程中无需对原料进行干燥,因而可减少褐煤干燥工序,从而节约了投资成本和操作费用,具有现实可行性。
     本文以胜利褐煤为主要对象,研究了其在CO/H2O系统中直接液化的工艺条件,包括液化温度、停留时间、煤水比、CO初压、催化剂及其用量以及气氛的影响。以350℃条件下的液化产物为主要研究对象,探讨了液化产物的分离,并对液化油、沥青质和液化固体产物进行了详细的分析和表征。同时还选取淮南煤、小龙潭煤、神华煤和兖州煤做了对比试验,考察和比较了5种煤在CO/H2O系统和H2/四氢萘系统中的液化性能。
     通过对胜利煤加氢液化影响因素的考察,得出胜利褐煤在条件为:350℃,3MPa(起始CO初压),反应停留时间45min,煤水比(质量比)1.2,FeS催化剂,催化剂加入量4wt%下,液化总转化率达到67.28%,其中,油产率44.49%,沥青质产率20.39%,气体产率2.4%,剩余部分为残渣和水分。
     气体产率较低,通过GC分析,其主要气体产物为CO2、CH4、C2H6、C3H6等烃类气体以及少量的氨气、H2S。对液化油和沥青质进行了GC-MS,FTIR,1H-NMR和13C-NMR分析,与传统的H2/四氢萘系统相比,发现液化产物中大多含有酚类物质。通过核磁氢谱和碳谱,计算了液化油中的H分布和C分布,结合GC-MS和红外分析数据推测了胜利煤的液化产物的分子模型和液化机理。
     五种煤在CO/H2O和H2/四氢萘系统中的液化试验表明,CO/H2O系统的煤转化率相对于传统的加氢系统要稍低,在CO/H2O系统中,年轻的胜利褐煤的液化总产率要高于其他高阶煤,并且胜利褐煤的液化油产率和沥青质产率均高于其他煤,说明低价煤更加适合CO/H2O系统中的液化。
     通过对5种煤的液化油和沥青质的氢谱分析计算,发现胜利褐煤和小龙潭褐煤含有较多的羟基、羧基和R-O等,通过对5种煤原煤和各阶段残渣的顺磁共振分析,随着煤化度的增加,g值呈明显的下降趋势。只有胜利煤的线宽△H小幅下降,其它4个煤种的线宽均上升。小龙潭褐煤Ng值最小,淮南煤的Ng值最高。热解使自由基浓度增加,其中胜利煤和小龙潭煤增幅最大,说明低价煤更容易发生热解产生自由基。
In the traditional coal liquefaction technology, direct H2 and cycle-oil are used as the hydrogen source and solvent. In this dissertation, the CO/H2O system was used to replace the traditional H2/cycle-oil or H2/tetralin systems. In CO/H2O liquefaction system, the H2 which comes from the water-gas shift reaction is much more active than the common H2 and it is easy to combine with radicals in the hydrogenation. CO is much easier to get, which represents a significant saving when the cost of operation with CO is much lower than the using of H2 in industry. The sub-supercritical or supercritical water plays a very important part in the CO/H2O system. As a substitute of the cycle-oil, supercritical water (SCW) is also a good solvent to the organics and it is much cheaper than the cycle-oil. Besides, the process using water as a medium does not require drying coal which will low down the cost and the energy consumption. This technology fits for the lower rank coal like the brown coal containting hige content of water.
     In this dissertation, firstly, the influences of Shengli brown coal liquefaction in CO/H2O system was studied including reaction temperature, residence time, ratio of coal and water, initial CO pressure, catalysts and the atmosphere. Liquefied products were analyzed using methods of FTIR, NMR, EPR, GC-MS, GC and MS; and the mechanism of Shengli brown coal liquefaction was inferred. Shengli brown coal, Xiaolongtan brown coal, Huainan bitmminous coal, Yanzhou bituminous coal and Shenhua coal were liquefied both in CO/H2O system and H2/tetralin system to investigate and compare their liquefaction behaviors.
     The optimized technology parameters of the Shengli brown coal in autoclave are as follow:350℃,3MPa (initial CO pressure),1.2 ratio of the coal and water,4wt% FeS catalyst. Under this condition, the total conversion, oil yield, asphaltene yield and gas yield are 67.28%, 44.49%,20.39% and 2.4%. The gas was analyzed by GC, and the main components are CO2, CO, H2, CH4, C2H6 and H2S. Through the 1H-NMR and 13C-NMR analyzing, it is found that the liquid products of the CO/H2O system contain many phenol and ether. The hydrogen and carbon distribution were calculated according to the NMR spectrum. The molecule model of Shengli brown coal and liquefaction mechanism were speculated
     Shengli, Xiaolongtan, Shenghuai, Huainan and Yanzhou coal were liquefied in CO/H2O and H2/tetralin system. The conversion in CO/H2O system is lower than it in H2/tetralin system. In CO/H2O system, the total conversion, oil yield of Shengli brown coal were the highest and it indicates that lower rank coal is fit for the liquefaction in the CO/H2O system.
     The hydrogen distribution of the oil and asphaltene of the 5 coals were calculated through the 1H-NMR spectrum and it is found that there is more hydroxyl and carboxyl in the oil and asphaltene obtained from Shengli and Xiaolongtan coal. These five coals and every step residues were analyzed by EPR and it is indicated that the g factor decrease with the increase of coal rank. The value of△H of Shengli coal decreases and the one of other 4 coal increase after liquefaction. The Ng value of Xiaolongtan coal is the lowest and the one of Huainan is higher. The Ng value increase after liquefaction and the amplitude of Shengli coal is the highest which indicates that the lower rank coal is easier to be liquefied because it may produce much more radicals.
引文
[1]相宏伟,唐宏青,李永旺.煤化工工艺技术评述与展望ⅣV煤间接液化技术[J].燃料化学学报,2001,29(4):289-298
    [2]舒歌平.煤直接液化技术[M],煤炭工业出版社,2003,23
    [3]张玉卓.神华集团大型煤炭直接液化项目的进展[J].中国煤炭,2002,28(5):8-10
    [4]Gao, J. S., Zhang, P. F., and Oelert, H. H. Examination of the hydroliquefaction behavior of Chinese lignite[C].Fuel Science and Technology INT'L,1989,7(3):293-325
    [5]朱晓苏.中国煤炭直接液化优选煤种的研究[J].煤化工,997,(3):32-39
    [6]朱继升,杨建丽.四种有应用前景的煤的液化性能评价[J].煤炭转化.2000,23(2):47-52
    [7]钱晖.21世纪洁净煤技术[J].世界钢铁.2000,20(2):19-21
    [8]梅相银译.世界芳烃及甲醇供需预测[J].石化市场论坛.2002(11):27-28
    [9]张景瑞.煤炭企业实施大集团战略势在必行[J].天津经济.2003,12(4):44-45
    [10]胡徐腾,李振宇.我国能源化工面临的挑战及发展方向[J].国际石油经济.2005,13(9):41-45
    [11]高晋生,常鸿雁,张德祥.煤直接液化中煤浆粘度变化研究进展[J].煤炭转化2003,26(3):21-25
    [12]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社.2005,312-313
    [13]Weller, S. W. Catalysis and catalyst dispersion in coal liquefaction [J].Ener-gy&F uels.1994,(8):415-417
    [14]Wen, C. Y., and Lee, E. S. Coal conversion technology [M]. Addsion-Wesly Reading Publishing Company.1979,429
    [15]孙国权,张馥香,凤雅范.中国煤的加氢适应性之考察[J].燃料化学学报.1981,9(2):97-104
    [16]Zhang, L., Yang, J. L., Zhu, J. S., et al.Properties and liquefaction activiti-es of ferrous sulfate based catalyst impregnated on two Chinese bituminous coals[J].Fuel. 2002,81(7):951-958
    [17]朱晓苏,金嘉璐.我国煤直接液化技术及其工业应用前景[J].煤炭转化.1998,21(2):17-19
    [18]吴春来.发展适合我国煤种与国情的煤转化技术[J].煤炭转化,1994,17(3):9-15
    [19]Liu, Z.,Yang, J,Zondlo, J. W., et al.In situimpregnated iron-based catalysts for direct coal liquefaction[J].Fuel,1996,75(1):51-57
    [20]孙家忠,崔之栋.煤炭液化复合铁系催化剂的研究[J],燃料化学学报.1989,17(4):302-308
    [21]陈建刚,相宏伟,李永旺等.费托法合成液体燃料关键技术研究进展[J].化工学报,2003,54(4):516—523
    [22]纪玉国,赵震,余长春等.Fischer-Tropsch合成钴基催化剂研究进展[J].化工进展,2007,26(7):927—933
    [23]Hu, H. Q., Bai, J. F.,and Guo, S. C.,et al.Coal liquefaction with in situ impregnated Fe2(MoS4)3 bimetallic catalyst[J].Fuel,2002,81(11-12):1521-1524
    [24]叶青.神华集团煤直接液化示范工程[J].煤炭科学技术.2003,31(4):1-3
    [25]高云龙,焦安量.煤液化油发展现状及投资前景分析[J].化工技术经济.2001(6):6-11
    [26]张伟,金俊杰.煤的直接加氢液化工艺[J].洁净煤技术.2001.7(3):31-33
    [27]贾明生,陈恩鉴,赵黛青,煤炭液化技术现状与发展前景,选煤技术2003,4,50—53
    [28]Hirano, K. Outline of NEDOL coal liquefaction process development pilot plant program, Fuel Processing Technology 2000,62:109-118
    [29]高云龙,焦安量.煤液化油发展现状及投资前景分析[J].化工技术经济.2001(6):6-11张伟,金俊杰.煤的直接加氢液化工艺[J].洁净煤技术.2001.7(3):31-33
    [30]Speight, J. G, Moschopedis, S. E. The co-processing of coal with heavy feedstocks [J]. Fuel Processing Technology.1986,13(3):215-232
    [31]Okuma, O. Liquefaction process with bottom recyclicng for complete conversion of brown coal [J].Fuel.2000,79(3-4):355-364
    [32]Cugini, A. V., Rothenberger, K. S., Krastman, D.et al.The use of coal liquefaction catalysts for coal/oil coprocessing and heavy oil upgrading [J]. Catalysis Today.1998, 43(3-4):291-303
    [33]张德祥,高晋生,朱之培.年轻煤在石油重油中加氢液化的研究[J].华东化工学院学报.1986,12(3):315-324
    [34]Shi, Y. L., Shao, L, Olson,W.F,et al.Coprocessing coal with hydrogenatedVacuum pyrolyzed tire oil.[J].Fuel Processing Technology.1999,58(2-3):135-150
    [35]令狐文生,张昌鸣,刘振宇.煤油共处理油品的族组成研究[J].燃料化学学报.2002,30(1):33-35
    [36]申峻,凌开成,邹纲明.煤油共处理过程中的反应机理[J].煤炭转化.1999,22(4):5-9
    [37]Alfred, G. C., Theo, L.K. Lee, G.A. Popper, Peizheng Zhou, The Shenhua coal direct liquefaction plant. Fuel Processing Technology,1999,59.207-215
    [38]高晋生,张佩芳.中国低阶烟煤和石油渣油德混合加工研究[J].华东化工学院学报,1993,19(5):561-567
    [39]凌开成,邹纲明.兖州煤与石油渣油共处理的研究[J].煤炭转化.1997,20(2):62-66
    [40]Wellker, W.Characterization of Mineral Matter in coal and coal liquefaction Residue,Annual Report, Pennsylvania state University Report to ERRI,RP,366-1,1997
    [41]Narain, N. K, Ciuo, D. C., Stiegd, G. J., et al.Amsterdan:Elsevier Science Publisher,1987,111-149
    [42]Vernon, L. W. Free radical chemistry of coal liquefaction:role of molecular hydrogen[J].Fuel,1980,59(2):102-106
    [43]范立明,高俊文,张勇.煤直接液化催化剂研究进展[J].工业催化.2006,14(11):17-22
    [44]Zhu, J. S., Yang, J. L., Liu, Z. Y, Dadyburjor, D. B. et al. Improvement and
    characterization of animpregnated iron-based catalyst for direct coal liquefaction [J]. Fuel Processing Technology.2001,72(3):199-214
    [45]Wang, W. X.,Brown,S. D.,Thomas, K. M,et al.Nitrogen release from a rank series of coals during temperature programmed combustion[J].Fuel.1994,73(3):341-347
    [46]Guin, J, Tarrer,A.,Taylor,L,etal. Mechanisms of coal particle dissolution [J]. Ind.E ng.Chem.Proc.Design Dev.1976,15(4):490-494
    [47]Levent, A., Schobert, H.H. and Erbatur, O. Temperature-staged liquefaction of selected Turkish coals[J].Fuel Proc.Tech.1994,37(3):211-236
    [48]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社.2005,150
    [49]Huang, H,Wang, K.,Wang, S.,et al.Studies of coal liquefaction at very short reaction times.2[J].Energy&Fuel.1998,12(1):95-101
    [50]Benjamin, B. M., Raaen, V. F., Maupin, P. H.,et al.Thermal cleavage of chemical bonds in selected coal-related structures[J].Fuel.1978,57(5):269-272
    [51]Wang, L. and Chen, P. Mechanism study of iron-based catalysts in co-liquefaction of coal with waste plastics[J].Fuel,2002,81(6):811-815
    [52]Koh, K., Nobuo, B., Satoru, M.et al.Studies on the bond cleavage reactions of coal molecules and coal model compounds[J].Fuel Processing Technology.2001,74(2):93-105
    [53]Wei, X.Y, Ogata, E., Zong, Z. M.,et al.Advances in the study of hydroge-ntransf er to model compounds for coal liquefaction[J].Fuel Processing Tech-nology,2000,6 2(2-3):103-107
    [54]郭崇涛.煤化学[M].北京:化学工业出版社,1992,79-80
    [55]Weller,S.W, Kinetics of coal liquefaction:Interpretation of data[J].Energy&F-uels.19 95,9(2):384-385
    [56]Xu, B. and Kandiyoti, R.Two-stage kinetic model of primary coal liquefaction [J]. Energy&Fuels,1996,10(5):1115-1127
    [57]Yoshida, R., Maekawa, Y, Ishii, T.,et al.Mechanism of high-pressure hydrogenolys is of Hokkaido coals.2.Chemical structure of products [J].Fuel.1976,55(4):341-345
    [58]Cronauer, D. C., Shah, Y. T., Ruberto, R. G. Kinetics of Thermal Liquefaction of Belle Ayr Subbituminous Coa 1 [J]. Ind. Eng. Chem. Process Des. Dev.1978,17(2):281-288
    [59]Ramdoss, P. K. and Tarrer, A. R. Modeling of two-stage coal coprocessing process [J].Energy&Fuels,1997,11 (1):94-201
    [60]Sadao, Wasaka.,Shouichi, I.,Takao, H., et al.Study on coal liquefaction characteristics of Chinese coals[J].Fuel.2002,81(11-12):1551-1557
    [61]Abichandani, J. S., Shan, Y. T., Cronauer, D. C.,et al.Kinetics of thermal liquefaction of coal [J].Fuel.1982,61(3):276-282
    [62]高晋生,Oelert, H. H..煤加氢液化反应的研究[J].华东化工学院学报.1982(3):269-284
    [63]Lumpkin, R. E. Recent progress in the direct liquefaction of coal [J].Science,198 8,239:873
    [64]Ceylan, K., Olcay, A. Kinetic rate models for dissolution of Turkish lignites in t etralin under nitrogen or hydrogen atmospheres [J].Fuel Processing Technology.199
    8,53(3):183-195
    [65]Angelova, G. D., Kamenski,N.D. Kinetics of donor-solvent liquefaction of Bulgarian brown coal[J].Fuel,1989,68(10):1343-1346
    [66]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社.2005,128
    [67]高晋生.煤液化生产芳烃的前景.山西化工研讨会论文集:化学工业发展战略研究[C].太原:科学出版社.1990,389-394
    [68]张昌鸣,李允梅,令狐文生等.气-液色谱联合分析煤油共炼产物族组成[J].分析实验室.2003,22(2):24-26
    [69]Arasla, M.K., Imtiaz, A., and Ishaq, M.et.al.Spectral characterization of liquefied products of Pakistani coal.Fuel Producing Technology.2003 (85):63-74
    [70]Huai, H, Marianne, O, and Alec, G. Some Observations of the Interactions between Water and Coal by Proton Magnetic Resonance[J]. Fuel,1994.(73)3:465-469
    [71]Khan, M. A.,Ahmad, I., Ishaq, M. et al.Spectral characterization of liquefied products of Pakistani coal[J].Fuel Processing Technology.2003,85(1):63-74
    [72]Kurt, W.Z., Ronald, J.P., and David, M.G.,et al.A comparison of the carbon-13NM R spectra of solid coals and their liquids obtained by catalytic hydrogenat-ion[J].F uel.1979,58 (1):11-16
    [73]苏克曼,潘铁英,张玉兰.波谱解析法.华东理工大学出版社.2002,5:96
    [74]徐秀峰,张蓬洲13C-NMR及DEPT技术分析气煤加氢产物中沥青烯段分的组成结构.燃料化学学报.1997,25(2):135-138,11
    [75]徐秀峰,张蓬洲,杨保联等.用13C-NMR及技术分析气煤加氢产物中沥青烯段分的组成结构.燃料化学学报.1995,23(4):410-416
    [76]徐元值.实用电子磁共振波谱学—基本原理和实际应用.北京:科学出版社。2008:64
    [77]Thilanga, S., Bandara, G. S., Kamali, K., and Michael, A. W. The Study of Australian Coal Maturity:Relationship between Solid-State NMR Aromaticities and Organic Free-Radical Count.[J] Energy& Fuels 2005,19,954-959
    [78]叶敏,戴广龙.低温氧化煤自由基的顺磁共振试验研究[J]洁净煤技术2006(1)52-55
    [79]郭德勇,韩德馨.构造煤的电子顺磁共振实验研究.中国矿业大学学报[J]1999 28(1):94-98
    [80]李小明,曹代勇不同变质类型煤的电子顺磁共振特征对比分析,现代地质,2009,23(3)531-534
    [81]腐泥煤变质系列的核磁共振谱和顺磁共振谱特征,煤田地质与勘探,199826(3)15-18
    [82]中田真一田中良典,固体核磁共振在非均相催化剂研究中的应用进展:Ⅱ.石油学报:石油加工1998年14(3):27-32
    [83]中田真一田中良典,固体核磁共振在非均相催化剂研究中的应用进展:Ⅰ石油学报:石油加工1998年14(2):36-44
    [84]Jean, M. D., Jean, P, and Claudette, M., et.al. Structural evolution of a
    sedimentologically homogeneous coal series as a function of carbon content by solid state C-NMR[J].Fuel。 1983,62:575-579
    [85]张蓬洲,李丽云,叶朝辉用固体高分辨核磁共振研究煤结构Ⅰ:我国一些煤的结构特征.燃料化学学报[J].199321(3):310-317
    [86]张蓬洲,李丽云,叶朝辉用固体高分辨核磁共振研究煤结构Ⅱ泥煤、褐煤及其腐植酸结构特征.燃料化学学报[J].1993 21(3):327-331
    [87]王丽,张蓬洲用固体核磁共振和电子能谱研究我国高硫煤的结构燃料化学学报,1996,24(6)539-543
    [88]令狐文生,张昌鸣,刘振宇.煤油共处理油品的族组成研究[J].燃料化学学报,2002,30(1):33-35
    [89]Padlo, D. M., Subramarian, R. B. and Kugler, E. L. Hydrocarbon class analysis of coal-derived liquids using high performance liquid chromatography[J].Fuel Processing Technology.1996,49(1-3):247-258
    [90]Saini, A. K, Song, C. Two-dimensional HPLC and GC-MS of oils from catalytical coal liquefaction [J].Am chem soc Div Fuel Chem. Prepr.1994,39 (3):796-800
    [91]万惠民,李桂贞,颜涌捷.高效液相色谱法测定液化煤中的多环芳烃[J].华东理工大学学报.1996,22(2):211-216
    [92]魏贤勇,宗志敏,秦志宏等.煤液化化学[M].北京:科学出版社.2002:140
    [93]阎瑞萍,朱继升,杨建丽等.兖州煤与大庆减压渣油在共处理过程中的相互作用[J].燃料化学学报.2000,28(6):533-536
    [94]McKinney, D. E., Clifford, D. J., and Hou, L., et.al. High performance liquid chromatography(HPLC) of coal liquefaction process streams using normal-phase separation with diode array detection[J].Energy& Fuels.1995,9 (1):90-96
    [95]宫万福,田松柏,付晓恒.分析技术在煤液化油分析中的应用[J].洁净煤技术.2004,10(2):47-57
    [96]李凡.平朔烟煤主要显微组分结构的研究[硕士学位论文].太原:太原理工大学.1993,67
    [97]Herod, A. A., George, A., Islas, C. A, et.al.Trace-Element partitioning between fractions of coal liquids during column chromatography and solvent separation [J]. Energy& Fuels.2003,17(4):862-873
    [98]McClennen, W. H, Meuzelaar, H. L., Metcalf, G. S., et.al.Characterization of phenols and indanols in coal-derived liquids use of curie-point vaporization gas chromato-graphy/mass spectrometry[J].Fuel,1983,62(12):1422-1429
    [99]Sawatzky, H., George, A. E, Smiley, G. T. et.al.Hydrocarbon-type separation of heavy petrpleum fractions[J].Fuel,1976,55(1):16-20
    [100]曹漾波,Schmidt, C E.用低电压高分辨质谱法分析煤液化产物[J].质谱学报,2004,13(4):34-41
    [101]王晓东,王智.紫外分光光度法测定石油产品中的芳烃含量[J].石油化
    工,1998,27(3):209-211
    [102]林燕生.关于TLC/FID法测定误差的探讨[J].石油商计.2000,18(4):21-25
    [103]Li, C. Z., Wu, F., Xu, B., et.al. Characterization of successive time/temperature resolved liquefaction extract fractions released from coal in a flowing-solvent reactor[J]. Fuel.1995,74(1):37-45
    [104]陈五平.无机化工工艺学(一)合成氨[M].北京:化学工业出版社,1981:142-149,
    [105]姜圣阶等,合成氨工学(第二卷)合成氨原料气的净化[M].北京:石油化学工业出版社,1976:134-136.
    [106]张成芳编.合成氨工艺与节能[M].上海:华东化工学院出版社,1988:79,185,189-196
    [107]冯元琦.联醇生产[M].北京:化学工业出版社,1995:65~68
    [108]谭永放、李欣、纵秋云等.QCS-01耐硫变换催化剂的性能及工业应用03.工业催化,1997(4):41-46
    [109]Bohlbro, H. An investigation on the kinetics of conversion of carbon monoxide with water vapor over iron oxide based catalysts[M].2nd Edtion. Copenhagen:Gellerup, 1969
    [110]Fott,P., Vosolsobe, J., Glaser, V. Kinetics of the carbonmonoxide conversion with steam at elevated pressures[J]. Collect. Czech. Chem. Commun,1979(44):652-659
    [111]Chinchen, G.C., Logan, R.H., and Spencer, M. S. Water-gas shift reaction over iron oxide/chromium oxide catalyst,[J]. Appl.Catal.1984(12); 97
    [112]邱世庭、潘银珍,丁白全等。DG中温变换催化剂本征动力学研究[J],化肥与催化,1988(3):8-14
    [113]吕待清.B107中温变换催化剂反应动力学测试[J].化肥与催化,1984(4):9-14
    [114]李杰,刘庆。B108中温变换催化剂宏观动力学的研究[J].燃料化学学报,1989,17(4):337-343
    [115]崔波.低汽/气LB型中温变换催化剂宏观动力学研究[J]。化肥与催化,1988(4):1-4
    [116]牟占军,钟杰,刁丽彤等.铁系无铬型高温变换催化剂本征动力学研究[J]。工业催化,1998(5):32-37
    [117]刘全生、金恒芳.在BX型中温变换催化剂上CO变换反应本征动力学的研究[J].内蒙古工业大学学报,1994,13(2):20-28
    [118]Hughes, C. P., Sridhar, T., and Lim, S.C., et.al. Reactions of brown coals with CO/H2O in the presence of sodium aluminate[J]. Fuel.1993,72(2):205-210
    [119]Mukherjee, D. K., Sengupta, A. N., and Choudhury, D.P. Effect of hydrothermal treatment of caking propensity of coal [J]. Fuel 1996,75(4):477-482
    [120]lino, M., Takanohashi, T., and Li, C., et.al. Increase in extraction yields of coals by
    water treatment[J].Energy Fuels,2004,18(4):1414-1418
    [121]John, S.T., Chan, W., Roy J, and Marc, M. Reactions of brown coals with CO-H2O in the presence of alkaline catalysts in a well-stirred autoclave with hot-charge facility [J]. Fuel.1994,73(10):1628-1631
    [122]Chris, K.J., Hulston, P. J. and Redlich, W. R. et.al. Effects of added transition metals and two-stage heating on reactions of sodium-aluminate treated coals in water with CO, H2 and CO-H2 mixtures [J]. Fuel.1997,76(3):247-256
    [123]Artanto, Y. Jackson, W.R., and Redlich, P.J.et al. Liquefaction studies of some Indonesian low rank coals [J]. Fuel.2000,79(11):1333-1340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700