MTC技术理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿渣MTC固井液在性能、经济以及环保上的优势使得其一问世就得到了大家的广泛关注。对矿渣MTC的研究取得了阶段性的成功,使其应用越来越广泛,但还存在许多机理研究和韧性问题的不足,限制了矿渣MTC技术的发展及推广应用。为此,本文进行了理论与实验研究的探讨。
     利用X射线衍射物相分析方法研究了矿渣和膨润土的物质组成以及矿渣MTC不同水化阶段主要生成物的变化情况,并结合硅酸盐化学方面的理论得到了矿渣MTC水化机理。矿渣MTC水化实质是利用激活剂破坏矿渣中的玻璃体,使得矿渣中的水泥熟料物质可以充分水化;并且矿渣MTC中的SiO_2在强碱存在的条件下,水化生成活性的SiO_2,形成的聚[SiO_4]~(4-)四面体结构,有助于矿渣MTC凝固体的胶结;另一方面SiO_2本身可以与水泥熟料水化后产物Ca(OH)_2反应生成低C/S的C-S-H凝胶。
     实验研究得出:增加泥浆的加量,可以提高矿渣MTC的抗压强度,为矿渣MTC用于处理废弃泥浆提供了理论依据和实验基础;矿渣MTC可以与泥饼能够实现整体固化胶结;MTC固化体的体积收缩率远远小于水泥的体积收缩率;而且井壁界面性质对MTC固化体的二界面胶结强度影响较小,从化学反应分析入手理论上得出了矿渣MTC具有低收缩率的原因并得出了矿渣MTC提高固井第二界面理论。利用X射线粒径分析仪得出了矿渣、微硅、漂珠三种颗粒的粒径分布情况,并结合紧密堆积理论和前面得出的活化SiO_2提高矿渣MTC强度理论,通过大量的实验研究得到了低密高强矿渣MTC体系,并完善了低密高强矿渣MTC理论。碳纤维在不同温度条件下都具有提高矿渣MTC固结物抗折强度的能力。矿渣MTC凝固体在1年的时间内其强度在逐渐增加,1年后其强度有缓慢的降低。
     实验得出矿渣MTC在高温(实验的最高160℃)养护条件下,强度会随着养护时间的延长而不断增大;而波特兰水泥则在养护温度超过110℃之后,强度随养护时间而不断降低。在前人对耐高温水泥研究的基础上,结合矿渣MTC的水化过程可以得出:矿渣MTC具有好的耐高温性能。而且,低C/S的C-S-H凝胶具有较低的碱性并且水化产物Ca(OH)_2的消耗解释了实验得到的矿渣MTC具有较好的耐酸、镁离子和硫酸根离子侵蚀能力的原因。
     在现场的研究证明矿渣MTC固井技术可以用于长封固段、易漏层段以及不规则井眼等波特兰水泥难以克服的复杂条件下的固井施工,并能取得很好的固井质量。
Slag MTC cementing system has been extensively concerned owing to its advantage on performance, economically and environmentally. Though the study of MTC slurry has got episodic succeed, but there are still many aspect to be improved, and that restrict its development and popularized. Here is some theory and experiment research for MTC technology.
     The constitute of mineral slag and bentonite and the change of slag MTC system during different hydration phase was analysed by XRD, as well slag MTC systerm hydration mechanism was studied on the basis of the chemical theory of silicate. During the hydration of slag MTC, cement clinker can be hydrated completely, as a result of the decomposition of vitreum, SiO_2 can be hydrated to active SiO_2 which can also be named [SiO_4]~(4-) under strong caustic surrounding. The active SiO_2 can be polymerized to tetrahedron which is beneficial to the cementation of MTC slurry congelation; alternately SiO_2 can react with Ca(OH)_2 and get C-S-H gel with low C/S ratio.
     The experiments shows that compressive strength can be improved by increasing the addition of the mud, the essential constituent of waste mud is similar to the components of the mud which provide theory criteria and emperiment basis. On the solidification of mud cake and the rate of volume contraction of MTC slurry and simulated experiments on the two-interface showed, MTC slurry can be entirely solidified with mud cake; the rate of volume contraction of solidified MTC was far less than the same rate of cement; the interface quality of wellface had less effect on the bonding strength of the MTC solidification. The reason for the low rate of volume contraction of MTC slurry was studied on chemical reaction. How the MTC slurry can improve the second contact surface, including the solidification of mud cake and undisplaceable mud in of two-interface system, and the low contraction rate of MTC slug. The size distribution of slag, micro-silicon and hollow microsphere was analysed by X ray granulometric analyzer, in combination with the theory of close packing and active SiO_2 can improve MTC intensity, the light weight and high intensity MTC slurry system was builded and its theory was completed. The intension of slag MTC congelation was incremental in one year and decreased slowly one year later.
     Experiments shows that MTC slurry can remain its intensity under high temperature(the peak 160℃) surroundings, which depends on C-S-H gel with low C/S ratio by MTC slurry hydration. The acid resistance and resistance to erosion resulting from Mg~(2+) and [SO_4]~(2-) can be explained by the alkalescency of C-S-H gel with low C/S ratio.
     In-situ experiments indicates slag MTC cementing technology can be applied to complicated circumstance, such as long interval isolation, leaky formation and unregular wellbore et al and can improve the cementing quality effectively.
引文
[1] 刘崇建,黄柏宗,徐同台等.油气井注水泥理论与应用.北京:石油工业出版社,2001.9
    [2] 吴达华.泥浆转化为水泥浆技术综述.钻井液与完井液,1995;12(1): 69~77
    [3] 王俊清.多功能完井液和高密度矿渣固井液技术的研究.钻井液与完井液,1999;16(6):20~23
    [4] 葛红江.高温深井矿渣 MTC 技术研究.西南石油学院博士论文,2000
    [5] 张林森.废弃水基钻井液的利用-MTC 固井技术.油气田环境保护,1997;7(2):3~5
    [6] Cowan K M, Hale A H, et al. Conversion of Drilling Fluids to Cements With Blast Furnace Slag: Performance Properties and Applications for Well Cementing. SPE 24575,1992
    [7] Uday A. Tare. etal: Investigation of Blast Furnace Slag Addition to Water-Based Fluids for Reduction Formations, SPE 47800 1998
    [8] Nahm J J, Javanmardi K, et al. Slag Mix Mud Conversion Cementing Technology: Reduction of Mud Disposal Volumes and Management of Rig-Site Drilling Wastes. SPE 25988, 1993
    [9] Bells S. Mud-to-Cement Technology Converts Industry Practice. Petroleum Engineering International, 1993(9):51~55
    [10] Wilson W N, Carpenter R B, et al. Conversion of MUD to Cement, SPE 20452, 1990
    [11] 刘崇建译.国外油井注水泥技术.成都:四川科学技术出版社,1992;46~59
    [12] 陈馥等.钻井液转变成水泥浆的室内研究.钻井液与完井液,1996;13(6):33~35
    [13] 陈鹏等.钻井液转变成固井液的固井技术研究.石油钻采工艺,1997;19(1):30~35
    [14] 赵林等,江汉油田盐水聚合物泥浆转化为水泥浆的研究及应用,油田化学,1998;(1):18~21
    [15] 吴达华等.新型“钻井”固井液工艺和技术(Ⅰ) .钻井液与完井液,2002,;19(3):1~6
    [16] 吴达华等.新型“钻井”固井液工艺和技术(Ⅱ) .钻井液与完井液,2002;19(4):1~6
    [17] 陈礼仪.钻井液转化为水泥浆技术的研究.天然气工业,1998;18(6):57~59
    [18] 陈鹏,陈大钧,杨世海等.TMC 的室内配方研究.西南石油学院学报,1996;18(3):106~111
    [19] 路宁.用多功能钻井液设计超低密度矿渣水泥浆.钻采工艺,1998;21(6):63~68
    [20] 路宁等,低密度高炉矿渣水泥浆固井技术,石油学报,1999(6):87~90
    [21] 路宁等,低密度 MTC 固井液在低渗透气井的试验研究,特种油气藏,1998(2):55~59
    [22] 路宁等,高密度高炉矿渣水泥浆体系研究,钻采工艺,1999;27(5):62~65
    [23] 王文立等.矿渣 MTC 技术研究及首次应用.石油钻探技术,1996;24(2):29~36
    [24] 牟德刚等.利用钻井泵施工的 MTC 固井技术.石油钻探技,1998;21(1):32~33
    [25] 牟德刚等.乌龙 1 井低密度 MTC 钻井泵双级固井工艺.石油钻探技术,2000;23(6):30~31
    [26] 郑明学等,矿渣 MTC 固井技术在临盘地区的应用,钻井液与完井液,2001:18(1):44~46
    [27] Swamy R N: Cement replacement materials, Surry University Press. 1986 -259
    [28] Schlemmer R P, Branam N M, et al. Drilling Fluid Conversion: Mud Selection and Conversion Techniques. SPE26324, 1993
    [29] Schlemmer R P, Branam N M, et al. Drilling Fluid Conversion: Selection and Use of Portland or Blast-Furnace-Slag Cement. SPE Drilling & Completion, 1994(12): 249~255
    [30] Cowan K M. Solidify Mud to Save Cementing Time and Reduce Wastes. World Oil, 1993;(10):43~50
    [31] 韩建成.多晶 X 射线结构分析.上海:华东师范大学出版社,1989:4 ~8
    [32] 李树棠.X 射线衍射实验方法.河北阜城:冶金工业出版社,1993:33~47
    [33] 林建华,荆西平等.无机材料化学.赵学范.北京:北京大学出版社,2006;267~177
    [34] 杨南如,岳文海.无机非金属材料图谱手册.武昌:武汉工业大学出版社,2000;5~86
    [35] FMLea.水泥和混凝土化学[M] .唐明述,等译.北京:中国建筑工业出版社,1980;565~604
    [36] 丁岗,刘东青.油井水泥工艺及应用.东营:石油大学出版社,2000;57~66
    [37] 杨南如.C-S-H 凝胶结构模型研究新进展.南京化工大学学报,1998;20(2):78~84
    [38] 杨南如.碱胶凝材料形成的物理化学基础Ⅰ[J] .硅酸盐学报,1996;24(2):209~215
    [39] 杨南如.碱胶凝材料形成的物理化学基础Ⅱ[J] .硅酸盐学报,1996;24(4):459~465
    [40] 潘庆林,孙恒虎,吴绍军.粒化高炉矿渣的微观结构和物相分析.水泥,2004;(5):4~7
    [41] 陈友治.碱矿渣水泥的理论基础.新世纪水泥导报,2000;(5):10~12
    [42] 吴达华,吴永革,林蓉.高炉水淬矿渣结构特性及水化机理.石油钻探技术,1997;25(1):31~33
    [43] 陆平.水泥材料科学导论.上海:同济大学出版社,1989;145~156
    [44] 陈鹏.高炉矿渣的水硬活性及其评定方法.钻井液与完井液,1999;16(1):19~21
    [45] Cowan K M,et al.Conversion of Drilling Fluids to Cements With Blast Furnace Slag.Performance Properties and Applications for Well Cementing.SPE 24575
    [46] 陈鹏,刘爱平,赵树立等.钻井液转变成固井液的固井技术研究.石油钻采工艺,1997;19(1):30~35
    [47] 彭志刚.水硬高炉矿渣 MTC 固井技术研究博士学位论文,西南石油学院,四川南充:2004
    [48] 牟德刚.矿渣 MTC 固井技术的研究及推广应用博士学位论文,西南石油学院,四川南充,2002
    [49] 陈庭根,管志川.钻井工程理论与技术.东营:石油大学出版社,2000;100~110
    [50] 鄢捷年.钻井液工艺学.东营:石油大学出版社,2001;65~72
    [51] 顾军,高德利,石凤歧等.论固井二界面封固系统及其重要性.钻井液与完井液,2005;22(2):7~10
    [52] 顾军,高兴原,刘洪.油气井固井二界面封固系统及其破坏模型.天然气工业,2006;26(7):74~76
    [53] 弓玉杰,吴广兴,万发明等.固井二界面问题的初步分析与试验研究.石油钻采工艺,1998;20(6):38~43
    [54] 杨杰,刘海静,张明玉等.提高水泥环二界面胶结质量方法的探讨.钻井液与完井液,2004;21(5):36~39
    [55] 杜江.提高水泥环第二界面胶结质量的固井技术.石油钻采工艺,1999;27(1):35~36
    [56] 黄柏宗.紧密堆积理论优化的固井材料和工艺体系.钻井液与完井液,2001;18(6):1~9
    [57] 候再恩,张可村.堆积颗粒系统中颗粒级配的优化.高校应用数学学报 A 辑,2005;20(4):409-416
    [58] 艾伦 T[英].颗粒大小的测定[M].喇华璞译.北京:中国建筑出版社,1984:146-147
    [59] 李坤,徐孝恩,黄柏宗.紧密堆积优化水泥体系的优势与应用.钻井液与完井液,2002;19(1):1-4
    [60] Benge OG,Dickerson, J.P:Evaluation of Blast Furnace Slag Slurries for Oilfield Application,SPE27449,1994
    [61] Benge OG,Webster WW.Blast Furnace Slag Slurries May Have Limits for Oilfield Use.Oil and Gas Journal,1994-07
    [62] 杨振杰,吴修宾,叶海超.矿渣 MTC 固化体的脆裂问题及改进途径.石油钻采工艺,2001;23(3):31~35
    [63] 彭志刚,何育荣,刘崇建等.矿渣 MTC 固化体开裂的本质原因分析.天然气工业,2005;25(5):72~74
    [64] 陆平.高强水泥石的 GPC 研究.硅酸盐学报,1986;14(2):23~25
    [65] 肖志兴.油井水泥水化过程中微晶作用机理分析.石油钻采工艺,1998;20(5):46~49
    [66] 步玉环.纤维水泥性能改善机理及技术研究博士学位论文.中国石油大学,山东东营:2005
    [67] Erik B.Nelson.Well Cementing.刘大为,田锡君,廖润康(译).沈阳:辽宁科学技术出版社,1994:209~211
    [68] 王文立.矿渣 MTC 固化物高温性能试验.石油钻采工艺,2002;24(5):30~32
    [69] 葛江红,刘崇建,谢应权.矿渣胶结物在高温下脆裂的原因及预防措施研究.天然气工业,2002;24(4):43~45
    [70] 杨杰,覃永,陈渤海等.提高矿渣石高温高压强度的方法探讨.钻井液与完井液,2002;19(3):18~20
    [71] 黄柏宗,林恩平,吕光明等.固井水泥环柱的腐蚀研究.油田化学,1999;16(4):377~383
    [72] Shen, J.C . Effects of CO2 Attack on Cement in High-Temperature Applications.SPE18618-MS,1989
    [73] Bruckdorfer.Carbon Dioxide Corrosion in Oilwell Cements.SPE15176-MS,1986
    [74] 葛江红,刘崇建,谢应权.矿渣 MTC 胶结物抗腐蚀性能研究.西南石油学院学报,2000;22(2):54~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700