低渗透萨零组油层注水开发技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低渗透油田注水开发是一个世界级的难题。低渗透储层本身的潜在损害因素被外来流体诱导,容易发生多种储层损害,造成堵塞,从而降低流体在地层中的渗流能力,引起注水井注入压力升高,注入能力下降,进而使油井产能下降,油水井间难以建立起有效的驱动体系。大庆油田萨中开发区萨零组油层属三角洲外前缘沉积砂体,是典型的低渗透砂岩储层,具有一定的油气丰度和地质储量,但储层粘土含量高,具有强水敏、偏强速敏性质,开发难度大。本研究在了解、掌握国内外低渗透油田注水开发防膨、解堵状况的基础上,深刻剖析萨零组油层的地质特征,从以下几个方面开展了大量研究,探索了萨零组油层注水开发的可行性。
     针对试验区解释厚度小而产油能力相对较高、原被扣除的高阻夹层中部分层具有含油产状的情况,在研究细化含钙储层类型和四性关系的基础上,重新选择对含钙储层岩性响应好的电测曲线,制定了含钙储层电性研判标准,采用微电极幅度差比值、尖锐度,声波回返程度、方波、密度曲线共5种参数综合判别含钙储层,制定了含油钙电性判定新标准和含油钙储层细化新标准。新标准进一步细化了含油层系,重新核实了地质储量,与试验区动态资料吻合较好。结果表明,试验区判钙划准率从79.6%上升到92.8%,提高了13.2%。进一步补充和完善了萨零组储层划分操作规程。
     使用X射线衍射仪、扫描电镜、原子吸收光谱等手段,检测了萨零组储层性质。萨零组油层属中低孔隙度、低渗透储层,粘土矿物含量高,主要为蒙脱石、伊利石和高岭石,其中以高岭石为主;油层岩心表面颗粒排列较紧密;孔隙发育较差,连通性较差;颗粒表面生长有次生石英;长石颗粒易被溶蚀。根据砂岩储层敏感性评价实验程序行业标准,对萨零组岩心进行的“五敏”室内实验评价后认为:萨零组储层为强水敏、偏强速敏、强盐敏、中等偏强酸敏、弱压敏储层。在注水开发过程中主要解决好强水敏和偏强速敏对油层造成的损害。
     对不同类型粘土稳定剂利用凯式定氮法测定有效物含量,用离心法测定防膨率,用静态失重法测定溶失率,用X射线衍射法测定钙蒙脱石在浸泡粘土稳定剂、饱和乙二醇蒸汽和水洗实验前后的晶面间距,用岩心流动实验进一步评价防膨效果、优化防膨剂最佳注入量和注入周期,用静态吸附法测定吸附滞留量,通过比较分析实验结果后认为:氯化钾型粘土稳定剂DNT-14具有良好的性能指标,其最佳浓度为3.0%,与地层水及优选解堵配方体系溶液都具有良好的配伍性,最大程度降低了粘土稳定剂本身造成的粘土膨胀,不易被水分子或有机分子取代,耐冲洗能力强,静吸附量最低,最佳的注入量为5PV~10PV,最佳注入周期为5PV~10PV。
     通过对萨零组储层岩心溶蚀率、破碎率实验评价及长、短岩心解堵模拟实验研究,优选出萨零组储层的解堵配方: 12%HCl+0.5%HF+0.5%HBF4+3%CH3COOH。该解堵液体系的主要特点为:①能较好地增加岩心的渗透率、保持岩心的强度和完整性;②缓速性能好,能有效降低酸岩反应速度,增大酸的作用距离,达到深度酸化作用;③酸液体系中的粘土稳定剂、缓蚀剂、铁离子稳定剂效果良好,防酸渣性能优良。酸液体系各组分和配比合理,能有效减少酸化过程中的二次伤害,满足现场施工条件。
     针对试验区先期生产井供液能力均较差、不能连续生产的问题,在试验区1口井限流法压裂取得较好效果并对压后油层产能和流体物性进行评估的基础上,结合萨零组储层特征,从压裂液体系、支撑剂体系以及压裂工艺三方面进行试验研究,解决了萨零组压裂改造过程中的储层敏感性和支撑剂镶嵌问题,创生出防膨压裂工艺。
     利用室内研究结果,开展了萨零组储层添加不同浓度粘土稳定剂条件下的矿场水驱试验研究,验证并确定了注入水中最佳的粘土稳定剂浓度。
     该研究形成了萨零组储层精细地质研究、防膨压裂、复配酸解堵及注水开发配套技术,创新出萨零组“五敏”特性下的注水开发工艺。实践证明,萨零组油层注水开发可行,水驱采收率在15%左右。该技术推广潜力较大,在大庆喇萨杏油田具有广阔的应用前景。
Water injection at Low permeability oilfield has become a piece of world-class puzzle. The local potential damage factors at Low permeability reservoir are provoked by foreign fluids to cause multiple formation damage and bring about plugging,which then reduces the percolation of fluids at reservoirs, enhance the injection pressure of injection wells, decrease the injection capacity, and further reduce the oil well productivity, so it is difficult to build a effective driving system between oil and water wells. The Saertu oil layers at Daqing oilfield belong to a kind of sedimentary exterior sandstone body at delta region. It is a typical low permeability sandstone reservoir, which have definite oil and gas richness and geological reserves. Yet it is difficult to develop this reservoir because of high clay content that causes strong water-sensitivity and velocity sensitivity. On the bases of a lot of data about swelling proof and unplugging for home and abroad low permeability oilfield developmnent by waterflooding, the geologic characteristics of the Saling Group oil layers are overall understood. Then a great many of studies are performed from several aspects as follows to know the feasibility of waterflooding type at oil layers of Saling Group.
     Aiming at such cases of small interpreted thickness but high productive capacity and of oil-bearing occurrence at some layers of high-resistance interlayer deduced originally, on the bases of refinement of calcium reservoir types and four propertied, electric logs in response well to calcium reservoir lithology are renewed to establish a determination standard of calcium electrical reservoir electrical property. New standards for judging electrical properties within oil-bearing calcium and refining oil-bearing reservoir are established with 5 parameters to identify calcium reservoir such as Microelectrode Amplitude Difference Ratio, Sharpness, and Sound Wave Reversion Degree, Square Wave and Density curves together. The new Standards further refine the oil-bearing series, verify the geological reserves again that is consistent with the pilot performance data well. The precision of calcium judgment at the testing area has been enhanced by 13.2% from 79.6% up to 92.8%. This work further supplement and perfect the operation specifications of reservoir division at Saling Group.
     The reservoir properties of Saling Group are checked by several instruments as X-ray diffractometer, scanning electron microscope and atomic absorption spectrum, etc.. The Saling Group is a mediately and low porous, low permeable reservoir with high content of clay minerals include smectite, illite and kaolinite,among which the kaolinite has the most content. The grains at core surface arrange relatively compactly at the reservoir. The porosity develops poorly with bad connectivity. Secondary quartz grows on the particle surface. The feldspar particles can easily be eroded. 5 sensitivities of Saling Group cores are evaluated in lab according to the Experimental Sequence Industry Standard of Sandstone Reservoir Sensibility Evaluation. The Saling Group is a kind of strong water-sensitivity, partly strong velocity-sensitivity, strong salt-sensitivity, Moderate apt to strong acid-sensitivity, inferior pressure-sensitivity. In the process of waterflooding, the damage caused by strong water-sensitivity and partly strong velocity-sensitivity should be good dealt with.
     The valid content, swelling proof ratio and dissolution ratio of different types of clay stabilizer are measured by methods of Kjeldahl Nitrogen determination, centrifuging and static weight loss aspectly. The interplanar distances of Ca-smectite before and after soak by clay stabilizers, saturation by glycol vapor and water cleaning are measured by X-ray diffraction method in lab. The antiswelling effect is evaluated further by core flow experiments to optimize the optimal injection rate and period of the antiswelling agent. And the adsorptive retention is measured by static adsorptive process. The conclusions gained from the comparative analysis with the experimental results are as follows: DNT-14 is a type of clay stabilizer of potassium chloride with favorable performance index; its optimum concentration is 3.0%; it is well compatible with formation water and/or the optimized unplugging formulation system; it reduces the degree of the clay swelling by itself to the maximum; it is difficult to be replaced by water molecules or organic molecules; it has strong capacity against water washing; it has less static adsorption; its optimum intake volume and injection period are the same as 5~10PV.
     The unplugging formulation for the Saling Group is optimized by evaluation of erosion ratio and breaking ration of cores and from modeling experiments with long and short cores in lab, which is 12%HCl+0.5%HF +0.5%HBF4+3%CH3COOH. The principal features of the unplugging fluid system are as follows:①it could preferably increase cores' permeability and keep the cores' intensity and integrality;②its good performance of reaction velocity reduction could effectively decrease the reaction rate of acid-rock to increase the acerbic range to achieve deep acidification;③The clay stabilizer, corrosion inhibitor Fe-stabilizer in the acid system have good effect for acid residue prevention, and every component and the mixture ratio in the acid system are reasonable which could effectively reduce the secondary damage in the process of acidization and fit for the site operation.
     Aiming at the early production wells at the testing area that could not produce continuously for bad flowing capacity, on the bases of a successful flow limited fracturing and post evaluation of reservoir productivity and fluid properties for a well, in combination with the reservoir properties, the questions about reservoir sensitivities and propping agent incrustation are solved in the process of fracturing from 3 aspects as fracturing fluid system, propping agent system and fracturing technology. A new fracturing technology is put forward.
     Based on the results in lab, waterflooding field test was carried out under conditions of diffirent clay stabilizer concentration at the Saling Group reservoir. And the optimum concentration of the clay stabilizer in injection water was decided.
     In these studies, a series of technologies such as the fine geologic research, antiswelling fracture, unplugging with composite acids and correlated waterflooding methods have become a new system for the development by waterflooding at the Saling Group with "5 sensitivities”. The practice proves that it is feasible for the Saling Group to be developed by waterflooding with water recovery of about 15%. This technological system has good potential and prospect for application at the La-Sa-Xing oilfield in Daqing.
引文
[1]李道品,等.低渗透砂岩油田开发[M].北京:石油工业出版社,1997.9:4.
    [2]张蕾.低渗透油田开采现状[J].中外科技情报,2006(1):4-11.
    [3]张洪军.注水水质对储层渗流物性及油藏开发动态指标的影响研究[D].南充:西南石油学院,2003.
    [4]李兴训.水驱油田开发效果评价方法研究[D].成都:西南石油学院,2005.
    [5]秦同洛.低渗透油田开发的若干问题[J].断块油气田,1994,1(3):21-23.
    [5]巢华庆.大庆低渗透油田开发技术与实践[J].大庆石油地质与开发,2000,19(5):1-3.
    [6]李莉,韩德金,周锡生.大庆外围低渗透油田开发技术研究[J].大庆石油地质与开发,2004,23(5):85-87.
    [7]韩德金,张凤莲,周锡生,等.大庆外围低渗透油藏注水开发调整技术研究[J].石油学报,2007,28(1):83-91.
    [8]李莉.大庆外围油田注水开发综合调整技术研究[D].廊坊:中国科学院渗流流体力学研究所,2006.
    [9]张绍槐,罗亚平,等.保护储集层技术[M].北京:石油工业出版社,1993.1:2-199.
    [10]李克向.保护油气藏概念与技术[J].石油钻采工艺, 2000, 22(5): 1-5.
    [11]单华生,姚光庆,周锋德.储层水洗后结构变化规律研究[J].海洋石油, 2004.3: 62-66.
    [12]赵跃华,王敏,樊社民.宝浪油田储层渗流参数特征及油层伤害机理研究[J].河南石油, 2002, 16(1): 23-27.
    [13]张绍槐,李琪.保护储集层的控制及模拟技术[J].石油钻采工艺, 1994, 16(5): 60-66.
    [14]刘立支.聚合物驱油层损害机理[J].胜利学刊, 1998, 12(2): 14-16.
    [15]戴彩丽,张贵才,葛际江.油气层损害机理及处理[J].钻采工艺, 1998, 21(3): 30-33.
    [16]袁权,王永清,李海涛.射孔完井中储层损害机理分析及保护技术[J].西部探矿工程, 2006(10): 114-116.
    [17]刘伟,董胜祥.浅谈钻井过程中油气层的损害与保护[J].西部探矿工程, 2001(1): 39-41
    [18]袁权,王永清,李海涛.射孔完井中储层损害机理分析及保护技术[J].西部探矿工程, 2006(10): 114-116.
    [19]祝明华.中原油田油层化学解堵工艺技术应用现状[J].油田化学, 1996, 13(1): 88-92.
    [20]常子衡,等.石油勘探开发技术(上册)[M].北京:石油工业出版社,2002.5:447-448.
    [21]杨永超,崔大庆,谭国华,等.高压水射流解堵技术的研究及应用[J].油气井测试, 1998, 7(4): 47-51.
    [22]毛晶,迟森,黄丽敏,等.高压水旋转射流解堵工艺技术在吉林油田的应用[J].油气井测试, 2002, 11(3): 35-38.
    [23] JOHNSON V E Jr, CONN A F, EINDENMUTH W T, etal. Self-resonating cavitating jets. Proceedings of the 6th International Symposium on Jet Cutting Technology[C]. Cranfield BHRA, 1982: 1-26
    [24]李根生,易灿,黄中伟,等.自振空化射流改善油层渗透率机理及实验研究[J].中国石油大学学报(自然科学版), 2007, 31(1): 72-76.
    [25]易灿,李根生,郭春阳,等.自振空化射流改善油层特性实验研究及现场应用[J].是有学报, 2006, 27(1): 82-86.
    [26]周万山,李迎环,王玉铃,等.声波技术在石油开采中的应用[J].特种油气藏, 2002, 9(2):74-76.
    [27]张永发,祝济之,胡长华.超声波地层解堵机理研究初步[J].北京理工大学学报, 2006, 26(5): 397-340.
    [28]张建良,肖然,彭斌望,等.超声波采油技术的原理及应用[J].油气田地面工程, 2006, 25(7): 50-51.
    [29]杨永超,宋新华,刘明锋.超声波油层解堵技术的应用[J].油气井测试, 1999, 8(3): 46-50.
    [30]蒋海岩,张建国,袁士宝,等.声波助排解堵技术研究及现场应用[J].石油钻采工艺, 2006, 28(2): 65-70.
    [31]周万山,李迎环,王玉铃,等.声波技术在石油开采中的应用[J].特种油气藏, 2002, 9(2): 74-76.
    [32]胡博仲,刘顺生,杨宝君.解除近并地层污染技术[J].石油钻采工艺, 1995, 17(4):72-79.
    [33]李伟翰,颜红侠,王世英,等.近井地带解堵技术研究进展[J].油田化学, 2005, 22(4): 381-384.
    [34]王涛.高能气体压裂技术在濮城油田的研究与应用[J].油气井测试, 2004, 13(5): 73-75.
    [35]陈惠广,丁玲,杨清献.利用物理技术解决地层堵塞的现场应用[J].内蒙古石油化工, 2003, 29(4): 192-193.
    [36]田和金,薛中大,张杰,等.高能气体压裂联作技术进展[J].石油钻采工艺, 2002, 22(4): 67-70.
    [37]张杰,张伟峰,宋和平,等.多脉冲高能气体压裂-二氧化氯复合解堵技术研究[J].西安石油学院学报(自然科学版), 2003, 18(3): 21-25.
    [38]贾选红.复合解堵技术在辽河油区的应用[J].特种油气藏, 2005, 12(3): 83-87.
    [39]李伟翰,颜红侠,王世英,等.多脉冲高能气体压裂-热化学解堵综合增产技术[J].油田化学, 2005, 22(3): 223-226.
    [40]刘涛,曹亚明,王桂杰,等.复合压裂解堵技术的研究与试验[J].小型油气藏, 2006.12: 45-50.
    [41]汪仲清.液态流体的粘度及磁处理降粘作用机理[J].石油学报, 1995,16(4): 154-160.
    [42]汪仲清.磁处理对物质系统热性质的影响[J].石油大学学报(自然科学版), 1995, 19(6): 122-125.
    [43]汪仲清.磁场对液态物质分子的作用机制[J].石油大学学报(自然科学版), 1998, 22(4): 122-125.
    [44]于鑫,吴建朝,齐德山,等.强磁振荡脉冲增注工艺在胡庆油田的研究与应用[J].断块油气田, 2003, 10(4): 74-77.
    [45]史凤琴.近井底地带损害处理技术综述[J].钻采工艺, 97, 20(2): 16-22.
    [46]李泉美,崔效令,贺军昌.电脉冲解堵工艺技术在桥口油田的应用[J].钻采工艺, 97, 25(4): 81-83.
    [47]贾富泽,李幸兰,李建勇,等.低频电脉冲解堵技术在油田生产中的应用[J].内蒙古石油化工, 2006(5): 172-173.
    [48]卢瑜林.注水井水力解堵技术的研究与应用[J].江汉石油科技, 2006, 16(1): 40-43.
    [49]庾文静,罗邦林,蒲祖凤. SD土酸解堵酸化体系研究与应用[J].天然气工业, 2005.3: 102-105.
    [50]郑清远.大庆油田注水井增注技术现状与评价[J].油田化学, 1995, 12(2): 181-184.
    [51]郭志远,胡新宇,李新艳.注水井土酸酸化机理的研究与应用[J].内蒙古石油化工, 2007(6): 103-104.
    [52]张卫东,程玉虎,朱好华.油水井ZHJ系列堵剂的研究与应用[J].油田化学, 1995, 12(3): 222-230.
    [53]郑云川,赵立强,刘平礼.粘弹性表面活性剂胶束酸在砂岩储层分流酸化中的应用[J].石油学报, 2006, 27(6): 93-96.
    [54] Briggs T R. Emulsions with finely divided solids[J]. J. Ind. Eng. Chem., 1921, 13(11): 1009-1010.
    [55] Becher P. Encyclopedia of emulsion technology[M]. New York: Marcel Dekker, 1983: 129-135.
    [56] Levine S, Sanford E. Stabilization of emulsion droplets by fine powders[J]. Can. J. Chem. Eng., 1985, 62(2): 258-268.
    [57] Tambe D E, Sharma M M. Factors controlling the stability of colloid-stabilized emulsions[J]. J. Colloid Interface Sci., 1994,162(1):1O10.
    [58] Menon V B, Wasan DT. Interfacial effects in solids-stabilized-emulsion: Measurements of film tension and particle interaction energy[J]. J. Colloid Interf., 1988, 124(1): 317-327.
    [59]李明远,甄鹏.原油乳状液稳定性研究Ⅳ:界面膜特性与原油乳状液稳定性[J].石油学报(石油加工), 1998, 14(3):1-5.
    [60]李明远,王继有.原油乳状液稳定性研究:蜡晶对油水界面膜性质的影响[J].石油学报(石油加工),1999,15(5):1-5.
    [61]王宝辉.纳米级TiO2超微粉在油-水体系的乳化特征[J].科学通报,1997,42(20):111.
    [62] Kennedy J F, Norris T A. Modern aspects of emulsion science [J]. CarbohydratePolymers,1999,40(2): 159.
    [63] Bink B P, Lumsdon S O. Pickering emulsions stabilized by mono-disperse latex particles: Effects of particle size[J]. Langmuir, 2001, 17(15): 4540-4547.
    [64]李明远,顾惕人.原油乳状液稳定性研究:I.界面压与乳状液稳定性[J].石油学报, 1992,13(增刊):157-164.
    [65]郑秀娟.留70断块低渗透油藏提高开发效果配套工艺技术[J].石油钻采工艺, 19955,17(5): 76-82.
    [66]黎永.靖安油田延9段非均质储集层敏感性特征研究.特种油气藏[J].特种油气藏, 2005,12(2): 93-96.
    [67]石志英,王新英,桂钦民.低伤害酸化液的研究和应用[J].石油钻采工艺, 1991(4): 75-80.
    [68]张艳琴.临商油田砂岩油层低伤害酸酸化试验研究[J].油气采收率技术, 1995, 2(4): 66-70.
    [69]王宝峰,蒋卫东,朱桂林,等.低伤害有机土酸体系的研制及应用[J].油气地质与采收率, 2001, 8(4): 50-53.
    [70]王宝峰,胡恩安.低伤害高温酸化缓蚀剂AI-811的开发及机理[J].腐蚀科学与防护技术, 2001, 13(5): 294-296.
    [71]周福建,熊春明,刘玉章,等.一种地下胶凝的深穿透低伤害盐酸酸化液[J].油田化学, 2002, 19(4): 322-324.
    [72]胡广杰.低伤害酸液在塔河深层高温油藏的研究及评价[J].新疆石油学院学报, 2003, 15(3): 47-50.
    [73]姚奕明,翟恰,邢德刚.低渗透砂岩储层低伤害缓速酸研究与应用[J].西南石油学院学报, 2004, 26(2): 64-68.
    [74]郑勇,易明新,王鲁鑫.文23气田低伤害酸化工艺技术研究与应用[J].钻采工艺, 2006, 30(3): 51-54.
    [75]张佩玉,刘建伟,李静.油井低伤害酸化解堵技术研究[J].吐哈油气, 2007, 12(1): 61-64.
    [76]何伟国.塔河油田乳化酸酸化技术研究[J].新疆石油学院学报, 2001, 13(3): 43-47.
    [77]李春杰,段吉国,尹仲英.酸化含水油井的油外相乳化酸的研制和应用[J].大庆石油学院学报, 2000, 24(3): 37-40.
    [78]刘菊梅,王宏图,廖久明.一种多功能解堵酸液的试验方法[J].重庆大学学报(自然科学版), 2006, 29(2): 120-124.
    [79]В.М.СетлИцкий.УВЕЛИЧЕНИЕПРОИЗВОДИТЕЛЬНОСТИСКВАЖИНУПРАВЛЯЕМЫМИДИСПЕРСНЫМИСИСТЕМАМИНАОСНОВЕАЗОТНОКИСЛОГОКАРБАМИДА[J].断块油气田, 1995, 2(2): 51-56.
    [80]王新英,宋庆伟,郑勇.硝酸粉末酸化工艺技术[J].断块油气田, 1999, 7(3): 54-59.
    [81]刘杰.硝酸粉末酸化工艺技术及应用效果[J].特种油气藏, 2003, 10(增刊): 95-99.
    [82]蔡长宇,廖代勇,严玉中.硝酸粉末酸化技术研究及现场应用[J].钻井液与完井液, 2003, 20(4): 21-24.
    [83]龚舒哲.液体硝酸酸化技术的研究[J].科技论坛, 2005(14): 34-35.
    [84]王立中,王杏尊,卢修峰.乳化酸+硝酸粉末酸压技术在泥灰岩储层中的应用[J].石油钻采工艺, 2005, 27(3): 63-67.
    [85]钟伟龙,李旭晖,阎连生.配人非活性硝酸粉末的混合酸酸化工艺技术[J].石油钻采工艺, 1990, 21(2): 86-90.
    [86]刘红现,陈冀嵋,钟双飞.砂岩油藏非活性硝酸粉末液酸压实验研究[J].石油钻采工艺, 2005, 27(2): 58-62.
    [87]汤元春,袁玉锋,程宇辉.非活性硝酸粉末液酸化技术的研究与应用[J].西南石油学院学报, 2002, 24(1): 91-95.
    [88]潘赳奔.孤东油田非活性硝酸粉末液酸化技术的研究与应用[J].精细石油化工进展, 2004, 5(4): 49-51.
    [89]马凤山.非活性硝酸粉末液酸化技术研究与应用[J].胜利油田职工大学学报, 2006, 20(6): 34-35.
    [90]金慧芬,李松林,庞炜.正烷烃-表面活性剂-水的乳状液过热极限的研究[J].化学工业与工程, 2003, 20(5): 279-282.
    [91]白义珍,向瑜章,庞炜.一种油层解堵新方法—热化学解堵[J].油气采收率技术, 1995, 2(2): 56-62.
    [92]谢建军,李水会,周晔. TKS稠油地层热化学解堵剂的研究及应用[J].河南石油, 1995, 9(4): 14-18.
    [93]李萍,胡玉辉,何长,等.热酸深部解堵剂研究及应用[J].西安石油学院学报(自然科学版), 2000, 15(4): 49-53.
    [94]杨建华.热力解堵技术的研究与应用[J].海洋石油, 2005, 25(2): 72-75.
    [95]刘志明,段雅峰,孙崇伟.热化学反应体系研究及其在油田解堵中的应用[J].化学与生物工程, 2006, 23(9): 51-53.
    [96]乐建君,蔡巍,刘小波.萨南油水过渡带微生物解堵现场试验[J].石油天然气学报(江汉石油学院学报), 2005, 27(2): 399-403.
    [97]钟平,马会宁.微生物解堵技术[J].油气田地面工程, 2007, 26(2): 22-23.
    [98]贾选红.复合解堵技术在辽河油区的应用[J].特种油气藏, 2005, 12(3): 83-87.
    [99]陈旺民,李德富,王清平,等.热气酸解堵技术及其在大庆油田的应用[J].石油钻采工艺, 1999, 21(2): 99-94.
    [100]李萍,胡玉辉,何长,等.热酸深部解堵剂研究及应用[J].西安石油学院学报(自然科学版), 2000, 15(4): 49-53.
    [101]刘婧,杨世海,曹建达.复合解堵技术在朝阳沟油田的应用[J].油气田地面工程, 2001, 20(3): 25-26.
    [102]李友富,李德胜,山力.微乳热化学复合解堵剂的研制及应用[J].特种油气藏, 2003, 10(5): 67-71.
    [103]蔡波,袁玉峰,袁萍,等.热化学复合酸化解堵技术研究[J].钻井液与允井液, 2003, 20(3): 39-44.
    [104]施雷庭,叶仲斌,王淞仟,等.低压低渗透油层高效解堵剂室内研究[J].天然气勘探与开发, 2006, 29(1): 55-59.
    [105]丛淑飞,李广辉,王显荣,等.物化复合解堵技术研究与应用[J].石油钻采工艺, 2005, 25(增刊): 81-84.
    [106]陈晓明,梁德栋,冯莉萍.振动-酸化复合解堵增注技术在莫北油田的应用[J].钻采工艺2006, 29(5): 97-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700