低渗透油藏双子表面活性剂分形研究与分子模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用改进的分形数据处理方法,对低渗透油藏的微观孔隙结构进行了系统分析,发现低渗透油藏微观孔隙结构的分维值在1—2之间。微观孔隙结构分维值定量描述低渗透油藏微观孔隙复杂程度,是进行低渗透油藏描述的重要参数之一。
     通过对分子片分维值的研究,结合分子设计方法,对低渗透油藏开发中所应用的双子表面活性剂进行分析,发现双子表面活性剂连桥基团的分维值应与低渗透油藏微观孔隙结构分维值相匹配。低渗透油藏开发中所用的双子表面活性剂,其连桥基团以小分子链为宜。双子表面活性剂连桥基团的分维值是设计与筛选低渗透油藏表面活性剂的重要参数之一
     根据双子表面活性剂连桥基团分维值与低渗透油藏微观孔隙结构分维值相匹配的机理,优化设计新型双子表面活性剂分子结构。对传统双子表面活性剂与新型双子表面活性剂进行分子模拟,新型双子表面活性剂具有更强的降低界面张力的优点和更好的洗油效率。
Based on refined fractal method, it is discovered that the fractal dimensions of the microstructure of low permeability oil reservoirs range from 1 to 2. The fractal dimension of the microstructure is one of the important parameters to characterize low permeability oil reservoirs.
     Based on the fractal dimensions of molecular fragments and molecular design, it is discovered that the fractal dimension of the spacer group of a gemini surfactant should match the fractal dimension of the microstructure of the reservoirs. The gemini surfactants act more efficiently onto the rock surface as the spacer groups of the gemini surfactants are less complicated than the rock surface. The relationship between the fractal dimension of the microstructure and the fractal dimension of the spacer group is one of the important principles to design and screen surfactants used in low permeability oil reservoirs.
     Based on the rule that the fractal dimension of the spacer group of a gemini surfactant should match the fractal dimension of the microstructure of the reservoirs, a series of originally innovative gemini surfactants have been designed, and their practical synthesis routes have been figured out. The results of the molecular simulation of both conventional and newly-designed gemini surfactants show that new chemicals are more efficient in reducing the surface tension and washing oil.
引文
[1]李道品.低渗透油田开发[M].北京:石油工业出版社,1994:1-107.
    [2]李道品,罗迪强,刘雨芬.低渗透油田概念及我国储量分布状况[J].低渗透油气田,1996,1(1):1-8.
    [3]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997.
    [4]Hoogerbrugge P J, Koelman J M V A. Simulating microscopic hydrodynamic phenomena with Dissipative Particle Dynamics [J]. Europhy Lett,1992,19:155-160.
    [5]胡文瑞,张世富,杨承宗,等.安塞特低渗透油田开发实践[J].西安石油学院学报(自然科学版),1994,9(1):16-21.
    [6]胡文瑞.鄂尔多斯盆地油气勘探开发理论与技术[M].北京:石油工业出版社,2000.
    [7]胡文瑞,何自新.鄂尔多斯盆地油气勘探大发展启示[J].中国石油勘探,2001,6(4):1-4.
    [8]胡文瑞.中国低渗透油气的现状与未来[J].中国工程科学,2009,11(8):29-37.
    [9]胡文瑞.低渗透油气田开发概论(上册)[M].北京:石油工业出版社,2009.
    [10]贾承造.低渗透资源将是未来油气发展的主流[C].中国石油学会中国低渗透(致密)油气勘探开发技术研讨会2009年3月26日北京
    [11]Allen M P, Tildesley D J. Computer Simulation of Liquids [M]. Oxford Clarendon Press/Oxford Science Publications,1987.
    [12]邱勇松.低渗透油藏渗流机理及开发技术研究[D].中国科学院渗流流体力学研究所博士学位论文,2004.
    [13]杨正明.低渗透油藏渗流机理及其应用[D].中国科学院渗流流体力学研究所博士学位论文,2004.
    [14]徐娜.新型孪连活性水在低渗透油田降压增注应用研究[D].中国科学院渗流流体力学研究所硕士学位论文,2007.
    [15]赵福麟.油田化学[M].东营:石油大学出版社,2000.
    [16]杨承志.化学驱提高石油采收率[M].北京:石油工业出版社,1999.
    [17]叶仲斌.提高采收率原理[M].北京:石油工业出版社,2000.
    [18]袁庆胜.动态界面张力特征及影响因素研究[J].油气地质与采收率,2003,10(3):59-62.
    [19]郭东红,辛浩川,崔晓东,等.OCS驱油剂用作不同断块油田表面活性剂驱的可行性研究[J].精细石油化工进展,2005,6(5):1-3.
    [20]孙春辉,刘卫东,田小川.用于低渗透高温油藏降压增注的表面活性剂二元体系[J].油田化学,2009,26(4):419-421.
    [21]Han Dong, Yuan Hong, Weng Rui, et al The effect of wettability on oil recovery of alkaline/surfactant/polymer flooding, SPE102564,2006.
    [22]姚同玉,李继山.CTAB与原油酸性物质的作用及润湿性反转[J].中南大学学报(自然科学版),2009,40(1):83-87.
    [23]Ward J S, Martin F D. Prediction of Viscosity of Partially Hydrolyzed Polyacrylamide Solutions in the Presence of Calcium and Magnesium Ions [J]. Soc Pet Eng J,1981,33:537-561.
    [24]Espanol P, Warren P. Statistical mechanics of Dissipative Particle Dynamics [J]. Europhys Lett,1995,30:191-196.
    [25]Groot R D, Warren P B. Dissipative Particle Dynamics:Bridging the gap between atomistic and mesoscopic simulation [J]. Chem Phys,1997,107:4423-4435.
    [26]王雨,乔琦,董玲,等.克拉玛依油田ASP驱工业扩大试验廉价配方研究[J].油田化学,1999,16(3):247-250.
    [27]于涛,刘娜,丁伟.磺酸盐类表面活性剂在三次采油中的应用[M].化学工程师,2004,109(10):52-54.
    [28]袁红,杨承志.表面活性剂-碱-聚合物联合驱替与羧酸及其盐类表面活性剂在EOR中的应用[M].油田化学,1990,7(4):373-379.
    [29]蒲燕,陈卫民.重烷基苯磺酸盐在油田三次采油中的应用[J].日用化学品科学,2008,31(11):1-3.
    [30]赵宝兰.烷基苯磺酸盐组成的优化设计及弱碱三元复合驱配方研究[D].吉林大学硕士学位论文,2004.
    [31]朱友益,沈平平,王哲,等.ASP复合驱用烷基苯磺酸盐表面活性剂的合成 [J].石油勘探与开发,2004,31(S):17-20.
    [32]岳晓云,楼诸红,韩冬,等.三次采油用弱碱体系的石油磺酸盐表面活性剂的合成及性能[J].精细石油化工进展,2004,5(12):7-10.
    [33]郭万奎,杨振宇,伍晓林,等.用于三次采油的新型弱碱表面活性剂[J].石油学报,2006,27(5):75-78.
    [34]伍晓林,刘庆海,张国印,等.新型弱碱表面活性剂在三次采油中的应用[J].日用化学品科学,2006,29(10):31-34.
    [35]http://baike.baidu.com/view/7775.htm
    [36]Frenkel D, Smit B. Understanding molecular simulation from algorithms to applications [M]. New York:Academic Press,1996.
    [37]谭中良,韩冬,杨普华.孪连表面活性剂的性质和三次采油中应用前景[J].油田化学,2003,20(2):187-191.
    [38]L. Verlet. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules [J]. Phys Rev,1967,159:98-103.
    [39]Landau D P, Binder K. A guide to Monte Carlo simulation in statistical physics [M]. Cambridge:Cambridge University Press,2000.
    [40]Wood W W, Parker F R. Monte Carlo equation of state of molecular interactions with Lennard-Jones potential. I. A supercritical isotherm at about twice the critical temperature [J]. J Chem Phys,1957,27:720-733.
    [41]Salsburg Z W and Wood W W. Equation of state of classical hard spheres at high density [J]. J Chem Phys,1962,37:798-804.
    [42]Rosen M.J., Li F. The Adsorption of Gemini and Conventional Surfactants onto Some Soil Solids and the Removal of 2-Naphthol by the Soil Surfaces[J]. J. Colloid and Interface Science,2001,234(2):418-424.
    [43]Alami E, Levy H, Zana R. Alkanediyl-α,ω-bis-(dimethylalkylammonium bromide) surfactants.2. structure of the lyotropic mesophases in the presence of water[J]. Langmuir,1995,9:940-944.
    [44]Zana R, Talmon Y. Dependence of aggregate morphology on structure of dimeric surfactants[J]. Nature,1993,362:228-230.
    [45]Zana R, Benrraou M, Rueff R. Alkanediyl-a,co-bis-(dimethylalkylammonium bromide) surfactants.1. effect of the spacer chain length on the critical micelle concentration and micelle ionization degree[J]. Langmuir,1991,7:1072-1075.
    [46]Zana R, Levy H, Papoutsi D, et al. Micellization of two triquarternary ammonium surfactants in aqueous solution[J]. Langmuir,1995,11:3694-3698.
    [47]Esumi K, Goino M, Koide Y. Adsorption and adsolubilization by monomeric, dimeric, or trimeric quarternary ammonium surfactant at silica/water interface[J]. J Colloid Interface Sci,1996,183:539-545.
    [48]Karaborni S, Esselink K, Hilbers P A J, et al. Simulating the self-assembly of gemini (dimeric)surfactants[J]. Science,1994,266:254-256.
    [49]Kern F, Lequeux F, Zana R, et al. Dynamical properties of salt-free viscoelastic micellar solutions [J]. Langmuir,1994,10:1714-1723.
    [50]Danino D, Talmon Y, Zana R. Alkanediyl-a,co-bis-(dimethylalkylammonim bronide) surfactants.5. aggregation and micro structure in aqueous solutions [J]. Langmuir 1995,11:1448-1456.
    [51]Danino D, Talmon Y, Levy H, et al. Branched threadlike micelles in an aqueous solution of a trimeric surfactant [J]. Science,1995,269:1420-1421.
    [52]胡明刚,邓启刚.表面活性剂在大庆油田复合驱中的应用研究[J].齐齐哈尔学报,2003,19(2):6-8.
    [53]才程,葛际江.孪二连季铵盐表面活性剂[J].油田化学,2001,18(3):278-281.
    [54]赵剑曦.新一代表面活性剂:Gemins[J].化学进展,1999,11(4):348-357.
    [55]Chen Hong, Han Lijuan, Luo Pingya. The ultralow interfacial tensions between crude oils and Gemini surfactant solutions[J]. J Colloid Interf Sci,2005,285: 872-874.
    [56]谭中良,韩冬.阴离子孪连表面活性剂的合成及其界面活性研究[J].化学通报,2006,7:493-497.
    [57]杨颖,李明远,林梅钦.非离子型Gemini表面活性剂的表面活性与固液界面吸附特性研究[J].中国石油大学学报(自然科学版),2006,30(3):123-125.
    [58]朱森,程发,郑宝江Gemini阴离子表面活性剂水溶液的界面活性[J].应用 化学,2005,22(7):792-795.
    [59]徐群,曹明丽,马文辉,等.菲对称双子季铵盐阳离子表面活性剂的合成和及性能[J].日用化学工业,2004,34(5):280-282.
    [60]刘金彦,赵剑曦,陈喆.季铵盐表面活性剂引起非水混合溶剂的分相[J].物理化学学报,2006,22:845-850.
    [61]段明峰,吴卫霞,程金国,等.新型表面活性剂双季铵盐的特性及应用[J].精细石油化工进展,2004,5(11):46-49.
    [62]吴景春,井立军,史连杰,等.特低渗透油层降压增注现场单井试验[J].大庆石油学院学报,2003,27(2):87-88.
    [63]涂淋.安塞油田增产增注工艺技术筛选评价[J].钻采工艺研究,1997,21(2):16-24.
    [64]贺宏普,樊社民,牛桂丽.表面活性剂对低渗油藏作用因素试验研究[J].长江大学学报(自科版)理工卷,2007,4(2):221-222.
    [65]徐娜,刘卫东,李海涛.季铵盐型孪连表面活性剂G-52的降压增注效果[J].油田化学,2007,24(2):138-142.
    [66]范传闻,刘卫东,等.孪连型表面活性剂SL-1提高采收率研究与应用[J].石油钻采工艺,2008,30(4):92-95.
    [67]Ciccotti G, Ryckaert J P. Molecular dynamics simulation of rigid molecules [J]. Comp Phys Rep,1986,4:345-392.
    [68]傅献彩,物理化学[M].南京:南京大学出版社,2003.
    [69]Vesely F J. Angular Monte Carlo integration using quaternion parameters:A spherical reference potential for CC14 [J]. J Comp Phys,1982,47:291-296.
    [70]Mountain R D, Thirumalai D. Quantative measures of efficiency of Monte Carlo simulations [J]. Physica A,1994,210:453-460.
    [71]T. Hassenkam, L. L. Skovbjerg, and S. L. S. Stipp. Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution[J]. Proceedings of the National Academy of Sciences,2009,106(15):6071-6076.
    [72]James M Tour. Nanotechnology advances to shed new light on reservoirs [J]. JPT Online,2 August 2009.
    [73]Zhu, Y, Higginbotham, A.L., Tour, J.M. Covalent Functionalization of Surfactant-Wrapped Graphene Nanoribbons[J]. Chem. Mater.2009,21:5284-5291.
    [74]Claytor, K., Khatua, S., Guerrero, J., Tcherniak, A., Tour, J. M., Link, S. Accurately Determining Single Molecule Trajectories of Molecular Motion on Surfaces[J]. J. Chem. Phys.2009,130:164710-19.
    [75]Lomeda, J.R., Doyle, C.D., Kosynkin, D. V., Hwang, W.H., Tour, J. M. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets[J]. J. Am. Chem. Soc.2008,130:16201-16206.
    [76]Sasaki, T., Guerrero, G., Leonard, A. D., Tour, J. M. Nanotrains and Self-Assembled Two-Dimensional Arrays Built from Carboranes Linked by Hydrogen Bonding of Dipyridones[J]. Nano Res.2008,1:412-419.
    [77]Alvarez, N. T., Kittrell, C., Schmidt, H. K., Hauge, R. H., Engel, P. S., Tour, J. M. Selective Photochemical Functionalization of Surfactant-Dispersed Single Wall Carbon Nanotubes in Water[J]. J. Am Chem Soc.2008,130:14227-14233.
    [78]Akimov, A. V., Nemukhin, A. V., Moskovsky, A. A., Kolomeisky, A. B., Tour, J. M. Molecular Dynamics of Surface-Moving Thermally Driven Nanocars[J]. J. Chem. Theory Comput.2008,4:652-656.
    [79]Long, D. P., Lazorcik, J. L., Mantooth, B. A., Moore, M. H., Ratner, M. A., Troisi, A., Yao, Y. Ciszek, J. W., Tour, J. M., Shashidhar, R. The Effects of Hydration on Molecular Junctions[J]. Nature Mater.2006,5:901-908.
    [80]Zangmeister, C. D., Robey, S. W., van Zee, R. D., Naciri, J., Kushmerick, J. G, Yao, Y, Tour, J. M., Varughese, B., Xu, B., Reutt-Robey, J. E. Fermi Level Alignment in Self-Assembled Molecular Layers:The Effect of Coupling Chemistry[J]. J. Phys. Chem. B 2006,110:17138-17144.
    [81]Shirai, Y., Osgood, A. J., Zhao, Y., Yao, Y., Saudan, L., Yang, H., Yu-Hung, C., Alemany, L. B., Sasaki, T., Morin, J. F., Guerrero, J., Kelly, K. F., Tour, J. M. Surface-Rolling Molecules[J]. J. Am. Chem. Soc.2006,128:4854-4864.
    [82]Moore, A. M., Dameron, A. A., Mantooth, B. A., Smith, R. K., Fuchs, D. J., Ciszek, J. W., Maya, F., Yao, Y, Tour, J. M., Weiss, P. S. Molecular Engineering and Measurements to Test Hypothesized Mechanisms in Single Molecule Conductance Switching[J]. J. Am. Chem. Soc.2006,18:1959-1967.
    [83]Shirai, Y., Osgood, A. J., Zhao, Y., Kelly, K. F., Tour, J. M. Directional Control in Thermally Driven Single-Molecule Nanocars[J]. Nano Lett.2005,5:2330-2334.
    [84]Salathiel R. Oil recovery by surface film drainage in mixed-wettability rocks[J]. J Pet Tech,1973,25:1216-1224.
    [85]Morrow N.R. Wettability and its effect on oil recovery[J]. J Pet Tech,1990,42: 1476-1484.
    [86]Stipp S.L., Hochella M.F. Structure and bonding environments at the calcite surface as observed with X-ray photoelectron-spectroscopy (XPS) and low energy diffraction[J]. Geochim Cosmochim Acta,1991,55:1723-1736.
    [87]Kovscek A.R., Wong H., Radke C.J. A pore-level scenario for the development of mixed wettability in oil reservoirs[J]. AIChE,1993,39:1072-1085.
    [88]Toulhoat H., Prayer C., Rouquet G.Characterization by atomic-force microscopy of adsorbed asphaltenes[J]. Colloids Surf A 1994,91:267-283.
    [89]Frisbie C.D., Rozsnyai L.F., Noy A., Wrighton M.S., Lieber C.M. Functional-group imaging by chemical force microscopy[J]. Science 1994,265: 2071-2074. [] Basu S, Sharma M.M. Measurement of critical disjoining pressure for dewetting of solid surfaces[J]. J Colloid Interface Sci,1996,181:443-455.
    [90]Noy A., Vezenov D.V., Lieber C.M. Chemical force microscopy[J]. Annu Rev Mater Sci,1997,27:381-421.
    [91]Blunt M.J. Physically based network modeling of multiphase flow in intermediate-wet media[J]. J Pet Sci Eng,1998,20:117-125.
    [92]Buckley J.S., Liu Y. Some mechanisms of crude oil/brine/solid interactions[J]. J Pet Sci Eng,1998,20:155-160.
    [93]Morrow N.R., Tang G.Q., Valat M., Xie X. Prospects of improved oil recovery related to wettability and brine composition[J]. J Pet Sci Eng,1998,20:267-276.
    [94]Yang S.Y., Hirasaki G.J., Basu S., Vaidya R. Mechanisms for contact angle hysteresis and advancing contact angles[J]. J Pet Sci Eng,1999,24:63-73.
    [95]He H.X., et al. Demonstration of high-resolution capability of chemical force titration via study of acid/base properties of a patterned self-assembled monolayer[J]. Langmuir,2000,16:517-521.
    [96]Zheng J.Z., Shao J.H., Powers S.E. Asphaltenes from coal tar and creosote:Their role in reversing the wettability of aquifer systems[J]. J Colloid Interface Sci,2001, 244:365-371.
    [97]Drummond C., Israelachvili J. Surface forces and wettability[J]. J Pet Sci Eng, 2002,33:123-133.
    [98]Freer E.M., Svitova T., Radke C.J. The role of interfacial rheology in reservoir mixed wettability [J]. J Pet Sci Eng,2003,39:137-158.
    [99]Buckley J.S., Lord D.L. Wettability and morphology of mica surfaces after exposure to crude oil[J]. J Pet Sci Eng,2003,39:261-273.
    [100]Warszynski P., Papastavrou G, Wantke K.D., Mohwald H. Interpretation of adhesion force between self-assembled monolayers measured by chemical force microscopy[J]. Colloids Surf A,2003,214:61-75.
    [101]Wasan D.T., Nikolov A.D. Spreading of nanofluids on solids[J]. Nature,2003, 423:156-159.
    [102]Henriksen K., Young J.R., Bown P.R., Stipp SLS. Coccolith biomineralisation studied with atomic force microscopy[J]. Palaeontology,2004,47:725-743.
    [103]Maugeri L. Oil:Never cry wolf. Why the petroleum age is far from over[J]. Science,2004,304:1114-1115.
    [104]Butt H.J., Cappella B., Kappl M. Force measurements with the atomic force microscrope:Technique, interpretation and applications[J]. Surf Sci Rep,2005,59: 1-152.
    [105]Meyer E.E., Lin Q., Hassenkam T., Oroudjev E., Israelachvili J.N. Origin of the long-range attraction between surfactant-coated surfaces[J]. Proc Natl Acad Sci USA, 2005,102:6839-6842.
    [106]Kumar K., Dao E., Mohanty K.K. AFM study of mineral wettability with reservoir oils[J]. J Colloid Interface Sci,2005,289:206-217.
    [107]Zhang P.M., Tweheyo M.T., Austad T. Wettability alteration and improved oil recovery in chalk:The effect of calcium in the presence of sulfate[J]. Energy Fuels, 2006,20:2056-2062.
    [108]Noy A.Chemical force microscopy of chemical and biological interactions [J]. Surf Interface Anal,2006,38:1429-1441.
    [109]熊生春,石玲,等.三次采油用Gemini季铵型表面活性剂LTS的性能及应用[J].油田化学,2009,26(2):183-186.
    [110]Marcus Solldner, Annette Schier, and Hubert Schmidbaur, Inorg. Chem.1997, 36:1758-1763.
    [111]Fumiharu, Takahashi, Hiroyuki, Yoshimura. Jpn. Kokai Tokkyo Koho,2004, 2004010570,8.
    [112]Mandelbrot B B, John A W. The Fractal Geometry of Nature[J]. American Journal of Physics,1983,51(3):286-287.
    [113]冯玉军.分子模拟技术在油田化学及相关领域中的应用[J].油田化学,1998,15:70-75.
    [114]Falconer K. J. The Geometry of Fractal Sets (Cambridge tracts in mathematics; 85)[M]. Cambridge University Press,1985.
    [115]Kohmoto M, Entropy Function for Multifractals[J]. Phys Rev A.1988,37(4): 1345-1350.
    [116]Feder J. Fractals[M]. New York:Plenum Press,1988.
    [117]Viscek T. Fractal Growth Phenomena[M]. World Scientific Publishing Company: Singapore,1989.
    [118]Peter Pfeifer, David Avnir. Chemistry in noninteger dimensions between two and three. Ⅰ. Fractal theory of heterogeneous surfaces [J]. The Journal of Chemical Physics,1983,79(7):3558-3565.
    [119]David Avnir, Dina Farin, Peter Pfeifer. Molecular fractal surface [J]. Nature, 1984,308:261-263.
    [120]Katz, A.J. and Thompson, A.H. Fractal sandstone pores:implications for conductivity and pore formation[J]. Phys Rev Lett,1985,54(12):1325-1328.
    [121]Krohn, C.E. Sandstone Fractal and Euclidean pore volume distributions[J]. J Geophys Res,1988,93(B4):3286-3296.
    [122]Krohn, C.E. Fractal Measurements of sandstones, shales, and carbonates [J]. J Geophys Res,1988,93(B4):3297-3305.
    [123]J. P. Hansen and A. T. Skjeltorp. Fractal pore space and rock permeability implications[J]. Phys. Rev. B,1988,38:2635-2638.
    [124]H. J. Stapleton, J. P. Allen, C. P. Flynn, D. G. Stinson, and S. R. Kurtz. Fractal Form of Proteins [J]. Phys. Rev. Lett.,1980,45:1456.
    [125]J. T. Colvin, H. J. Stapleton. Fractal and spectral dimensions of biopolymer chains:Solvent studies of electron spin relaxation rates in myoglobin azide [J]. J. Chem. Phys.,1985,82:4699-4706.
    [126]韦珩,贺东奇,曾慧慧.硫氧还蛋白还原酶结构分形研究[J].北京大学学报(自然科学版),2008,44(2):165-170.
    [127]Manousiouthakis V I, Deem M W. Strickt detiled balance is unnecessary in Monte Carlo simulation [J]. J Chem Phys,1999,110:2753-2756.
    [128]沈金松,张宸恺.应用分形理论研究鄂尔多斯ZJ油田长6段储层孔隙结构的非均质性[J].西安石油大学学报(自然科学版),2008,23:19-23.
    [129]张宸恺,沈金松,樊震.应用分形理论研究鄂尔多斯MHM油田低孔渗储层孔隙结构[J].石油与天然气地质,2007,28:110-115.
    [130]Metropolis N, Rosenbluth A W, et al. Equation of state calculations by fast computing machines [J]. J Chem Phys,1953,21:1087-1092.
    [131]Barton C. C., Larsen E.. Fractal geometry of two-dimensional fracture networks at Yucca Mountain. Southwestern Nevada[C]. Stephannson O., Proceedings of the International Symposium on Fundamentals of Rock Joints. Centek, Lulea, Sweden, 1985:77-84.
    [132]Barton C. C., Fractal analysis of scaling and spatial clustering of fractures[M]. Fractals in the Earth Sciences. New York:Plenum,1995(a):141-178.
    [133]李后强,赵华明.分形理论与酶模型的研究[J].自然杂志,1990,13(6):327-332.
    [134]Metropolis N. The beginning of the Monte Carlo method. Los Alamos Science, 1987,12:125-130.
    [135]李留仁,赵艳艳,李忠兴.多孔介质微观孔隙结构分形特征及分形系数的意义[J].石油大学学报,2004,28(3):105-107.
    [136]时宇,齐亚东,杨正明,等.基于恒速压汞法的低渗透储层分形研究[J].油气地质与采收率,2009,16:88-90.
    [137]李大勇,臧士宾,任晓娟,等.用分形理论研究低渗储层孔隙结构[J].辽宁化工,2010,39:723-726.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700