3Y-TZP/Al_2O_3纳米复相陶瓷的成形性能与微观组织
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多复相陶瓷均被发现具有不同程度的超塑性,利用纳米复相陶瓷的超塑性进行加工成形是实现复杂形状陶瓷零件近净成形的重要手段。Al_2O_3-ZrO_2系陶瓷材料是陶瓷复合材料的研究重点之一。这类材料具有良好的室温和高温力学性能,其在耐磨、耐高温等部件上应用广泛。本文采用真空热压烧结制备了20mol%ZrO_2(3Y)含量的3Y-TZP/Al_2O_3纳米复相陶瓷,随后进行了复相陶瓷的超塑挤压成形和压缩变形,测量、评价了超塑成形过程中的摩擦和润滑,分析了复相陶瓷的成形性能以及变形前后的力学性能和显微组织,研究了复相陶瓷的超塑变形机理。
     采用真空热压烧结法在1400℃、1450℃、1500℃、1550℃四个温度下制备了3Y-TZP/Al_2O_3纳米复相陶瓷。ZrO_2的添加,显著改善了材料的烧结性能,抑制Al_2O_3的晶粒生长,形成典型的晶界/晶内混合型结构。在1450℃以上烧结时,复相陶瓷的致密度可达到98%以上,但随着温度的升高,晶粒尺寸显著增加。复相陶瓷弯曲强度、断裂韧性、维氏硬度和弹性模量的最高值分别达到591MPa、7.9MPa·m1/2、18.1GPa和442.5GPa。
     为了评估陶瓷在高温成形过程中的摩擦特性,寻找合适的润滑剂,试验采用圆环压缩法研究了六方BN有机溶液润滑剂在1400~1600℃温度范围内,1.1×10~(-4) s~(-1)、5.4×10~(-4) s~(-1)和2.5×10~(-3) s~(-1)应变速率下的摩擦润滑行为。使用BN润滑剂的摩擦因子值比较稳定,分析了其随温度和应变速率的变化情况。通过圆环压缩法还评价了复相陶瓷的流动情况,测算了真实流动应力。
     在1500℃、1550℃、1600℃和1650℃四个温度分别对复相陶瓷块料进行涡轮盘模拟件的超塑挤压。复相陶瓷在1600℃具有最佳的挤压性能,最大单位挤压力小于25MPa,最大压头速率达到0.14mm·min-1。由于材料本身优良的性能和BN润滑剂的有效作用,挤压过程中材料流动平稳,应变硬化较小;成形件质量良好,无明显缺陷。通过SEM和TEM分析了变形材料的显微组织和变形机理,对比测试了试样成形前后的力学性能。
     在1500℃对复相陶瓷坯料进行恒压25MPa超塑压缩变形。通过XRD谱、晶向指数和峰强比分析对比了变形前后ZrO_2和Al_2O_3各晶面随变形量的取向变化,结果表明变形材料织构化明显,而Al_2O_3的实测和计算ODF{110}、{113}和{300} X射线极图更加清晰地显示了织构的强度。通过SEM分析了复相陶瓷变形后在平行于压缩轴截面和垂直于压缩轴截面上晶粒尺寸、纵横比、晶粒形状因子等表面形貌和断口形貌的变化,TEM观察了变形材料的显微组织变化,进而分析复相陶瓷的主要变形机理、变形织构产生和发展的原因。测试了变形材料的力学性能,发现弯曲强度、断裂韧性和维氏硬度值随应变量的增大呈先增大后减小的趋势,研究了应变量、晶粒大小、空洞和织构化对材料力学性能的影响。
Superplasticity is observed in many composite ceramics. It is an important way that superplasticity of nanocomposite ceramic at elevated temperatures is utilized to achieve near-net shape forming of ceramic components with complex shape. Al_2O_3-ZrO_2 ceramics are important ceramic composites, which own excellent mechanical properties from ambient to elevated temperature and can be widely used to fabricate many parts of resistance to wear, to high temperature, et al. In the present research 3Y-TZP/Al_2O_3 nanocomposite ceramic with 20mol% ZrO_2(3Y) content was prepared. Subsequently, the superplastic extrusion forming and compressive deformation were carried out. Moreover, the friction and lubrication during superplastic forming were evaluated and measured. The forming properties of composite ceramic, mechanical characters and microstructure before and after deformation were presented. The superplastic deformation mechanism of composite ceramic was studied.
     The 3Y-TZP/Al_2O_3 nanocomposite ceramics were prepared by hot pressed sintering at 1400℃, 1450℃, 1500℃and 1550℃. The addition of ZrO_2 particles was very effective in improving the sintering character of materials and hindering the grain growth of Al_2O_3. The typical inter/intra granular mixed structure was achieved. The relative density of composite ceramic was more than 98% at above 1450℃, while he grain size increased with the increasing temperature. The maximum of bending strength, fracture toughness and Vickers hardness of composites were up to 591MPa, 7.9MPa·m1/2, 18.1GPa and 442.5GPa.
     The ring compression test was adopted to evaluate the friction and lubrication behavior of the hexagonal BN lubricant at the temperature range of 1400~1600℃and the strain rate of 1.1×10~(-4) s~(-1), 5.4×10~(-4) s~(-1) and 2.5×10~(-3) s~(-1), in order to measure the friction during the superplastic forming and seek for suitable lubricant. The friction factor on the BN lubricant was very stable, which viaration was analyzed with the increase of strain rate and temperature. The ring compression test was also used to evaluate the flow behavior of composite ceramic and measure the true flow stress.
     Superplastic extrusion on turbine disk model was attempted at temperature of at 1500℃, 1550℃, 1600℃and 1650℃. The material showed the best formability for extrusion at 1600℃, at which the maximum extrusion pressure was less than 25MPa and the maximum punch speed was up to 0.14mm·min-1. Due to the internal good forming property of composite ceramic and effective action of BN lubricant, the material showed good flow property during extrusion and no apparent strain hardening. Deformed samples owned good quality and there were almost no apparent flaws. Through the observation for the microstructure of SEM and TEM before and after deformation, the deformation mechanism was studied. The mechanical properties of deformed samples were measured, which were also compared with sintered samples.
     Superplastic compressive deformation was conducted at 1500℃and a constant pressure of 25MPa. According to the analysis of XRD pattern, orientation index and peak-intensity ratio, the orientation changes of crystal planes of ZrO_2 and Al_2O_3 with the increasing strain were observed and compared. The results showed that the texture in deformed material was strong. Moreover, the measured and caculated {110}, {113} and {300} X-ray pole figures of Al_2O_3 matrix can distinctly illustrate the indensity of texture. The changes of fracture surface and surface characters in cross section parallel and perpendicular to compressive axis for deformed material, such as grain size, aspect ratio, grain shape factor and et.al, were analyzed by SEM. The microstructural evolution during deformation was observed by TEM, through which the main deformation mechanism and the forming and development of high texture were sdudied. The mechanical properties such as bending strength, fracture toughness and Vickers hardness showed the increasing tendency and then decreasing tendency with the increase of strain. The effect of strain, grain size, cavity and texture on the mechanical properties was studied.
引文
1高濂,勒喜海,郑珊.化学工业出版社, 2004: 1-23.
    2高濂,李蔚.纳米陶瓷.化学工业出版社, 2002: 4-6.
    3李凤生等.超细粉体技术.国防工业出版社, 2000: 10-20.
    4单妍,王昕,尹衍升,孙康宁. ZTA纳米复相陶瓷的研究.硅酸盐通报. 2002, 21 (2): 43-46.
    5 J. Li, L. Gao, J. Guo, D. Yan. Novel Method to Prepare Electroconductive Titanium Nitride-Aluminum Oxide Nanocomposites. J. Am. Ceram. Soc., 2002, 85(3): 724-726.
    6郑昌琼,冉均国.新型无机材料.科学出版社, 2003: 332.
    7 R. Vaben, D. Stover. Processing and Properties of Nanophase Non-Oxide Ceramics. Materials Science and Engineering A. 2001, A301: 59–68.
    8 A. A. Sharif, M. L. Mecartney. Superplasticity in Cubic Yttria-Stabilized Zirconia with Intergranular Silica. Acta Materialia, 2003, 51: 1633-1639.
    9 J. Wittenauer. Superplastic Alumina-20%Zirconia. Materials Science Forum, 1997, 243-245: 417-424.
    10 1J. C. C. Bruce, M. A. Kellett. High-Temperature Extrusion Behavior of a Superplastic Zirconia-Based Ceramic. J. Am. Ceram. Soc., 1990, 73: 1922-1927.
    11 G. Q. Chen, K. F. Zhang. Superplastic Extrusion of Al2O3-YTZ Nanocomposite and its Deformation Mechanism. Materials Science Forum, 2005, 475-479: 2973-2976.
    12 S. Hayashi, K. Watanabe, M. Imita, J. Goto. Superplastic Forming of ZrO2/Al2O3 Composite. Key Engineering Materiala, 1999, 159-160: 181-186.
    13张凯锋,陈国清,王国锋.陶瓷材料超塑性研究进展.无机材料学报, 2003, 18(4): 705-715.
    14 Z. J. Shen, M. Nygren. Rapid and Precise Manufacturing of Complex Shaped Tough Silicon Nitride Ceramics. Key. Eng. Mat., 2004, 264-368: 857-860.
    15陈国清. Al2O3-ZrO2纳米复相陶瓷制备与超塑性成形研究.哈尔滨工业大学博士论文. 2004: 1-7, 100-105.
    16 N.伊卡诺斯著,陈黄均,刘昆灵译.精密(细)陶瓷导论.晓图出版社,1992.
    17 H. Hahn, J. Logas, R. Averback. Sintering Characteristics of Nanocrystalline TiO2. J. Mater. Res. 1990, 5: 609.
    18孙志杰,吴燕,张佐光.防弹陶瓷的研究现状与发展趋势.宇航材料工艺. 2000, 5: 10-14.
    19 J. W. Edington, K. N. Melton, C. P. Cutler. Superplasticity. Prog. Mater. Sci., 1976, 21: 61-70.
    20 A. J. Barnes. Advances in Superplastic Aluminium Forming. In: H. C. Heikkenen, T. R. Mcnelley, editors. Superplasticity in Aerospace. P. A. Warrendale, USA. The Metallurgical Society, Inc., 1988, 301-313.
    21 R. B. Day, R. J. Stokes. J. Am. Ceram. Soc., 1966, 49 (7): 345-354.
    22 F. Wakai, S. Sakaguchi, Y. Matsuno. Superplaticity of Yttria-Stabilized Tetragonal ZrO2 Polycrystals. Adv. Ceram. Mat., 1986, 1(3): 259-263.
    23 F. Wakai, H. Kato. Superplasticity of. TZP/AI2O3 Composites. Adv. Ceram. Mater, 1988, 3(1): 71-78.
    24 T. G. Nieh, J. Wadsworth. Superplastic Behavior of Fine-Grained Yttria-Stabilized Tetragonal Zirconia Polycrystal(Y-TZP). Acta Metall. Mater.1993, 38: 1121-1133.
    25叶建东,陈凯.陶瓷材料的超塑性.无机材料学报. 1998, 13(3): 257-258.
    26 T. G. Nieh, J. Wadsworth. Annu. Rev. Mater. Sci., 1990, 20: 117-140.
    27 T. G. Langdon. JOM, 1990, 42(7): 8-13.
    28 J. L. Hart, A. C. D. Chaklader. Superplasticity in Pure ZrO2. Mater. Res. Bull., 1967, 2: 521-526.
    29 P. C. Panda, R. Raj, P. E. D. Morgan. Superplastic Deformation in Fine-Grained MgO·2A12O3·Spinel. J. Am. Ceram. Soc., 1985, 68(10): 522-529.
    30 B. N. Kim, K. Hiraga, K. Morita. Enhanced Tensile Ductility in ZrO2-Al2O3-Spinel Composite Ceramic. Scripta. Mater.. 2002, 47(11): 775-779.
    31 T. G. Langdon. Bull. Jpn. Inst, Metals, 1991, 30: 1001-1006.
    32周玉.陶瓷材料学.哈尔滨工业大学出版社. 1995: 326-340.
    33 M. L. Balmer, F. F. Lange, V. Jayaram. Development of Nano-composite Microstructures in ZrO2-Al2O3 via the Solution Precursor Method. J. Am. Ceram. Soc. 1995, 78(6): 1489-1494.
    34新原皓一.日本セラミツクス协会学术论文志,1991, 99 (10): 974-982.
    35 R. A. George, N. F. Bessettb. Reducing the Manufacturing Cost of Tubular SOFC Technology. J. Power Source, 1998, 71: 131-137.
    36 M. P. Harmer, R. J. Brook. Fast Firing Microstructure Benefits. J. Brit.Ceram. Soc. 1980, 80(5): 147.
    37 Bruce J. Kellett, Claude Carry, Alain Mocellin. High-Temperature Extrusion Behavior of a Superplastic Zirconia-Based Ceramic. J. Am. Ceram. Soc., 1990, 73(7): 1922-1927.
    38 B. N. Kim, K. Hiraga, K. Morita, Y. Sakka. Superplasticity in Alumina Enhanced by Co-dispersion of 10vol.% Zirconia and 10vol.% Spinel Particles. Acta Mater. 2001, 49: 887-895
    39 F. Wakai, S. Sakaguchi, K. Kanayama. Ceramic Materials and Components for Engines. ed. by Bunk W. and Haunser H. DKG, Saarbrucken, FRG. 1986, 315.
    40 Wakai F. Ceram. Int. 1991, 17: 153
    41 J .Wittenauer, V. A. Ravi, T. S. Srivatsan, J. J. Moore. Processing and fabrication of advanced materialsⅢ. The Minerals, Metals & Materials Society, 1994: 197-201.
    42 J. Bruce. C. C. Kellett, M. Alain. High-Temperature Extrusion Behavior of a Superplastic Zirconia-Based Ceramic. J. Am. Ceram. Soc., 1990, 73(7): 1922-1927.
    43 A. J. A. Winnubst, M. M. R. Boutz. Superplastic Deep Drawing of Tetragonal Zirconia Ceramics at 1160℃. Journal of the Eurpean Ceramic Society. 1998 , 18: 2101-2106.
    44 S. Hayashi, K. Watanabe. M. Imita, J. Goto. Superplastic Forming of ZrO2/Al2O3 Composite. Key Engineering Materiala, 1999, 159-160: 181-186.
    45 Z. J. Shen, H. Peng, M. Nygren. Formidable Increase in the Superplastic of Ceramics in the Presence of an Electric Field. Adv. Mater. 2003, 15(12): 1006-1008.
    46林兆荣等. Y-TYP陶瓷超塑性拉伸变形实验.南京航空航天大学学报. 1996, 28(1): 141-144.
    47李良福.超塑性加工陶瓷材料的研究.锻压技术. 1998, (5): 41-42.
    48王国峰. 3Y-TZP纳米陶瓷材料制备和超塑成形研究.哈尔滨工业大学工学博士学位论文. 2002: 74-80.
    49 G. Q. Chen, K. F. Zhang. Superplastic Extrusion of Al2O3-YTZ Nanocomposite and its Deformation Mechanism. Materials Science Forum, 2005, 475-479: 2973-2976.
    50王毓民王恒.润滑材料与润滑技术.化学工业出版社, 2005: 439-457.
    51石淼森.固体润滑材料.化学工业出版社, 2000: 1-56.
    52石淼森.固体润滑技术.中国石化出版社, 1998: 107-157.
    53叶茂.金属塑性加工中摩擦润滑原理及应用.东北工学院出版社. 1990, 122-155.
    54林治平.上限法在塑性加工工艺中的应用.中国铁道出版社. 1991, 146-155.
    55 J. A. Schey. Monogr and Textbooks in Mater. Sci. 1. Metal Deformation Process, Friction and Lubrication. Marcel Dekker Inc., New York, 1970. 807-815.
    56 Kunogi, M., J. Sci. Res. Inst (Tokyo), 1956, 50: 214-216.
    57汪大年.金属塑性成形原理.机械工业出版社, 1982.
    58 A. T. Male, M. G.. Cockroft. A Method for The Determination of the Coefficient of Friction of Metals under Conditions of Bulk Plastic Deformation. J. Inst. Met., 1964, 93: 38-46.
    59 B. Avitzur. Forging of Hollow Discs. Israel J. Technol. 1964, 2: 295-304.
    60 B. Avitzur. Metal Forming. Processed and Analysis. Mcgraw-Hill, New York, 1968.
    61 A. T. Male, V. Depierre. Validity of Mathematical Solutions for Determining Friction from the Ring Compression Test. J. Lubric. Technol. Trans. ASME, 1970, 92 (3): 389-397.
    62 H. Kudo. Proc. 5th Japan National Congress for Applied Mechanics, 1955: 75.
    63 F. Wang, J. D. Lenard. Experimental Study of Interfacial Friction-Hot Ring Compression. Trans. ASME. J. Eng. Mater. Technol., 1992, 114: 13-18.
    64 C. H. Lee, T. Altan. J. Eng. Ind., 1972. 94: 775-782.
    65 J. Y. Liu. J. Eng. Ind., 1972. 94: 1149-1156.
    66 V. Nagpal, G. D. Lahoti, T. Altan. J. Eng. Ind. Trans. ASME., 1978, 100: 413-420.
    67 B. Avitzur, F. Sauerwine. Limit Analysis of Hollow Disk Forging. J. Eng. Ind. Trans. ASME., 1978, 100: 340-346.
    68 Y. J. Hwu, T. Chwan, F. Wang. Measurement of Friction and the Flow Stress of Steels at Room and Elevated Temperatures by Ring-Compression Tests. J. Mater. Process. Tehnol., 1993, 37: 319-335.
    69 J. R. Douglas, T. Altan. J. Eng. Ind. Trans. ASME., 1975, 97: 66.
    70 A. T. Male, V. Depierre. G.. Saul. ASLE. Trans., 1973, 16: 177.
    71 K. P. Rao, R. Deivasigamani, K. Sivaram. Proc. of Seminar on‘Modern Trends in Metal Forming Techniques’. The Institution of Engineers (India),Hyderabad, 1986: 293.
    72 L. X. Li, D. S. Peng, J. A. Liu, Z. Q. Liu, Y. Jiang. An Experimental Study of the Lubrication Behavior of A5 Glass Lubricant by means of the Ring Compression Test. J. Mater. Process. Technol., 2000, 102: 138-142.
    73 L. X. Li, D. S. Peng, J. A. Liu, and Z. Q. Liu. An Experiment Study of the Lubrication Behavior of Graphite in Hot Compression Tests of Ti-6Al-4V Alloy. J. Mater. Process. Tehnol., 2001, 112: 1-5.
    74田雨霖.陶瓷织构材料.南京工业大学学报(自然科学版), 1980, 19(1): 66-77.
    75张孝文.陶瓷材料织构程度表示方法的研究.硅酸盐学报, 1983, 11(2): 141-148.
    76 Y. Ma, K. J. Bowman. Texture in Hot-Pressed or Forged Alumina. J. Am. Ceram. Soc., 1991, 74(11): 2941-2944.
    77 R. J. Xie, M. Mitomo, W. Kim, Y. W. Kim. Phase Transformation and Texture in Hot-Forged or Annealed Liquid-Phase-Sintered Silicon Carbide Ceramics. 2002, 85(2): 459-465.
    78 R. J. Xie, M. Mitomo, W. Kim, Y. W. Kim. Texture Development in Silicon Nitride-Silicon Oxynitride in Situ Composites via Superplastic Deformation. J. Am. Ceram. Soc., 2000, 83(12): 3147-3152.
    79 S. H. Hong, G. L. Messing. Development of Textured Mullite by Templated Grain Growth. J. Am. Ceram. Soc., 1999, 82(4): 867–872.
    80 Y. Yoshizawa, M. Toriyama, S. Kanzaki. Fabrication of Textured Alumina by High-Temperature Deformation. J. Am. Ceram. Soc., 2001, 84 (6): 1392-1394.
    81 Y. I. Yoshizawa, K. Hirao, S. Kanzaki. Mechanical Properties of Textured Alumina Made by High-Temperature Deformation. J. Am. Ceram. Soc., 2004, 84(11): 2147-2149.
    82 L. A. Xue, X. Wu, I. W. Chen. Superplastic Alumina Ceramics with Grain Growth Inhibitors. J. Am. Ceram. Soc., 1991, 74 (4): 842-845.
    83 W. F. Brown, J. E. Srawley. T. P. 410, ASTM, Philadelphia, 1966.
    84林广涌. SiC晶须增强氧化物陶瓷的组织结构与力学性能.哈尔滨工业大学博士论文. 1993: 139.
    85 D. J. Chen, M. J. Mayo. Rapid Rate Sintering of nanocrystalline ZrO2-3mol%Y2O3. J. Am. Ceram. Soc. 1996, 79(4): 906-910.
    86周锡荣,唐绍裘.纳米陶瓷的烧结方法.山东陶瓷, 2004, 27 (4): 18-22.
    87李县辉,孙永安,张永乾.陶瓷材料的烧结方法.陶瓷学报, 2003, 24 (2): 120-124.
    88高翔,丘泰,焦宝祥等.纳米ZrO2对Al2O3陶瓷性能的影响.硅酸盐通报, 2005, 24(1): 12-16.
    89 D. D. Jayaseelan, D. A. Rani, T. Nishikawa, H. Awaji, F. D. Gnanam. Powder Characteristics, Sintering Behavior and Microstructure of Sol-Gel Derived ZTA Composites. J. Euro. Ceram. Soc. 2000, 20: 267-275.
    90梁开明,顾扣芬,顾守仁,孙传水. ZTA陶瓷ZrO2的韧化机制和断裂特征.硅酸盐学报, 1995, 23(5): 477-487.
    91 K. P. Rao, K. Sivaram. A Review of Ring Compression Testing and Applicability of the Calibration Curves. J. Mater. Process. Technol., 1993, 37: 295-318.
    92冯大鹏,刘近朱,毛绍兰,高金堂.高温无机润滑涂层的研究进展.机械工程材料, 1998, 22(6): 5-8.
    93 A. J. A. Winnubst, M. M. R. Boutz. Superplastic Deep Drawing of Tetragonal Zirconia Ceramics at 1160℃. J. Eur. Ceram. Soc., 1998, 18: 2101-2106.
    94李落星,彭大暑,刘振球.玻璃或石墨润滑剂在TC4合金高温变形过程中的行为研究.稀有金属材料与工程, 2000, 29 (4): 239-242.
    95 K. P?hlandt. Modeling Hot Deformation of Steels, Springer, Heidelberg, 1989.
    96 E.R. Braithwaite. Solid Lubricants and Surfaces. Pergamon Press, Oxford, 1964: 137-140.
    97 R.L. Goetz, V.K. Jain, J.T. Morgan, et. al. Effects of Material and Processing Conditions upon Ring Calibration Curves. Wear, 1991, 143 (1): 71-86.
    98张凯锋,骆俊廷,陈国清,王国峰.纳米陶瓷超塑加工成形的研究进展.塑性工程学报. 2003, 10(1): 1-3.
    99 H. Cho, T. Altan. Determination of Flow Stress and Interface Friction at Elevated Temperatures by Inverse Analysis Technique. J. Mater. Process. Technol., 2005, 170 (1-2): 64-70.
    100 Y. Yoshizawa, T. Sakuma. Improvement of Tensile Ductility in High-Purity Alumina due to Magnesia Addition. Acta. Metall. Mater., 1992, 40 (11): 2943-2950.
    101 I-W Chen, L. A. Xue. Development of Superplastic Structural Ceramics. J. Am. Ceram. Soc., 1990, 73 (9): 2585-2609.
    102 N. Kondo, F. Wakai, T. Nishioka, et. al. Superplastic Si3N4 Ceramics Consisting of Rod-Shaped Grains. J. Mater. Sci. Lett., 1995, 14 (19): 1369-1371.
    103 F. Wakai, Y. Kodama, S. Sakaguchi, et. al. A Superplastic Covalent Crystal Composite. Nature, 1990, 344 (3): 421-423.
    104王国峰,张凯锋,韩文波等.陶瓷基层状复合材料超塑成形数值模拟与实验研究.航空材料学报, 2005, 25 (4): 35-39.
    105 J. Wittenauer. Superplastic Alumina-20% Zirconia. Mater. Sci. Forum, 1997, 243-245: 417-424.
    106 S. Hayashi, K. Watanabe, M. Imita, et. al. Superplastic Forming of ZrO2/Al2O3 Composite. Key. Eng. Mat., 1999, 159-160: 181-186.
    107 B. J. Kellett, C. Carry, A. Mocellin. High-Temperature Extrusion Behavior of a Superplastic Zirconia-Based Ceramic. J. Am. Ceram. Soc., 1990, 73 (7): 1922-1927.
    108 A. A. Griffth. The Phenomenon of Rupture and Flow in Solids. Philos. R. Soc. London, 1920, 221: 163-198.
    109宋玉泉,徐进,胡萍等.结构陶瓷的超塑性.吉林大学学报(工学版), 2005, 35(3): 225-242.
    110 S. Ishihara, T. Tanizawa, K. Akashiro, et.al. Stereographic Analysis of Grain Boundary Sliding in Superplastic Deformation of Alumina-Zirconia Two Phase Ceramics. Materials Transactions, JIM, 1999, 40 (10): 1158-1165.
    111 T. G. Nieh, T. Wadsworth, O. D. Sherby. Superplasticity in Metals and Ceramics. Cambridge University Press, UK, 1997: 105-116.
    112 K. Hirao, M. Ohashi, M. E. Brito, S. Kanzaki. Processing Strategy for Producing Highly Anisotropic Silicon Nitride. J. Am. Ceram. Soc., 1991, 78 (6), 1687-1690.
    113 E. Suvaci, G. L. Messing. Critical Factors in the Templated Grain Growth of Textured Reaction-Bonded Alumina. J. Am. Ceram. Soc., 2000, 83(8): 2041-2048.
    114 T. Carisey, I. Levin, D. G. Brandon. Microstructure and Mechanical Properties of Textured Al2O3. J. Am. Ceram. Soc., 1995, 15(4): 283-289.
    115 P. W. Hall, J. S. Swinnea, D. Kovar. Fracture Resistance of Highly Textured Alumina, J. Am Ceram. Soc., 2001, 84(7), 1514-1520.
    116 N. Kondo, T. Ohji, F. Wakai. Strengthening and Toughening of Silicon Nitride by Superplastic Deformation. J. Am. Ceram. Soc., 1998, 81(3): 713-716.
    117王超群, H. J. Bunge.陶瓷材料织构研究的某些进展.硅酸盐学报, 1995, 23(1): 85-101.
    118 P. F. Becher. Microstructureal Design of Toughened Ceramics. J. Am. Ceram. Soc, 1991, 74: 255-269.
    119 T. S. Suzuki, Y. Sakka, K. Morita, K. Hiraga, Enhanced Superplasticity in a Alumina-Containing Zirconia Prepared by Colloidal Processing. Scripta Mater., 2000, 43: 705-710.
    120 T. G. Nieh, C. M. McNally, J. Wadsworth. Superplastic Behavior of a 20% A12O3/YTZ Ceramic Composite. Scripta Metallurgica., 1989, 23(4): 457-460.
    121 S. Ishihara, K. Akashiro, T. Tanizawa, et. al. Superplastic Deformation Mechanisms of Alumina Zirconia Two Phase Ceramics. Mater. Trans. JIM., 2000, 41(3): 376-382.
    122 O. Flacher, J. J. Blandin, K. P. Plucknett, et.al. Microstructural Aspects of Superplastic Deformation of Al2O3/ZrO2 Laminate Composites. Mater. Sci. Eng. A, 1996, 219(1-2): 148-155.
    123 A. H. Chokshi, B. Sudhir. Compression Creep Characteristics of 8mol%Yttria-Stabilized Cubic-Zirconia. J. Am. Ceram. Soc., 2001, 84: 2625-2632.
    124 R. Duclos. Direct Observation of Grain Rearrangement during Superplastic Creep of a Fine-Grained Zirconia. J. Eur. Ceram. Soc., 2004, 24: 3103-3110.
    125 A. H. Chokshi. Evaluation of the Grain-Boundary Sliding Contribution to Creep Deformation in Polycrystalline Alumina. J. Mater. Sci. 1990, 25 (7): 3221–3228.
    126 R. Duclos. Direct Observation of Grain Rearrangement during Superplastic Creep of a Fine-Grained Zirconia. J. Eur. Ceram. Soc. 2004, 24 (10-11):3103–3110.
    127丘泰.陶瓷及其复合物的塑性变形机理及特征.南京化工大学学报, 1998, 20(2): 98-102.
    128 Y. Yoshizawa, T. Sakuma. Improvement of Tensile Ductility in High-Purity Alumina due to Magnesia Addition. Acta Metall. Mater., 1992, 40 (11): 2943-2950.
    129 X. Xu, T. Nishimura, N. Hirosaki, R. J. Xie, et.al. Superplastic Deformation of Nano-sized Silicon Nitride Ceramics. Acta Mater., 2006, 54: 255-262.
    130 J. M. Calderon-Morenoa, M. Schehl. Microstructure after Superplastic Creep of Alumina–Zirconia Composites Prepared By Powder Alcoxide Mixtures. J. Eur. Ceram. Soc., 2004, 24: 393-397.
    131 F. Lee and K. J. Bowman. Texture and Anisotropy in Silicon Nitride. J. Am. Ceram. Soc., 1992, 75 (7): 1748-1755.
    132 F. Lee, K. J. Bowman. Texture Development via Grain Rotation inβ-Silicon Nitride. J. Am. Ceram. Soc., 1994, 77 (4): 947-953.
    133 L. Clarisse, F. Petit, J. Crampon, R. Duclos. Characterization of Grain Boundary Sliding in a Fine-Grained Alumina-Zirconia Ceramic Composite by Atomic Force Microscopy. Ceram. Int., 2000, 26: 295-302.
    134 K. Morita; K. Hiraga. Reply to“Comment on the Role of Intragranular Dislocations in Superplastic Yttria-Stabilized Zirconia. Scripta. Mater., 2003, 48: 1403-1407.
    135 G. Q. Chen, K. F. Zhang, G. F. Wang, W. B. Han. The Superplastic Deep Drawing of a Fine-Grained Alumina–Zirconia Ceramic Composite and its Cavitation Behavior. Ceram. Int., 2004, 30: 2157-2162.
    136 T. Chen, M. L. Mecartney. Superplastic Compression, Microstructural Analysis and Mechanical Properties of a Fine Grain Three-Phase Alumina–Zirconia–Mullite. Mater. Sci. Eng. A, 2005, 410-411 (11): 134-139.
    137 A. K. Mukherjee. Rate Controlling Mechanism in Superplasticity. Mater. Sci. Eng., 1971, 8 (2): 83–89.
    138 R. Duclos, J. C. Philos. Grain-Boundary Sliding and Accommodation Mechanism during Creep of Yttria-Partially-Stabilized Zirconia. Mag. Lett., 2002, 82: 529–533.
    139 D. J. Schissler, A. H. Chokshi, T. G. Nieh, et. al. Microstructural Aspects ofSuperplastic Tensile Deformation and Cavitation Failure in a Fine-Grained Yttria Stabilized Tetragonal Zirconia. Acta. Metall. Mater., 1991, 39 (12): 3227-3236.
    140 F. Wakai, H. Kato, S. Sakaguchi, et. al. Compressive Deformation of Y2O3-Stabilized ZrO2/Al2O3 Composite. Yogyo. Kyokai. Shi., 1986, 94 (9): 1017-1020.
    141 B. R. Lawn, A. G. Evans, D. B. Marshall. Elastic/Plastic Indentation Damage in Ceramics: the Median/Radial Crack System. J. Am. Ceram. Soc., 1980, 63 (9-10): 574-581.
    142 Y. Motohashi, T. Sekigami, N. J. Sugeno. Variation in Some Mechanical Properties of Y-TZP Caused by Superplastic Compressive Deformation. Mater. Process. Technol., 1997, 68 (3): 229-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700