新型三元硼化物基陶瓷涂层的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热镀锌是目前钢铁材料防腐的主要手段之一,但是熔融的锌或锌铝合金对镀锌部件具有强烈的腐蚀性,如热镀锌锅中的沉没辊、稳定辊等镀锌部件,经常受到熔液的腐蚀而过早失效。镀锌部件除了受到熔液的浸蚀之外,还会受到熔液中的锌渣等硬质颗粒的磨蚀,因此其工况条件非常恶劣。热喷涂陶瓷涂层因具有良好的耐磨、耐蚀性能而常被用于热镀锌部件的防护,但是热喷涂陶瓷涂层的本征脆性常常导致其剥落失效,从而限制了其在热镀锌部件防护中的应用。针对这一问题,本研究通过分析目前国内外耐熔锌或锌铝合金腐蚀防护技术的研究现状,同时结合熔锌或熔锌铝合金对材料的腐蚀机理,开发出了一种新型不含金属粘结相的三元硼化物基陶瓷涂层,并且涂层中包含一定量的非晶、纳米晶组织,有望利用纳米晶提高材料强韧性的特点来解决普通陶瓷涂层的脆性问题,同时解决金属陶瓷涂层不耐蚀的问题。因此,本研究具有很高的应用价值和理论意义。
     本文研究技术路线如下:首先采用CALPHAD (Calculation of Phase Diagram)技术,对所研究的Co-Mo-B三元系进行相平衡热力学计算,以此指导初始粉体的成分配比。初始粉体成分配比确定后,通过湿法球磨、喷雾干燥、高温烧结以及筛分过程,成功地制备出了具有高松装密度和良好流动性、呈球形或近球形结构、平均粒度分布约为32μm的三元硼化物基陶瓷粉体。采用超音速火焰(HVOF)喷涂技术在316L不锈钢基体上制备出了三元硼化物基陶瓷涂层,利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、差示扫描量热仪(DSC)、示差热分析(DTA),热膨胀仪,显微压痕和压汞法等分析检测手段,对涂层的组织结构特征、力学和物理性能进行了研究,并对涂层中非晶、纳米晶的形成进行了热力学分析。最后研究了涂层在熔融锌铝(Al-43.5Zn%-1.5Si)液中的耐腐蚀性能及其耐腐蚀机理。主要研究内容及结论如下:
     初始粉体的成分配比约为:Co:22.92wt.%,MoB:59.08wt.%,CrB:18wt.%。Borides-Co复合浆料具有剪切稀化的假塑性流体特征,其粘度随着剪切速率的增大而减小;当分散剂、粘结剂含量分别为固相含量的0.5wt.%和2.4wt.%,固相含量为浆料总质量的45wt.%时,复合浆料保持低的粘度和良好的分散稳定性,适合后续的喷雾造粒。喷雾干燥的最佳温度范围为300-325℃,在此温度区间能够得到最大的干粉收集率为73%,并且大部分颗粒形态是球形,流动性较好;通过热分析确定团聚粉体最佳的烧结温度约在1290℃左右,经检验在此温度下得到的烧结粉体中包含CoMo2B2和CoMoB两相,以及二元硼化物MoB、CrB,没有发现氧化物等其它物相,并且粉体内部呈多孔结构、颗粒之间不发生粘连现象。
     HVOF喷涂三元硼化物基陶瓷涂层组织结构致密,孔隙分布均匀,没有发现裂纹或大量未熔颗粒。涂层孔隙率约为6.38%,平均孔隙直径约为0.16μm,涂层的孔隙大小分布呈双态分布。经XRD检测分析,涂层中的物相主要有四种晶态相CoMoB、CoMo2B2、MoB、CrB和非晶相组成,各相的百分含量分别为CoMo2B2:45.8wt.%,CoMoB:19.7wt.%,MoB:2.3wt.%,CrB:16.4wt.%,非晶:15.8wt.%。纳米晶的尺寸小于10nm。
     涂层中非晶的形成是由于喷涂液滴的快速冷却及合适的粉末成分;由于后续熔融液滴的堆积对已形成的涂层产生退火效应,纳米晶以均匀形核与非均匀形核的方式分别在非晶内部和非晶与硼化物的界面形成。
     三元硼化物基陶瓷涂层显示出了较高的显微硬度、弹性模量和断裂韧性,这得益于涂层中非晶、纳米晶以及高硬度硼化物的存在。涂层的显微硬度、弹性模量和断裂韧性都表现出各向异性特征,Weibull分布显示:涂层表面和截面的显微硬度呈双态分布。涂层的结合强度随涂层厚度的增加而逐渐减小。三元硼化物基陶瓷涂层、粘结层和基体的热膨胀系数分别约为8.9×10~(-6)/K、14.3×10~(-6)/K、17.2×10~(-6)/K。
     三元硼化物基陶瓷涂层在熔融锌铝液中的浸蚀实验表明,涂层具有极好的耐腐蚀性能,在熔液中的寿命接近600h,远高于WC-Co(WC)、低碳WC-Co(LW)涂层。熔液和未进行热处理陶瓷涂层(TB)的润湿性要优于熔液和热处理陶瓷涂层(HTTB)的,这是由于TB涂层中包含非晶造成的。在熔液中浸蚀50h后,TB涂层表面局部有大约20μm左右厚的浸蚀区域,而HTTB涂层表面没有被浸蚀迹象;浸蚀600h后,TB涂层的浸蚀区面积基本没有变化,HTTB涂层仍然没有发现被浸蚀现象。这是因为TB涂层中包含非晶组织,虽然一般认为非晶是以金属键进行结合的,但其在热力学上处于一种亚稳态,其原子的活性要远高于晶态合金。所以在润湿的过程中,非晶合金中的原子容易浸蚀、扩散到熔融液中;涂层在600℃左右的熔融Zn-Al液中浸蚀一定时间后,涂层中的非晶逐渐转变为晶态组织,熔液对涂层的浸蚀也就基本停止。
     TB涂层浸蚀600h后,失效形式表现为涂层内部出现了许多平行于陶瓷层/粘结层界面的横向裂纹,而粘结层内部以及粘结层/基体界面没有裂纹的出现,这一部分原因是由于旋转浸蚀的过程中试样和锌铝渣硬质颗粒的碰撞造成的机械损伤,另外一个重要原因是由于热膨胀系数不匹配所造成的热应力损伤。
Hot-dip galvanizing is widely used as one of the most important methods for resisting corrosion in metal products. However, the immersed bath hardware (e.g. the sink and stabilizer rolls) is subject to corrosive attack by the molten bath material (Zn or Zn-Al alloy) and often lead to premature failure. In addition to the corrosive effects of the molten bath material, the bath hardware is subject to erosive and abrasive attack from the hard intermetallic particles formed within the bath, so the working condition is very agressive. Thermal sprayed coatings are often used to protect the immersed bath hardware because of its excellent abrasive and erosion resistance. However, the intrinsic brittleness of the ceramic coating often lead to spallation failure, which limits its application range. In this paper, a novel ternary borides based ceramic coating containing amorphous and nanocrystalline phase was developed and does not contain metal binding phase by analyzing the research status of corrosion protection technique against molten Zn or Zn-Al, and combining with the corrosion mechanism of bath hardware against molten Zn or Zn-Al. Research results indicates that the ceramic coating contain amorphous phase and nano-crystal. The brittleness of ceramic coating is expected to be resolved because that nano-crystal can improve the toughness of materials and poor corrosion resistance of cermet coating also is expected to be effectively overcome. So the work has important theoretical and practical values.
     The technical routine of this research is as follows: firstly, we calculate the phase equilibrium thermodynamics of Co-Mo-B three system using CALPHAD (Calculation of Phase Diagram) technique, in order to guide the design for the composition of original powder. Following, the ternary borides based ceramic powder was prepared by the process of wet ball-milling, spray drying, high temperature sintering and calssifying. The sintered powder has good spherical shape and small size distribution so as to have good fluidity and high loose packing density, the mean particle size is about 32μm. Ternary borides based ceramic coating was prepared on the surface of 316L stainless steel by high velocity oxy-fuel (HVOF) thermal spray. The microstructures, physical and mechanical properties of the ceramic coating and powder were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal analysis (DTA), differential scanning calorimerty (DSC), thermal dilatometer, micro-indentation and mercury intrusion porosimeter (MIP). The formation of amorphous phase and nanocrystalline phase were analyzed by thermodynamics principle. Finally, the corrosion resistance and mechanism of the ternary borides based coating against molten 55%Al-43.5%Zn-Si alloy were studied. The main work and conclusions in this study are described as the following:
     The composition of the original powder is: Co: 22.92wt.%,MoB: 54.32wt.%,CrB: 18wt.%. The borides-Co slurry exhibits characteristic of pseudoplastic fluid within basic scope. As the shear rate increases, the viscosity decreases. The optimum content of binder system was 0.5wt.% referred to solid, the best content of A15 as dispersant was 2.4wt.%, and the solid concentration is about 45wt.%. The optimized slurry shows good dispersity and stability and fit for spray pelletization.
     The suitable temperature range for the spray pelletization is 300-325℃. In this scope, the maximum collection rate of dry agglomerations is 73% and the agglomerations have good spherical shape and good fluidity. The optimum sintering temperature for the agglomerations is 1290℃,the sintered powder is composed of CoMo2B2, CoMoB, MoB and CrB,but no oxide and others phase were detected. The morphology of the sintered powder is characterized by a porous internal structure of particles and no conglutination phenomena were observed.
     The HVOF sprayed ternary borides basesd coating is a very dense coating with homogeneously dispersed micropores, while cracking or large amounts of unmelted particles are not observed. The surface connected porosity and mean pore diameter of the coating are 6.38% and 0.16μm, respectively. The surface connected porosity in the coating presents a typical bimodal pore size distribution. XRD results indicate that the coating consisted of CoMo2B2(45.8wt.%), CoMoB(19.7wt.%), MoB(2.3wt.%), CrB(16.4wt.%) and amorphous phase(15.8wt.%), the particle size of the nanocrystalline phase is less than 10nm.
     The formation of the amorphous phase in the coating was attributed to the high cooling rates of molten droplets and proper powder composition. The nanocrystalline phase could result from annealing of the pervious amorphous matrix during subsequent deposit of molten droplets, existing in the inner of amorphous phase and the interface between amorphous phase and borides by homogeneous and heterogeneous nucleation, respectively.
     The coating exhibit high microhardness, elastic modulus and fracture toughness due to composing of amorphous, nano-crystal and borides. Micro-mechanical test results show that anisotropy exists in microhardness, elastic moduls and fracture toughness between the cross section and the surface of the ceramic coating. The ceramic coating exhibits a bimodal distribution of microhardness values, as evidenced by their weibull plots. The adhesive strength of the coating decreases with increasing the thickness of the coating.?Coefficient of thermal expansion (CTE) for the ternary borides based coating, bond coating and substrate are 8.9×10~(-6)/K, 14.3×10~(-6)/K and 17.2×10~(-6)/K, respectively.
     The immersed test shows that the lifetime of the ceramic coating is as high as 600h in the molten Zn-Al alloy and is more higher than those of WC-Co and low-carbon WC-Co cermet coating. The equilibrium contact angle of Zn-Al alloy melt on the non heat-treated ceramic coating (TB) is smaller than that of the heat treated ceramic coating (HTTB), which is attributed to the amorphous phase contained in the TB coating.
     After 50h immersion test, an erosion area with the thickness of 20μm appears at the TB coating while erosion area was not found at the HTTB coating. After 600h immersion test, the thickness of the erosion area at TB coating was not enlarged and the erosion area still does not appear at the HTTB coating. The corrosion mechanism of the TB coating is associated with the amorphous phase contained in the ceramic coating. Although it is generally accepted that the atomic bonding of amorphous alloy is primarily metallic, atoms in amorphous alloy are comparatively more active than those in crystalline alloy because the amorphous alloys are in thermodynamically metastable states. Atoms in amorphous alloy easily dissolve and diffuse in the molten alloy during wetting process. In molten Zn-Al alloy of 600℃, the amorphous phase would crystallized at a certain time, the erosion of the molten Zn-Al also stopped.
     After immersed for 600h, the failure modes of the TB coating exhibit as spallation and delamination at the ceramic coating. Horizontal microcracks parallel to the ceramic coating/bond coating interface are generated at the ceramic coating, which result in the failure of the ceramic coating. The microcracks in the ceramic coating are mainly caused by two reasons:
     1. Damage caused by collision between the ceramic coating and hard intermetallic particles formed within the bath during the rotation process;
     2. Thermal stress damage originated from mismatch of CTE of ceramic coating and that of substrate.
引文
[1] Vickers C.W., Commercial hot dip galvanizing, Materials Protection, 1962, 2(30), 38-40.
    [2] Mcelroy S.A., Material development of molten metal bath hardware for continuous hot-dip processes [Doctor Dissertation], Tuscaloosa, Alabama, The University of Alabama, 2005.
    [3] Snider J.M., Zinc pot bearing material wear rate as a function of contact pressure and velocity [Doctor Dissertation], Morgantown, West Virginia, West Virginia University, 2002.
    [4] Gellings P.J., Mechanism of the reaction between liquid zinc and steel, Corrosion Science, 1974, 14(8), 507-509.
    [5] Yamaguchi H., Hisamatsu T., Reaction mechanism of the sheet galvanizing, Journal of the Iron and Steel Institute of Japan, 1977, 63(7), 1160-1169.
    [6] Wakamatsu Y., Masumoto H., Yamane M., et al., Reaction diffusion between iron and Pb-Zn melt at 733 to 818K, Journal of the Iron and Steel Institute of Japan, 1996, 82(1), 75-80.
    [7]陈厚载,钢管热镀锌技术问答(11),焊管, 1989, 12(6), 58-62.
    [8]顾国成.刘邦津.热浸镀.北京:化学工业出版社. 1988.
    [9]辛钢,热喷涂铁铝合金涂层耐锌腐蚀机理的研究[博士学位论文],大连,大连海事大学, 2002.
    [10]俞刚强,中国镀锌工业的发展及对锌的需求,世界有色金属, 1999, (8), 19-21.
    [11] Kurimoto T., Evaluation of spray materials for in-pot rolls of hot-dip galvanizing line, CAMP-ISIJ, 1994, 7(2), 606.
    [12] Liberski P., Podolski P., Gierek A., et al., Interaction of liquid zinc with non-metallic coatings on steel, Materials Science Forum, 1997, 251-254(Pt.2), 693-700.
    [13] Nakagawa M., Sakai J., Ohkouchi T., et al., Corrosion resistance of various materials in molten metal, Tetsu to Hagane, 1996, 82(3), 226-231.
    [14] Liberski P., Podolski P., Formanek B., et al., The resistance of thermally sprayed coatings to the corrosion influence of liquid zinc, proceedings of the Euromat 97, 5th European Conference on advanced materials and processes and applications, Netherlands, 1997, 257-260.
    [15] Sawa M., Oohori J., Application of thermal spraying technology at steelworks, Proceedings of the 14th international thermal spray conference, Kobe, Japan, 1995, 37-42.
    [16] Tomita T., Takatani Y., Kobayashi Y., et al., Durability of WC/Co sprayed coatings in molten pure zinc, ISIJ International, 1993, 33(9), 982-988.
    [17] Seong B.G., Hwang S.Y., Factors on the corrosion resistance of thermally sprayed WC-Co coatings in molten zinc, Proceedings of the 1st ASM International Surface Engineering and the 13th IFHTSE Congress, Ohio, USA, 555-562.
    [18] German R.M., Hwang K.S., Madan D.S., Anaysis of Fe-Mo-B sintered aloys, Powder Metallurgy International, 1987, 19(2), 15-18.
    [19] Ozaki S., Yamasaki Y., Komai M., et al., Crystal structural change of boride observedin Mo2NiB2 boride base hard alloys, JJAP Series, 1994, 10, 220-221.
    [20] Komai M., Yamasaki Y., Matsuo S., et al., Reactive sintering behavior of a Cr containing Mo2NiB2 Base Cermets, Proceedings of 1994 powder metallurgy world congress (PM’94), Paris, France, 1994, 1, 1521-1524.
    [21] Takagi K., Watanable T., Ando T., et al., Efect of molybdenum and carbon on the properties of iron molybdenum boride hard alloys, The Internationtal Journal of Powder Metallurgy, 1986, 22(2), 91-95.
    [22] Takagi K., Komai M., Ide T.,et al., Efect of Ni on the mechanical properties of Fe, Mo, boride hard alloys, Th Internationtal Journal of Powder Metallurgy, 1987, 23(3), 157-161.
    [23] Komai M., Yamasaki Y., Takagi K., et al., Efects of Cr on the mechanical properties and phase formation of Mo2NiB2 boride base cermets, Advances in Powder Metallurgy and Particulate Materials, Metall powder industry federation, Princeton, NJ, 1992, 8,81-88.
    [24] Draley J.E., Weeks J.R. Corrosion by liquid metal. New York: Plenum Press. 1970, 251-601.
    [25]陈鸿海.金属腐蚀学.北京:北京理工大学出版社. 1995.
    [26] Tortorelli P.F., Fundamentals of high temperature corrosion in liquid metals, Corrosion, ASM Handbook, New York, 2000, 13, 56-60.
    [27] Burris M.L., Material evaluation of liquid metal corrosion in Zn-Al hot-dip coating baths [Master Dissertation], Morgantown, West Virginia, West Virginia University, 2000.
    [28] Brunnock M.S., Jones R.D., Jenkins G.A., et al., Investigation of the interactions between liquid zinc and stainless steels for use in continuous galvanizing hardware, Zinc-based steel coating systems: production and performance (TMS symposium), 1998, 51-61.
    [29] Verma A.R.B., Van O.W.J., High-temperature batch hot-dip galvanizing. Part 1. General description of coatings formed at 560℃, Surface and Coatings Technology, 1997, 89(1-2), 132-142.
    [30] Burton B.P., Perrot P., Binary alloy phase diagrams, ASM intermational, Materials Park, 1990, 2, 1797.
    [31]王赫莹,热镀锌锅内壁陶瓷涂层制备及其耐锌蚀机理的研究[博士学位论文],沈阳,沈阳工业大学, 2007.
    [32]大西正己,若松良德,佐佐木辉惠, Fe-Zn拡散対にぉける金属化合物相間化合物相の形成にっいて,日本金属学会誌, 1973, 37(7), 724-730.
    [33] Ferrier A., Galdon F., A fundamental study of the iron-zinc compounds formed during hot dip galvanizing of steel, Proceedings 12th international conference hot dip galvanizing, Paris, 1979, 99-102.
    [34] Lynch R.F., Hot-dip galvanizing alloys, Journal of Metals, 1987, 39(8), 39-41.
    [35] Gellings P.J., deBree E.W., Gierman G., Synthesis and characterization of homogeneous intermetallic Fe-Zn compounds-1. the deta 1 phase, Materials Research and Advanced Techniques, 1979, 70(5), 312-324.
    [36] Jordan C.E., Marder A.R., Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450℃: Part I 0.00wt% Zn-Al baths, Journal of Materials Science, 1997, 32(21), 5593-5602.
    [37] Foct J., Perrot P., Reumont G., Interpretation of the role of silicon on the galvanizing reaction based on kinetics, morphology and thermodynamics, Scripta Metallurgica etMateriala, 1993, 28(10), 1195-1200.
    [38] Foct J.,The physical metallurgy of zinc coating steel, TMS annual meeting, 1995.
    [39] Nakagawa M., Sakai J., Ohkouchi T., et al., Friction and wear properties of C/C and ceramics particle dispersed C/C composites in a zinc-plating bath, Journal of the Iron and Steel Institute of Japan, 1996, 82(8), 689-694
    [40]梁勇,韩亚苓,线全刚等, Al2O3/SiC纳米复合陶瓷与配副在熔融锌中的磨蚀,材料导报, 2000, (Z10), 331-333.
    [41] ASM Metal Handbook, Metallgraphy Structures and Phase Diagrms, Plenum, Ohio, 1973, 18.
    [42] Tamas T., Corrosion and abrasion attack of molten zinc on the bath wall during hot-dipping, Key Engineering Materials, 1987, 20-28(Pt.1-4), 3433-3441.
    [43] Hodge W., Evans R.M., Haskin A.F., Metallic materials resistant to molten zinc, Journal of Metals, 1955, 28(7), 824-832.
    [44] Pekerin J., Polard V., Recent market and technical development in hot dip galvanizing steel, Iron and Steel Engineer, 1988, 65(6), 34-39.
    [45]彭解, Mo-30W合金材料在热镀锌工艺装备上的应用,金属制品, 1988, 14(2), 44-47.
    [46]加藤刚志,钼合金, 1981,日本专利: 56-65962.
    [47]邹敦叙,贾天聪,陈振兰等,耐熔融金属腐蚀合金, CN Pat., 1069773, 2002.
    [48]王宁,铁基多元合金耐熔锌腐蚀机理的研究及应用[硕士学位论文],天津,河北工业大学, 2005.
    [49]李伟, Fe-Cr-Mn-Si合金耐液锌和铝锌硅合金腐蚀的研究[硕士学位论文],北京,北京科技大学, 2007.
    [50]马永庆,王庆华,齐育红等, Al-Si合金铸铁抗锌液腐蚀的研究,材料保护, 1999, 32(3), 37-39.
    [51]齐育红,马永庆,张占平等, Al铸铁抗锌液腐蚀机制研究,材料工程, 1999, 10, 23-26.
    [52] Kubota Corp., Alloy excellent in corrosion resistance to molten zinc, JP Pat., 6041694, 1994.
    [53] Sumitomo Metal Ind Ltd., Steel having erosion resistance to molten zinc, JP Pat., 56016651, 1981.
    [54] Taihei Kinzoku Kogyo K.K., Alloy provided with corrosion resistance to molten zinc, JP Pat., 58207358, 1983.
    [55] Nippon Chuzo K.K., Alloy steel with molten zinc resistance, JP Pat., 7278754, 1995.
    [56] Zhang K., Tang N.Y., Reactions of Co based and Fe based superalloys with a molten Zn-Al alloy, Materials Science and Technology, 2004, 20(6), 739-746.
    [57] Zhang K., Wear of cobalt-based alloys sliding in molten zinc, Wear, 2003, 255(1-6), 545-555.
    [58] Zhang K., Battiston L., Friction and wear characterization of some cobalt- and iron-based superalloys in zinc alloy baths, Wear, 2002,252(3-4),332-344.
    [59] Mitsubishi Metal Corp., Co alloy with superior erosion resistance to molten zinc, JP Pat., 56156736, 1981.
    [60] Wang X.B., Corrosion of Co-Cr-W alloy in liquid zinc, Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science, 2003, 34(6), 881-886.
    [61] Wang X.B., Liang Y., Corrosive wear of the Co-Cr-W alloy in liquid zinc, Journal ofMaterials Research, 2001, 16(6), 1585-1592.
    [62]王宝军,王文俊,林均品, Fe3Si和316不锈钢在工业锌液中的腐蚀机制,鞍钢技术, 2006, 1, 15-19.
    [63] Wang W.J., Lin J.P.,Wang Y.L., et al., The corrosion of intermetallic alloys in liquid zinc, Journal of Alloys and Compounds, 2007, 428(1-2), 237-243.
    [64] Liu X., Barbero E., Xu J., et al., Liquid metal corrosion of 316L, Fe3Al and FeCrSi in molten Zn-Al baths, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36(8), 2049-2058.
    [65]曹晓明,温鸣,刘亚青,耐熔锌腐蚀材料及热镀锌内加热技术,中国机械工程, 2002, 13(19), 1642-1645.
    [66]王慧,徐华,许长庆等,耐液态锌液腐蚀材料的反应液相烧结,河北工业大学学报, 2001, 30 (5), 67-70.
    [67]张承忠,金属的腐蚀与保护.北京:冶金工业出版社. 1985, 87.
    [68]李春久,孙乃承,刘顺先,热镀锌锅微晶玻璃防腐涂料的研究,焊管, 1993, 16(3), 39-40.
    [69]卢燕平.渗镀.北京:机械工业出版社. 1985.
    [70] Cao X., Wen M., Jiang X., Mechanism of liquid zinc corrosion on metals, Journal of Iron and Steel Research International, 1998, 10(4), 54-58.
    [71]曹晓明,姜信昌,温鸣等,耐液态锌腐蚀材料的研究和应用,金属热处理学报, 1997, 18(2), 25-29.
    [72] Tsipas D.N., Triantafyllidis G.K., Kiplagat J.K., et al., Degradation behavior of boronized carbon and high alloy steels in molten aluminium and zinc, Materials letter, 1998, 37(3), 128-131.
    [73]徐滨士,刘世参.表面工程.北京:机械工业出版社(第一版). 2000, 85-86.
    [74] Nippon Parkerizing Co.Ltd., Materials having corrosion resistance to molten zinc, JP Pat., 56016645, 1981.
    [75] Taiyo Steel Co.Ltd., Nippon ST(JP)., Immersion member for hot dip galvanizing bath and method for preparing the same, US Pat., 5116431, 1992.
    [76]中川师夫,酒井淳次,大河内敬彦等,亜鉛めっき浴中におけるC/Cおよびセラミックス粒子分散C/C複合材の摩擦?摩耗特性,铁と钢, 1995, 81(10), 989.
    [77]中川师夫,酒井淳次,大河内敬彦等,溶融金属中における各種材料の溶損性,铁と钢, 1995, 82(3), 226.
    [78]于月光,曾克里等,我国热喷涂粉末材料的应用与发展现状,机械工人(热加工), 2005, (9), 16-18.
    [79] Fukubayashi H.H., Present furnace and pot roll coatings and future development, Proceedings of ITSC 2004, Osaka, Japan, 2004, 23-29.
    [80] Jiang Z.H.,Tan X.H., Zhang Y.G., et al., Investigation of the corrosion behaviors of HVOF-sprayed carbide cermets coatings in molten Al-Zn-Si alloy bath. Materials Protection, 2004, 37(9), 194-199.
    [81] Liberski P.,Podolski P.,Gierek A., et al., Interaction of liquid zinc with non-metallic coating on steel, Materials Science Forum, 1997, 251-254(Pt.2), 693-700.
    [82]应鹏展,张亚非,倪振尧,镀镍渗硼在玻璃玛赛克轧辊上的应用,金属热处理, 1997, (2), 43-44.
    [83]黄拿灿,朱海泉,镍基合金渗硼工艺及组织性能分析,金属热处理学报, 1996, 17(3), 42-47.
    [84]斯永敏,赵清海,镀镍渗硼层的抗热展及抗高温氧化性能,金属热处理, 1996, (1),36-38.
    [85] Cahn R.W., Haasen P., Kramer E.J., Materials Science and Technology, Structure and Properties of Ceramics, VCH, Weinheim, Germany, 1994, 11.
    [86] Champagne B., Dallaire S., Plasma spray synthesis of TiB2-Fe coatings, Journal of Vacuum Science & Technology A, 1985, 3(6), 2373-2377.
    [87] L'espérance G., Botton G., Dallaire S., Analytical transmission electron microscopycharacterization of plasma spray synthesized TiB2-Fe coatings, Thin Solid Films, 1990, 193-194(1-2), 442-452.
    [88] Takagi K., Komai M., Watanbe T., Efects of Mo and Cr contents on the properties and phase formation of iron molybdenum boride base hard alloys, Powder Metallurgy International, 1987, 19(5), 30-33.
    [89] Takagi K.I., Komai M., Matsuo S., Development of ternary boride base cermets, Powder Metallurgy Proceeding of World Congress, Paris, 1994, 1, 227-234.
    [90]駒井正雄,高木研一, M(M=Mo,W)-Fe-B三元系状態図の1323K等温断面の検証,日本金属学会誌, 2000, 64(2), 154-162.
    [91]井手恒幸,中野和則,高木研一, Mo2FeB2硼化物系硬質合金の燒結機制と機械的性質,粉体おょび粉末冶金, 1987., 34(7), 302-308.
    [92]山崎裕司,米津麻里,高木研一, Mo2NiB2系硬質合金の燒結過程,粉体おょび粉末冶金, 2000, 47(5), 521-525.
    [93]驹井正雄,鏡部刚彦,高木研一, WCoB系硬質合金の组织と机械的特性におょぼすCr添加量の影响,粉体おょび粉末冶金, 1993, 40(1), 38.
    [94]高木研一,反应硼化烧结法にょゐ高强度复硼化物系硬质材料の开发,粉体おょび粉末冶金, 1998, 45(6), 507-514.
    [95] Yamasaki Y., Uchitomi H., Ozaki S., Corrosion resistance of boride base cermets in a molten aluminum alloy, Journal of the Japan Society of Powder and Powder Metallurgy, 1994, 41(8), 994-998.
    [96]高木研一,三元硼化物たべ一スとした高度硬質材料,最近の研究, 1997, 36(12), 1139-1146.
    [97]駒井正雄,山崎裕司,高木研一, (Mo, Ni)硼化物系硬質合金の諸特性に及ばすCr添加量の影響,日本金属学会誌, 1993, 57(7), 813-820.
    [98] Takagi K., Ohira S., Ide T., et al., New P/M iron containing multiple boride base hard alloy, Modern developments in powder metallurgy, MPIF, Princeton,N.J., 1985, 16, 153-166.
    [99]駒井正雄,高木研一,高强度硼化物系金属陶瓷,国外难熔金属与硬质材料, 1998, 14(1), 52-63.
    [100] Takagi K., Ohira S., Ide T., et al., New multiple-boride base hard alloy, Metal Powder Report,1987,42(7-8),483-489.
    [101]駒井正雄,山崎裕司,小崎信也等, Mo2NiB2系硬質合金の機械的性質と硼化物相の桔晶構造,日本金属学会誌, 1994,58(8),959-965.
    [102] Shinohara N., Shirai S., Okamoto H., Corrosion resistance of boride base hard materials in molten metals, Journal of the Japan Society of Powder and Powder Metallurgy, 1994, 41(1), 18-21.
    [103] Nishi M., Yamasaki Y., Takagi K., Corrosion resistance of an iron base boride cermets with oxide surface layers in a molten Al alloy, Journal of the Japan Institute of Metals, 2002, 66(9), 877-880.
    [104] Haschke H., Nowotny H., Untersuchungen in den Dreistoffen (Mo,W)-(Fe,Co,Ni)-B,Monatsch. Chem., 1966, 97(5), 1459-1468.
    [105] Gladyshevskii E.I., Fedorov T.F., Kuz’ma Yu.B., et al., Isothermal section of the molybdenum-iron-boron system, Poroshkovaya Metallurgiya, 1966, (4), 55-60.
    [106]驹井正雄,高木研一,高强度硼化物系开サーメツトの開發,日本金属学会会报, 1994, 33(12), 1514-1523.
    [107] Jeitschko W., The crystal structure of MoCoB and related compounds, Acta Crystallographica B, 1968, 24, 930-934.
    [108] Kuz'ma Yu.B., Kripyakevich P.I., Chepiga M.V., Crystal structures of the compounds MoCoB, WCoB and WFeB, Journal of Structural Chemistry, 1968, 9(2), 268-269.
    [109]黄培云.粉末冶金原理.北京:冶金工业出版社. 1982.
    [110] Kingery W.D., Densification during sintering in the presence of a liquid phase.Ⅰ. theory, Journal of Applied Physics, 1959, 30(3), 301-306.
    [111] Jeandin M., Koutny J.L., Bienvenu Y., Liquid phase sintering of nickel base superalloys, Powder Metallurgy, 1983, 26(1), 17-22.
    [112] German R.M. Liquid phase sintering. New York: Plenum press. 1985.
    [113] Ide T., Ando T., Reaction sintering of an Fe-6wt pct B-48wt pct Mo alloy in the presence of liquid phases. Metallurgical and Materials Transactions A, 1989, 20A, 17-24.
    [114] Lawrence G.D., Foerster G.S., Pressureless sintering of aluminum powder, Metals Engineering Quart, l971, 11(3), 25-30.
    [115] Froschauer L., Fuhath R.M., Direct observation of liquid-phase sintering in the system tungsten carbide-cobalt, Journal of Materials Science, 1976, 11, 142-149.
    [116] German R.M., Supersolidus liquid phase sintering part I: process review, International Journal of Powder Metalluegy, 1990, 26(11), 23-35.
    [117] Takagi K., Development and application of high strength ternary boride base cermets, Journal of Solid State Chemistry, 2006, 179(9), 2809–2818.
    [118] Hamashima K., Shinozaki Y., Sasaki M., Thermal spraying of Mo2NiB2-Ni cermet, Advances in Powder Metallurgy and Particulate Materials, 1994, 1, 2-43.
    [119] Hamashima K., M3B2 boride cermet coating by sintered powder, Materials Science Forum, 426-432(3), 2545-2550.
    [120] Keranen J., Stenberg T., Mantyla T., et al., Microstructural characterization of detonation gun-sprayed boride-based cermet coatings, Surface and Coatings Technology, 82 (1-2), 29-37.
    [121] Gao Y., Hei Z.K., Xu X.L.,et al., Formation of molybdenum boride cermet coating by the detonation spray process, Journal of Thermal Spray Technology, 2001, 10(3), 456-460.
    [122] Zhang S., Sun D., Fu Y.Q., Superhard nanocomposite coatings, Journal of Materials Science & Technology, 2002, 18(6), 485-491.
    [123]卢柯,非晶态合金向纳米晶体的相转变,金属学报, 1994, 30(1), 1-21.
    [124]苏勇,陈翌庆,丁厚福等, Al87Ni10Zr3纳米晶材料的形成及其晶化行为,矿冶工程, 2002, 22(1), 98-100.
    [125] Graef G., Anderson K., Groza J., et al., Phase evolution in electrodeposited Ni-W-B alloy, Materials Science and Engineering B, 1996, 41(2), 253-257.
    [126] Lewis D.B., Marshall G.W., Investigation into the structure of electrodepositednickel-phosphorus alloy deposits, Surface and Coatings Technology, 1996, 78(1-3), 150-156.
    [127] Zhang S., Sun D., Fu Y.Q., et al., Recent advances of superhard nanocomposite coatings: a review, Surface and Coatings Technology, 2003, 167(2-3), 113-119.
    [128] Tondu S., Schnick T., Pawlowski L., et al., Laser glazing of FeCr-TiC composite coatings, Surface and Coatings Technology, 2000, 23(2-3), 247-251.
    [129]向兴华,穆晓冬,刘正义, Fe基非晶合金涂层的等离子喷涂成形特征,焊接学报, 2003, 24(1), 48-54.
    [130] Kishitake K., Era H., Otsubo F., Characterization of plasma sprayed Fe-17Cr-38Mo-4C amorphous coatings crystallizing at extremely high temperature, Journal of Thermal Spray Technology,1996,5(3),283-288.
    [131] Ji G., Elkedim O., Grosdidier T., Deposition and corrosion resistance of HVOF sprayed nanocrystalline iron aluminide coatings, Surface and Coatings Technology,2005, 190(2-3), 406-416.
    [132] Dent A.H., Horlock A.J., McCartney D.G., et al., Microstructure formation in high velocity oxy-fuel thermally sprayed Ni-Cr-Mo-B alloys, 2000, Materials Science and Engineering A, 283(1-2), 242-250.
    [133] Dent, A.H., Horlock, A.J., McCartney, D.G., et al., Microstructural characterisation of a Ni-Cr-B-C based alloy coating produced by high velocity oxy-fuel thermal spraying, 2001, Surface and Coatings Technology 139(2-3), 244-250.
    [134] KIM H.J., Amorphous phase formation of Zr-based alloy coating by HVOF spraying process, Journal of Materials Science, 2001, 36(1), 49-54.
    [135] Wu Y., Lin P., Xie G., Formation of amorphous and nanocrystalline phases in high velocity oxy-fuel thermally sprayed a Fe-Cr-Si-B-Mn alloy, Materials Science and Engineering A, 2006, 430(1-2), 34-39.
    [136] Wu Y., Lin P., Chu C., et al., Cavitation erosion characteristics of a Fe-Cr-Si-B-Mn coating fabricated by high velocity oxy-fuel (HVOF) thermal spray, Materials Letters,2007, 61(8-9),1867-1872.
    [137] Li C.J.,Ohmori A., Harada Y., Formation of an Amorphous phase in thermally sprayed WC-Co, Journal of Thermal Spray Technology, 1996, 5(1), 69-73.
    [138] Li C.-J., Wang Y.-Y., Ohmori A., Effect of melting state of spray particles on the adhesive strength of HVOF nickel-based alloy coatings, Proceedings of the 1th International Thermal Spray Conference, ASM Thermal Spray Society, Montreal, Canada, 2000, 791-796.
    [139] Li C.-J., Wang Y.-Y., Li H., Effect of nano-crystallization of high velocity oxy-fuel-sprayed amorphous NiCrBSi alloy on properties of the coatings, Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22(5), 2000-2004.
    [140] Inoue A., High strength bulk amorphous alloys with low critical cooling rates, Mater. Trans. JIM, 1995, 36(7), 866-875.
    [141] Niihara K., New design concept of structural ceramics-matrix nanocomposites, Journal of the Ceramic Society of Japan, 1991, 99(10), 974-982.
    [1] Zhang K., Tang N.Y., Goodwin F.E., et al., Reaction of 316L stainless steel with a galvanizing bath, Journal of Materials Science, 2007, 42 (23), 9736-9745.
    [2] Kaufman L., Bernstein H., Computer calculation of phase diagrams, New York: Academic Press, 1970.
    [3] Sundman B., Jansson B., Andersson J.O., The thermo-calc database system, Calphad, 1985, 9(2), 153-190.
    [4] Yellowstone S., PANDAT software for multicomponent phase diagram calculation by computherm, LLC, 437 , Madison, WI. 2000.
    [5] Bale C.W., Pelton A.D., FACT (Facility for the analysis of chemical thermodynamics), Version 2.1-User Manual, Ecole Plytechnique de Montreal/Royal Military College, Canada, 1996.
    [6] Davies R.H., Dinsdale A.T., Gisby J.A., Application of thermodynamics in the synthesis and processing of materials, TMS, Warrendale, PA, 1995, 371-384.
    [7] Sundman B., An assessment of the Fe-O System, Journal of Phase Equilibria, 1991, 12(1), 127-140.
    [8] Grundy A.N., Hallstedt B., Gauckler L.J., Thermodynamic assessment of the lanthanum-oxygen system, Journal of Phase Equilibria, 2001, 22(2), 105-113.
    [9] Hillert M., Jonsson S., An assessment of the Al-Fe-N system, Metallurgical Transformation, 1992, 23A,3141-3149.
    [10] Yamashita T., Okuda k., Obara T., Appfication of thermo-calc to the developments of high-performance steels, Journal of Phase Equilibria,1999, 20(3),231-237.
    [11] Du H., Morral J.E., Prediction of the lowest melting point eutectic in the Fe-Cr-Mo-V-C system, Journal of Alloys and Compounds, 1997, 247(1-2), 122-127.
    [12] Zackrisson J., Jansson B., WC-Co based cemented carbides with large Cr3Cz additions, Int. J. Refr. Met. Hard Mater., 1998, 16(4-6), 417-422.
    [13] Zackrisson J., Rolander U., Jansson B., Microstructure and performance of a cermet material heat—treated in nitrogen, Acta Materialia, 2000, 48(17), 4281-4291.
    [14] Borgenstam A., Hillert M., Driving force for fcc→bcc martensites in Fe-X alloys, Acta Mater., 1997, 45, 2079-2091.
    [15] Kunze J., Bever B., Thermodynamics of the martensitic transformation in Fe-C and Fe-N alloys, Z. Metallkd., 2000, 91(1), 10-16.
    [16] Saunders N., Modwnik A.P., CALPHAD-A Comprehensive Guide, Lausanne Switzerland, Pergamon, 1998.
    [17] Masters K. , Applying spray drying to ceramics, Am.Ceram.Soc.Bull., 1994, 73(1),63-72.
    [18] Kawakita J., Kuroda S., Fukushima T.,?Dense titanium coatings by modified HVOF spraying, Surface and Coatings Technology, 2006, 201(3-4), 1250-1255.
    [19]胡奈赛,徐可为,何家文,涂、渡层的结合强度评定,中国表面工程,1998, 38(1), 31-36.
    [20]李美姮,胡望宇,孙晓峰等, EB-PVD热障涂层的弹性模量和断裂韧性研究,稀有金属材料与工程, 2006, 35(4), 577-580.
    [21] Marshall D.B., Noma T., Evans G.A., Simple method for determining elastic-modulus-to-hardness ratio using Knoop indentation measurements, Journal of the American Ceramic Society, 1982, 65C, 175.
    [22]曹茂盛,关第斌,徐甲强.纳米材料导论.哈尔滨:哈尔滨工业大学出版社. 112.
    [23] Anstis G.R., Chantikul P., Lawn B.R., et al., A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements, Journal of the American Ceramic Society, 1981, 64 (9), 533-538.
    [24]洪汉烈,陈建军,杨淑珍等,水泥熟料定量分析的全谱拟合法,分析测试学报, 2001, 20(2), 5-8.
    [1] Kreye H., A comparison of HVOF system-behavior of materals and coatings properties, Proceedings of the 4th HVOF colloquium, Erdin, 1997, 11, 13-21.
    [2] Shaw L.L., Goberman D., Ren R., et al., The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions, Surface and Coating Technology, 2000, 130(1), 1-8.
    [3] Marple B.R., Thermal spraying of nanostructured cermet coatings, Journal of Materials Processing Technology, 2001, 117(3), 418-423.
    [4] Hason T.C., Hackett C.M., Settles G.S., Independent control of HVOF particle velocity and temperature, Journal of Thermal Spray Technology, 2002, 11(1), 75-85.
    [5] Zeng Y., Lee S.W., Ding C.X., Plasma spray coatings in different nanosize alumina, Materials Letters, 2002, 57(2), 495-501.
    [6] Kaufman L., Nesor H., Coupled phase diagrams and thermochemical data for transition metal binary systems-II, Calphad, 1978, 2(1), 81-108.
    [7] Brewer L., Lamoreaux R.H., Ferro R., et al., Molybdenum: physico-chemical properties of its compoundsand alloys, Atomic Energy Review, International Atomic Energy Agency, Vienna, 1980, 7, 123-127, 231-234.
    [8] Predel B., Phase equilibria, crystallographic and thermodynamic data of binary alloys, Springer-Verlag, Berlin, 1993, Group IV, 5c, 318-321.
    [9] Massalski T.B., Binary alloy phase diagram, Ohio, ASM International, 1990.
    [10] Davydov A., Kattner U.R., Thermodynamic assessment of the Co-Mo system, Journal of Phase Equilibria and Diffusion, 1999, 20(1), 5.
    [11] Schobel J.D., Stadelmaier H.H., The binary system, Cobalt-Boron, Z. Metallkunde, 1966, 57(4), 323-325.
    [12] Lerner C., Cadeville M.C., The solubility of boron in cobalt, Scr. Metall., 1973, 7, 941–944.
    [13] Bashev V.F., Miroshnichenko I.S., Sergeev G.A., New metastable phases of Co-B, Fe–B, and Ni–B systems, Neorganiceskie materialy, 1981, 17(7), 1206-1211.
    [14] Okamoto H., Desk handbook-phase diagrams for binary alloys, ASM International, 2000.
    [15] Du Y., Schuster J.C., Chang Y.A., et al., A thermodynamic description of the B-Co system: modeling and experiment, Materials Research and Advanced Techniques, 2002, 93(11), 1157-1163.
    [16] Brewer L., Lamoreaux R.H., Molybdenum: physico-chemical properties of its compoundsand alloys, Atomic Energy Review, International Atomic Energy Agency, Vienna, 1980, 7, 107-113.
    [17] Spear K.E., Wang M.S., Thermodynamic Modeling of the Molybdenum-Boron System , CALPHAD, 1981, 5(2), 109-113.
    [18] Spear K.E., Liao P.K., Bull alloy phase diagram, 1988.
    [19] Haschke H., Nowotny H., Benesovsky F., Untersuchungen in den Dreistoffen: {Mo, W}-{Fe, Co, Ni}-B, Chemical Monthly, 1966, 97(5), 1459-1468.
    [20] Stadelmaier H.H., Davis H.H., Die Kobaltecke im Dreistoffsystem Kobalt-Molybd?n-Bor, Chemical Monthly, 1966, 97(5), 1489-1493.
    [21] Helander T., Hoglund L., Shi P.F., et al. Thermo-Calc & DICTRA, computational tools for materials science, CALPHAD, 2002, 26(2), 273-312.
    [22]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社. 2003.
    [23]风生,崔平.微纳米粉体后处理技术及应用.北京:国防工业出版社. 2005.
    [24]刘冰,纳米陶瓷粉体的分散,江苏陶瓷, 2004, 37(4), 3-5.
    [25] Hunter R.J. Zeta potential in colloid science: principles and applications. London: Academic Press, 1981.
    [26] Scott, W. E., Fines Management and control in wet-end chemistry, Tappi Journal, 1986, 69(11), 30-34.
    [27] Ren C.L., Li D. , Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels, Analytica Chemica Acta, 2005, 531(1), 15-23.
    [28] Samec Z., Simple kinetic models of ion transfer across an interface between two immiscible electrolyte solutions: a comparison with experimental data, Electrochimica Acta, 1998, 44(1), 85-90.
    [29] Gu Z., Li F.,The determination of the free energy of an electrical double layer, 2002, 250(1), 265.
    [30] Jiang L., Chen S.B., Electroviscous effect on the rheology of a dilute solution of flexible polyelectrolytes in extensional flow, Journal of Non-Newtonian Fluid Mechanics, 2001, 96(3), 445-458.
    [31]陆佩文.无机材料科学基础.武汉:武汉理工大学. 2003.
    [32]刘阳桥,高濂,郭景坤,丙烯酸类共聚物在纳米Y-TZP粉体上的等温吸附研究,无机材料学报, 200l, 16(4), 635-640.
    [33]翟长生,王俊,李飞等.影响喷雾造粒Al2O3/nano-TiO2复合陶瓷粉体流动特性的流变学因素研究,材料科学与工程学报, 2004, 22(3), 318-322.
    [1] Kear B.H., Skandan G., Sadangi R.K., Factors controlling decarburization in HVOF sprayed nano-WC/Co hardcoatings, Scripta Materialia, 2001, 44(8-9), 1703-1707.
    [2] Ji G., Elkedim O., Grosdidier T., Deposition and corrosion resistance of HVOF sprayed nanocrystalline iron aluminide coatings, Surface and Coatings Technology, 2005, 190(2-3), 406-416.
    [3] Moreau C., Lamontagne M., Cielo P., Temperature evolution of plasma-sprayed niobium particles impacting on a substrate, Surface and Coatings Technology 1991, 46(2), 173-187.
    [4] Dent A.H., Horlock A.J., McCartney D.G., et al., Microstructure formation in high velocity oxy-fuel thermally sprayed Ni-Cr-Mo-B alloys, Materials Science and Engineering A, 2000, 283(1-2), 242-250.
    [5] Dent A.H., Horlock A.J., McCartney D.G., et al., Corrosion behavior and microstructure of high-velocity oxy-fuel sprayed nickel-base amorphous/nanocrystalline coatings, Journal of Thermal Spray Technology, 1999, 8(3), 399-404.
    [6]梁敬魁.粉末衍射测定晶体结构.北京:科学出版社, 2003. 8-11.
    [7]南京大学地质学系矿物岩石教研室.粉晶X射线物相分析.北京:地质出版社. 1980, 103-208.
    [8] Chung F.H., Quantitative interpretation of X-ray diffraction patterns, Journal of Applied Crystallography, 1975, 8(1), 17-19.
    [9] Popovic S., Grzeta-Plenkovic B., Balic-Zunic T., The doping method in quantitative X-ray diffraction phase analysis. Addendum, Journal of Applied Crystallography, 1983, 16(5), 505-507.
    [10]储刚,含非晶样品的X射线衍射增量定量相分析方法,物理学报, 1998, 47(7), 1143-1145.
    [11] Chu G., Sui Q., External standard method of quantitative X-ray diff-raction phase analysis of samples containing a morphous material, Acta Metallurgica Silica, 1994, 7(3), 179-182
    [12]吴万国,阮玉忠. X射线衍射无标定量分析法的研讨,福州大学学报, 1997, 25(3), 37-40.
    [13]沈春玉,储刚, X射线衍射定量相分析新方法.分析测试学报, 2003, 22(6), 80-82.
    [14]惠希东,陈国良.块体非晶合金.北京:化学工业出版社. 2007, 50-51.
    [15] Inoue A., Zhang T., Masumoto T., Glass-forming ability of alloys, Journal of Non-crystalline Solids, 1993, 156(Part 2), 473-480.
    [16] Kim Y.J., Busch R., Johnson W.L., et al., Metallic glass formation in highly undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 during containerless electrostatic levitation processing, Applied Physics Letters, 1994, 65(17), 2136-2138.
    [17] Stewart D.A., Studies on thermally sprayed WC-Co coatings [Doctor Dissertation], Nottingham, Thesis University of Nottingham, 1998.
    [18]陈景榕,李承基.金属与合金中的固态相变.北京:冶金工业出版社, 1997, 2-46.
    [19]刘宗昌,任慧平,宋义全.金属固态相变教程.北京:冶金工业出版社, 2003, 1-34.
    [20] Zhou H., Li F., He B., et al., Air plasma sprayed thermal barrier coatings on titanium alloy substrates, Surface and Coatings Technology, 2007, 201(16-17), 7360-7367.
    [21] Barbezat G., Nicoll A.R., Sickinger A., Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coating for different applications, Wear, 1993, 162-164 ( pt. A), 529-537.
    [22] Matthews S., Hyland M., James B., Microhardness variation in relation to carbide development in heat treated Cr3C2-NiCr thermal spray coatings, Acta Materialia, 2003, 51(14), 4267-4277.
    [23] Lima R.S., Kucuk A., Berndt. C.C., Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zirconia coatings, Surface and Coatings Technology, 2001, 135(2-3), 166-172.
    [24] Lima R.S., Kucuk A., Berndt C.C., Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia, Materials Science and Engineering A, 2002, 327(2), 224-232.
    [25] Walpole R.E., Introduction to Statistics, London: Collier MacMillan Publishers, 1982.
    [26] Siebert B., Funke C., Vaben R., et al., Changes in porosity and Young’s Modulus due to sintering of plasma sprayed thermal barrier coatings, Journal of Maerials Processing Technology, 1999, 92-93, 217-223.
    [27] Song L., Wu D., Li Y., Optimal probability estimators for determining Weibull parameters, Journal of Materials Science Letters, 2003, 22(23), 1651-1653.
    [28] Jadaan O.M., Nemeth N.N., Bagdahn J., et al., Probabilistic Weibull behavior and mechnical properties of MEMS brittle materials, Journal of Materials Science Letters, 2003, 38(20), 4087-4113.
    [29] Wu D.F., Hong Jiang H., Comment on“a new probability index for estimating Weibull modulus for ceramic withtheleast-square method”, Journal of Materials Science Letters, 2003, 22(24), 1745-1446.
    [30]沃德,固体高聚物的力学性能,北京:科学出版社, 1980, 175.
    [31] Acchara W., Zollfrankb C., Greilb P., Microstructure and mechanical properties of WC-Co reinforced with NbC, Materials Research, 2004, 7(3), 445-450.
    [1] Young T., An essay on the cohesion of fluids, Philosophical Transactions of the Royal Society of London, 1804, 95(8), 65-87.
    [2] Inoue A., Takeuchi A., Recent progress in bulk glassy alloys, Materials Transactions, 2002, 43(8), 1892-1906.
    [3] Ma G.F., Zhang H.L., Zhang H.F., et al., Interfacial characteristics of molten Bi-43Sn alloy on amorphous and crystalline Fe78B13Si9, Materials Letters, 2008, 62(12-13), 1853-1855.
    [4]徐瑞,荆天辅.材料热力学与动力学.哈尔滨:哈尔滨工业大学出版社. 2003, 178-180
    [5] Massalski M., Co-Zn Phase Diagram, ASM Handbook, Ohio, USA, 1986, 1, 816.
    [6] Nakagawa M., Sakai J., Ohkouchi T.,etc., Corrosion resistance of various materials in molten metal, Journal of the Iron and Steel Institute of Japan, 1996, 82(3), 226-231.
    [7] Tomita T., Takatani Y., Kobayashi Y., et al., Durability of WC/Co sprayed coatings in molten pure zinc, ISIJ International, 1993, 33(9), 982-988.??

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700