水处理纳米材料的制备、性能及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业的高速发展使地球上有限的水资源受到日益严重的污染,去除水中的有毒、有害化学物质已成为环保领域的一项重要工作。纳米材料与技术的开发应用为实现高效、低成本的水处理开辟了新的途径。
     本课题组开发的纳米-亚纳米功能新材料(生态宝)可用作养殖生态环境改良剂,它对“三氮”、硫化物、CODCr、BOD5、重金属等有害物质具有很好的去除能力。生态宝用于养殖幼参,有显著的促生长、增加成活率的作用。生态宝用于养殖对虾,对虾体内重金属含量有明显降低。
     以粉末状P25型纳米TiO2为光催化剂,系统的研究了它对染料AB80的光催化降解。在紫外光照射下,光催化反应75min,染料AB80溶液完全脱色,光催化反应135min,染料溶液完全矿化;AB80的光催化脱色反应遵从准一级反应动力学;催化剂的最佳剂量为1.0g/L。AB80在TiO2颗粒表面的吸附符合Langmuir方程式,随着pH值的增加吸附量迅速减少;pH值在反应中起着重要的作用,碱性溶液中的反应速度比酸性溶液的大,pH=10.0初始反应速度最大;电子捕获剂(H2O2)的加入能够显著的提高反应速率,H2O2浓度为5mmol/L时,反应速度变为原来的2.78倍。
     以硅藻土为载体,采用溶胶-凝胶法制备了负载型的纳米TiO2,SEM分析结果表明,TiO2的包覆量对负载光催化剂的形貌有很大影响,TiO2包覆量较低(14.5%)的复合物无团聚现象发生。XRD分析结果表明,所制备的TiO2为锐钛矿和金红石混晶型,平均粒径11nm。FT-IR分析结果表明,TiO2和硅藻土之间没有生成化学键。以染料AB80和B-2BF为模型污染物,利用制备的光催化剂复合物进行了吸附-光催化试验,结果表明,TiO2包覆量为14.5%的复合物具有较高的吸附-光催化活性,对模型污染物的降解效果好于德国Degussa公司的商品纳米P25-TiO2。溶液pH对TiO2/硅藻土复合物光催化活性影响很大,弱酸性条件有利于反应的进行。TiO2/硅藻土对实际印染废水有较好的降解效果,试验条件下,废水光催化反应3.5h,色度去除率为100%。研究了液固多相光催化反应的催化剂失活原因及再生手段,提出TiO2/硅藻土复合物再生的方法为酸洗和高温烧结。对于模拟印染废水来说,光催化剂重复使用对光催化活性几乎没有影响,重复使用15次后,催化活性仅降低了12%。而对实际印染废水来说,重复使用对光催化活性有影响,光催化剂复合物重复使用7次后,催化活性降低了41%。TiO2/硅藻土复合光催化剂成本低,简便易行,光催化效果好,有望在环境污染物治理中得到广泛的应用。
     采用CuCl水解法制得了硅藻土负载的纳米Cu2O,并利用XRD、SEM等手段对其进行表征。研究了负载的纳米Cu2O对B-2BF和AB80染料废水的光催化降解,发现纳米Cu2O经过负载后,团聚减少,分散性好,对染料废水的光催化降解效率成倍增长。纳米Cu2O包覆量为31.3%的光催化剂复合物光催化活性最好,其光催化效率是纯的Cu2O的6倍。负载的纳米Cu2O可以有效的利用太阳光进行光催化反应,而且太阳光下纳米Cu2O的光催化活性比纳米TiO2的强。太阳能是取之不尽、用之不竭的清洁能源,利用太阳能来处理染料废水成本低、无污染,是一种非常有发展前景的环境治理新技术。pH 5-pH 7是负载纳米Cu2O光催化降解B-2BF的最佳反应范围。负载的纳米Cu2O光催化剂有较好的稳定性,重复使用8次以后,其脱色率仍能达到75%以上。
With the development of industry, the finite water resources suffers increasingly serious pollution. Eliminate the toxic and hazardous substances in water become an important task for environmental protection. The exploitation and application of nanomaterials and nanotechnology supply new way for high efficiency and low cost water treatment.
     The new nano-subnano function material (Ecosystem Improved Agent) developed by our team can get rid of“three-nitrogen”, sulfuret, CODCr, BOD5 and heavy metal in water. The Ecosystem Improved Agent can also promote the sea cucumber growth, increase the survival percentage of sea cucumber and decrease the heavy metal content of prawn.
     The photocatalytic degradation of dye AB80 was investigated in aqueous with pulverous P25-TiO2. The dye was decolorized in 75 min and mineralized completely in 135 min under UV-light. The decoloration reaction of the AB80 followed pseudo-first order kinetics and the catalyst loading of 1.0 g/L was used as the optimal dosage. The adsorption of AB80 onto TiO2 was found to be well expressed by the Langmuir equation. With the increased of pH, the adsorptive capacity decreased quickly. It was found that the degradation rate of AB80 was affected intensively by the pH of the solution. High pH value was beneficial to the photocatalytic degradation reaction. The initial rate was biggest when the pH=10.0. Proper dosage of the electron accepters H2O2 could enhance the reaction rate; the reaction rate was 2.78 times quicker than control when the concentration of H2O2was 5mmol/L.
     Diatomite supported nano-TiO2 composite was prepared by sol-gel method. SEM analysis indicated that the coated TiO2 amount affected the pattern of photocatalyst composites. The low TiO2 content (14.5%) had not reunion. XRD analysis indicated that the TiO2 coated on the surface of diatomite was the mixed crystal of anatase and rutile, the average particle size is 11 nm. FT-IR analysis indicated that no chemical bond generated between TiO2 and diatomite, the binding force was van der waals force. The adsorptive-photocatalytic activity of composite was studied using dye AB80 and B-2BF as model pollutant. The results indicated that composite coated 14.5% TiO2 expressed the best adsorptive-photocatalytic activity, and its decolorizing rate for model pollutant was larger than that of the Degussa P25-TiO2. The photocatalytic activity of TiO2/diatomite was affected intensively by the pH of the solution. Weakly acidic condition was beneficial for the reaction. The actual dye wastewater can be well degraded by TiO2/diatomite, and the decolorization ratio was 100% after irradiation of 3.5h under the experiment condition. The photocatalyst inactivated reason and regenerated methods were studied. Regenerative method for the TiO2/diatomite was acid washing and high temperature burning. The repetitive-use of photocatalyst almost didn't affect the activity for the model dye wastewater, the photocatalytic activity reduced only 12% after repetitive-use the catalyst for 15 times. But for the actual dye wastewater, the repetitive-use of photocatalyst affected the activity, the photocatalytic activity reduced 41% after repetitive-use the catalyst for 7 times. For the TiO2/diatomite composite, the cost was low, synthesis method was simple and photocatalytic effect was good. It is expect that the composite would be widely used in environmental pollution control.
     Copper oxide nano-particles immobilized on diatomite were prepared by hydrolyzation of CuCl. The obtained products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible light photocatalytic degradation of dye AB80 and B-2BF with immobilized Cu2O was studied. The reunion of Cu2O decreased after immobilization, and the photocatalytic activity increased greatly. The optimal Cu2O content was 31.3% for the photocatalyst composite whose photocatalytic activity was 6 times as great as pure Cu2O. The nano-sized Cu2O can make good use of sunlight for photocatalytic reaction, furthermore, the photocatalytic activity of Cu2O was better than TiO2 under sunlight. Solar energy was free, and its supplies were unlimited. The cost of sunlight photocatalitic dye wasterwater was low and the process hadn't any contamination, so sunlight photocatalisis would be a promising technique for environmental management. The range of pH 5-pH 7 was optimum for the photocatalysis of B-2BF. The stability of catalyst was good, after repetitive-use the catalyst for 8 times, the photocatalytic degradation rate could remain above 75%.
引文
1. Abdullah M, Low GKC, Matthews RW. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide [J]. Journal of Physical Chemistry 1990, 94(17): 6826-6830.
    2. Alaton IA, Balcioglu IA, Bahnemann DW. Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes [J]. Water Research, 2002, 36(5): 1143-1154.
    3. Al-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth [J]. Journal of Environmental Management, 2003, 69(3): 229-238.
    4. Ao CH, Leung MKH, Lam RCW, Leung DYC, Vrijmoed LLP. Photocatalytic decolorization of anthraquinonic dye by TiO2 thin film under UVA and visible-light irradiation [J]. Chemical Engineering Journal, 2007, 129(1-3): 153-159. 78. Bizani E, Fytianos K, Poulios I, Tsiridis V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide [J]. Journal of Hazardous Materials, 2006, 136(1): 85-94.
    5. Cantavenera MJ, Catanzaro I, Loddo V, Palmisano L, Sciandrello G. Photocatalytic degradation of paraquat and genotoxicity of its intermediate products [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2-3): 277-282.
    6. Cao L, Huang A, Spiess FJ, Suib SL. Gas-Phase Oxidation of 1-Butene Using Nanoscale TiO2 Photocatalysts [J]. Journal of Catalysis, 1999, 188(1): 48-57.
    7. Carey JH, Lawrence J, Tosine HM. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701.
    8. Chen C, Li X, Ma W, Zhao J, Hidaka H, Serpone N. Effect of Transition Metal Ions on the TiO2-Assisted Photodegradation of Dyes under Visible Irradiation: A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism [J]. Journal of Physical Chemistry B, 2002, 106(2): 318-324.
    9. Chen JY, Zhou PJ, Li JL, Wang Y. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light [J]. Carbohydrate Polymers, 2008, 72(1): 128-132.
    10. Cheng P, Zheng M, Jin Y, Huang Q, Gu M. Preparation and characterization of silica-doped titania photocatalyst through sol-gel method [J]. Materials Letters, 2003, 57(20): 2989-2994.
    11. Choi W, Termin A, Hoffmann MR. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J]. Journal of Physical Chemistry, 1994, 98(51): 13669-13679.
    12. Chu HP, Lei L, Hu X, Yue PL Metallo-Organic Chemical Vapor Deposition (MOCVD) for the Development of Heterogeneous Catalysts [J]. Energy Fuels, 1998, 12: 1108-1113.
    13. Daltin AL, Addad A, Chopart JP. Potentiostatic deposition and characterization of cuprous oxide films and nanowires [J]. Journal of Crystal Growth, 2005, 282: 414-420.
    14. Damodar RA, Jagannathan K, Swaminathan T. Decolourization of reactive dyes by thin film immobilized surface photoreactor using solar irradiation [J]. Solar Energy, 2007, 81(1): 1-7.
    15. Docters T, Chovelon JM, Herrmann JM, Deloume JP. Syntheses of TiO2 photocatalysts by the molten salts method: Application to the photocatalytic degradation of Prosulfuron [J]. Applied Catalysis B: Environmental, 2004, 50(4): 219-226.
    16. Dong X, Ding W, Zhang X, Liang X. Mechanism and kinetics model of degradation of synthetic dyes by UV-vis/H2O2/Ferrioxalate complexes [J]. Dyes and Pigments, 2007, 74(2): 470-476.
    17. Duonghong D, Borgarello E, Graetzel M. Dynamics of light-induced water cleavage in colloidal systems [J]. Journal of the American Chemical Society, 1981, 103(16): 4685-4690.
    18. Faisal M, Tariq MA, Muneer M. Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania [J]. Dyes and Pigments, 2007, 72(2): 233-239.
    19. Fox MA, Dulay MT. Heterogeneous photocatalysis [J]. Chemical Reviews, 1993,
    93(1): 341-357.
    20. Frank SN, Bard AJ. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder [J]. Journal of the AmericanChemical Society, 1977, 99(1): 303-304.
    21. Frank SN, Bard AJ. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. The Journal of Physical Chemistry, 1977, 81: 1484-1488.
    22. Frank SN, Bard AJ. Semiconductor electrodes. 12. Photoassisted oxidations and photoelectrosynthesis at polycrystalline titanium dioxide electrodes [J]. Journal of the American Chemical Society, 1977, 99(14): 4667-4675.
    23. Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238(5358): 37-38.
    24. Galindo C, Jacques P, Kalt A. Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74) [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141(1): 47-56.
    25. Ghezzar MR, Abdelmalek F, Belhadj M, Benderdouche N, Addou A. Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO2 [J]. Applied Catalysis B: Environmental, 2007, 72(3-4): 304-313.
    26. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K. Cu2O as a photocatalyst for overall water splitting under visible light irradiation [J]. Chemistry Communications, 1998: 357-358.
    27. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-96.
    28. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C. Photocatalytic degradation pathway of methylene blue in water [J]. Applied Catalysis B: Environmental, 2001, 31(2): 145-157.
    29. Ileperuma OA, Tennakone K, Dissanayake W. Photocatalytic behaviour of metal doped titanium dioxide: Studies on the Photochemical Synthesis of Ammonia on Mg/TiO2 Catalyst Systems [J]. Applied Catalysis, 1990, 62(1): L1-L5.
    30. Jia Y, Han W, Xiong G, Yang W. Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials [J]. Journal of Colloid and Interface Science, 2008, 323(2): 326-331.
    31. Kansal SK, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts [J]. Journal of Hazardous Materials, 2007, 141(3): 581-590.
    32. Kaur S, Singh V. TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation [J]. Journal of Hazardous Materials, 2007, 141(1): 230-236.
    33. Khraisheh MAM, Al-degs YS, Mcminn WAM. Remediation of wastewater containing heavy metals using raw and modified diatomite [J]. Chemical Engineering Journal, 2004, 99(2): 177-184.
    34. Kormann C, Bahnemann DW, Hoffmann MR. Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions [J]. Environmental Science & Technology, 1991, 25(3): 494-500.
    35. Lathasree S, Rao AN, SivaSankar B, Sadasivam V, Rengaraj K. Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions [J]. Journal of Molecular Catalysis A: Chemical, 2004, 223(1-2): 101-105.
    36. Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chemical Reviews, 1995, 95(3): 735-758.
    37. Lu YM, Chen CY, Lin MH. Effect of hydrogen plasma treatment on the electrical properties of sputtered N-doped cuprous oxide films [J]. Thin Solid Films, 2005, 480-481: 482-485.
    38. Mansilla HD, Yeber MC, Freer J, Rodriguez J, Baeza J. Homogeneous and heterogeneous advanced oxidation of a bleaching effluent from the pulp and paper industry [J]. Water Science and Technology, 1997, 35(4): 273-278.
    39. Mascolo G, Comparelli R, Curri ML, Lovecchio G, Lopez A, Agostiano A. Photocatalytic degradation of methyl red by TiO2: Comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst [J]. Journal of Hazardous Materials, 2007, 142(1-2): 130-137.
    40. Muruganandham M, Swaminathan M. Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process [J]. Dyes and Pigments, 2006, 68(2-3): 133-142.
    41. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V. Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4 [J]. Chemosphere, 2002, 46(8): 1173-1181.
    42. Nissen S, Alexander BD, Dawood I, Tillotson M, Wells RPK, Macphee DE, Killham K. Remediation of a chlorinated aromatic hydrocarbon in water by photoelectrocatalysis [J]. Environmental Pollution, 2009, 157(1): 72-76.
    43. O'Shea KE, Pernas E, Saiers J. The Influence of Mineralization Products on the Coagulation of TiO2 Photocatalyst [J]. Langmuir, 1999, 15(6): 2071-2076.
    44. Paz Y, Heller A. Photo-oxidative self-cleaning transparent titanium dioxide films on glass [J]. Journal of Materials Research, 1995, 10(11): 2842-2848.
    45. Prevot AB, Baiocchi C, Brussino MC, Pramauro E, Savarino P, Augugliaro V, MarcìG, Palmisano L Photocatalytic Degradation of Acid Blue 80 in Aqueous Solutions Containing TiO2 Suspensions [J]. Environmental Science & Technology, 2001, 35(5):971-976
    46. Qamar M, Saquib M, Muneer M. Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide [J]. Dyes and Pigments, 2005, 65(1): 1-9.
    47. Quici N, Morgada ME, Gettar RT, Bolte M, Litter MI. Photocatalytic degradation of citric acid under different conditions: TiO2 heterogeneous photocatalysis against homogeneous photolytic processes promoted by Fe (III) and H2O2 [J]. Applied Catalysis B: Environmental, 2007, 71(3-4): 117-124.
    48. Ramírez-Ortiz J, Ogura T, Medina-Valtierra J, Acosta-Ortiz SE, Bosch,P Reyes JA, Lara VH. A catalytic application of Cu2O and CuO films deposited over fiberglass [J]. Applied Surface Science 2001, 174: 177-184.
    49. Sawunyama P, Fujishima A, Hashimoto K. Photocatalysis on TiO2 Surfaces Investigated by Atomic Force Microscopy: Photodegradation of Partial and Full Monolayers of Stearic Acid on TiO2 (110) [J]. Langmuir, 1999, 15(10): 3551-3556.
    50. Shchukin D, Poznyak S, Kulak A, Pichat P. TiO2-In2O3 photocatalysts: preparation, characterisations and activity for 2-chlorophenol degradation in water [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162(2-3): 423-430.
    51. Singh HK, Saquib M, Haque MM, Muneer M. Heterogeneous photocatalysed degradation of 4-chlorophenoxyacetic acid in aqueous suspensions [J]. Journal of Hazardous Materials, 2007, 142(1-2): 374-380.
    52. ?ljivi? M, Smi?iklas I, Pejanovi? S, Ple?a? I. Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia [J]. Applied Clay Science, 2009, 43(1): 33-40.
    53. Takahashi M, Mita K, Toyuki H, Kume M. Pt-TiO2 thin films on glass substratesas efficient photocatalysts [J]. Journal of Materials Science, 1989, 24(1): 243-246
    54. Takata T, Furumi Y, Shinohara K, Tanaka A, Hara M. Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites [J]. Chemistry of Materials, 1997, 9(5): 1063-1064.
    55. Tanaka K, Padermpole K, Hisanaga T. Photocatalytic degradation of commercial azo dyes [J]. Water Research, 2000, 34(1): 327-333.
    56. Tovar A, Moreno C, Manuel-Vez MP, Garc?a?-Vargas M. Environmental impacts of intensive aquaculture in marine waters [J]. Water Research, 2000, 34(1): 334-342.
    57. Vidal A, Mart Luengo MA. Inactivation of titanium dioxide by sulphur: photocatalytic degradation of Vapam [J]. Applied Catalysis B: Environmental, 2001, 32(1-2): 1-9.
    58. Wang CC, Lee CK, Lyu MD, Juang LC. Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters [J]. Dyes and Pigments, 2008, 76(3): 817-824.
    59. Xie Y, Yuan C, Li X. Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 252(1): 87-94.
    60. Yang H, Ouyang J, Tang A, Xiao Y, Li X, Dong X, Yu Y. Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles [J]. Materials Research Bulletin, 2006, 41(7): 1310-1318.
    61. Yu J, X Zhao. Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol-gel derived TiO2 thin films [J]. Materials Research Bulletin, 2001, 36(1-2): 97-107.
    62. Yu Y, Ma LL, Huang WY, Li JL, Wong PK, Yu JC. Coating MWNTs with Cu2O of different morphology by a polyol process [J]. Journal of Solid State Chemistry, 2005, 178(5): 1488-1494.
    63. Zhang X, Chen S, Quan X, Zhao H. Preparation and characterization of BiVO4 film electrode and investigation of its photoelectrocatalytic (PEC) ability under visible light [J]. Separation and Purification Technology, 2009, 64(3): 309-313.
    64. Zhang Z, Yuan Y, Liang L, Cheng Y, Shi G, Jin L. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation [J]. Journal of HazardousMaterials, 2008, 158(2-3): 517-522.
    65.安鑫龙,周启星.水产养殖自身污染及其生物修复技术[J].环境污染治理技术与设备, 2006, 7(9): 1-6.
    66.曹煊,金春姬,刘兴超,彭刚.碱渣对铜(Ⅱ)离子吸附特征的研究[J].环境化学, 2006, 25(4): 414-419.
    67.曹煊.碱渣对重金属吸附特性的研究[D].中国海洋大学, 2006.
    68.陈荣圻.印染行业需要的节能减排型活性染料[J].染料与染色, 2008, 45(3): 1-11.
    69.陈水辉,任艳群,彭峰.环境治理中光催化剂的失活与再生[J].环境污染与防治, 2004, 26(2): 133-135.
    70.程沧沧,邓南圣,吴峰,万昆,刘立.光电催化降解硝基苯及反应产物的分布[J].水处理技术, 2006, 32(4): 19-22.
    71.传秀云,声先春,声先初.负载TiO2的硅藻土对亚甲基蓝的光降解性能研究[J].无机材料学报, 2008, 23(4): 657-661.
    72.邓莉萍.藻体对水环境中N、P及重金属Cu2+, Pb2+, Cd2+, Cr6+的吸附特征研究[D].中国科学院海洋研究所, 2008.
    73.杜建康,张林生,夏明芳. TiO2-硅藻土复合光催化剂降解二甲基甲酰胺研究[J].工业用水与废水, 2007, 38(6): 37-40.
    74.高才全,李秀华,裴秀艳,白连英.“三氮”在水产养殖中的意义及其管理[J].河北渔业, 2004(2): 19-19, 28.
    75.高春华.纳米材料的基本效应及其应用[J].江苏理工大学学报:自然科学版, 2001, 22(6): 45-49.
    76.龚丽芬,余彬彬,陈曦.光敏剂修饰纳米Ce/TiO2在可见光下光催化降解有机氯农药[J].厦门大学学报:自然科学版, 2008, 47(1): 79-82.
    77.谷晋川,吕莉,张允湘,刘亚川.微波作用下的硅藻土稳态酸浸提纯研究[J].金属矿山, 2005(10): 47-50.
    78.谷晋川,吕莉,张允湘,刘亚川.微波作用下硅藻土酸浸除铁过程研究[J].有色金属, 2006, 58(4): 39-43.
    79.郭莉,赵峭梅,王丹军,张理平,郭延红,樊世科.活性炭负载型TiO2光催化剂的制备及其光催化活性研究[J].化学与生物工程, 2006, 23(2): 16-18.
    80.江宏富,周作兴,刘杏芹,孟广耀. LiF掺杂TiO2的制备及其光催化性能[J].催化学报, 2007, 28(4): 377-382.
    81.蒋金花,潘小川,陶勇.水体有机污染物对人体健康的影响[J].国外医学卫生学分册, 2003, 30(6): 321-325.
    82.金春姬,田国宾,曹煊,佘宗莲,郑建国.碱渣对锌(Ⅱ)离子吸附特性的研究[J].环境工程学报, 2008, 2(9): 1218-1222.
    83.金春姬,张鹏,曹煊,刘贯群,郑建国.碱渣对Cd2+的吸附特性研究[J].化工环保, 2008, 28(3): 230-234.
    84.匡少平,张朝杰,蒋志刚,史振举.碱厂白泥的资源化综合利用技术[J].中国资源综合利用, 2006, 24(3): 20-24.
    85.李冬梅,施周,王巧,梅胜,刘春柳.纳米SiO2与聚合铝PAC对含有机微污染物低浊水的絮凝形态学特性[J].水处理技术, 2008, 34(5): 33-36.
    86.李青松.白泥作为固体废物填埋场覆盖材料的性能研究[D].中国海洋大学, 2004.
    87.李秋芬,辛福言,邹玉霞,袁有宪.虾池环境生物修复作用菌生长影响因子的研究[J].水产学报, 2001, 25(5): 438-442.
    88.李树元,梅光军,金玉健.纳米氧化亚铜的制备方法研究[J].材料导报, 2005, 19: 147-149.
    89.李晓勤.电解法制备一维纳米氧化亚铜及其光催化性能的研究[D].华中师范大学, 2006.
    90.梁鹏,孟耀斌,黄霞,钱易.膜-悬浮光催化降解反应器中催化剂活性及其影响因素分析[J].环境化学, 2002, 21(4): 380-384.
    91.刘斐文,王萍.现代水处理方法与材料[M].北京:中国环境科学出版社, 2003.
    92.刘乃瑞,刘桂秋,张鹤飞,藤井富美子. TiO2对水中表面活性剂光催化分解的特性研究[J].陕西师范大学学报:自然科学版, 2005, 33(3): 71-74.
    93.刘小玲,陈金毅.纳米氧化亚铜太阳光催化氧化法处理印染废水[J].华中师范大学学报:自然科学版, 2002, 36(4): 475-477.
    94.刘祖文,田长顺,王遵尧.印染废水处理方法及发展趋势[J].科技广场, 2008(2): 68-71.
    95.马佳彬,李新勇,曲振平,邹龙江,陈永英.纳米二氧化钛的改性及光催化氧化烷烃研究[J].环境污染与防治, 2007, 29(1): 44-48, 52.
    96.梅光军,师伟,解科峰,夏洋.纳米氧化亚铜的制备及其光催化性能研究[J].资源环境与工程, 2007, 21(3): 335-338.
    97.倪珺,冷文华,施晶莹,张鉴清,曹楚南.光电协同催化降解水杨酸和苯胺:二氧化钛晶型的影响[J].环境科学学报, 2005, 25(6): 756-760.
    98.彭贤玉,董君英.多相光催化氧化法处理焦化废水的研究[J].南华大学学报:自然科学版, 2005, 19(1): 64-68.
    99.蒲玉英,方建章,彭峰,李保健,黄垒.微乳法合成纳米SiO2/TiO2及其光催化性能[J].催化学报, 2007, 28(3): 251-256.
    100.生活饮用水水源水质标准CJ 3020-93.
    101.施周,张文辉.环境纳米技术[M].北京:化学工业出版社, 2003.
    102.石建敏,李巧玲.二氧化钛光催化降解水溶性分散染料的研究[J].水处理技术, 2002, 28(2): 105-107.
    103.宋海燕.新型光催化材料的制备与催化性能研究[D].中国科学技术大学, 2006.
    104.唐玉朝,胡春,王怡中.无机阴离子对TiO2/SiO2光催化降解酸性红B活性的影响[J].环境化学, 2002, 21(4): 370-379.
    105.王侃,陈英旭. TiO2/SiO2催化剂可见光降解偶氮染料的研究[J].环境污染与防治, 2008, 30(9): 46-50.
    106.王利剑,郑水林,陈骏涛,舒锋.硅藻土提纯及其吸附性能研究[J].非金属矿, 2006, 29(2): 3-5.
    107.王利剑,郑水林,舒锋.硅藻土负载二氧化钛复合材料的制备与光催化性能[J].硅酸盐学报, 2006, 34(7): 823-826.
    108.王淑惠,丁根娣.水体中卤代芳烃污染状况及降解途径研究进展[J].环境污染治理技术与设备, 2002, 3(6): 13-20.
    109.王彦波,许梓荣,邓岳松.水产养殖中氨氮和亚硝酸盐氮的危害及治理[J].饲料工业, 2002, 23(12): 46-48.
    110.徐志兵,孔学军,余锦龙,华中胜.负载型TiO2/硅藻土复合光催化剂的研究.稀有金属, 2007, 31(1): 92-96.
    111.杨宇翔,陈荣三.硅藻土脱色机理及其在印染废水中应用的研究[J].工业水处理, 1999, 19(1): 15-17.
    112.杨忠平,王占生,范巍,袁波,来松清,徐东升,余宇翔.单晶纳米线TiO2光催化反应降解油田采出水中苯系物的研究[J].工业水处理,2008,28(8): 63-66.
    113.俞成林,康勇,赵薇.硅藻土微粒负载纳米TiO2的制备[J].纳米技术与精密工程, 2008, 6(4): 254-260.
    114.袁胜利,张宗权.负载型TiO2光催化剂对有机磷农药废水降解的研究[J].西北农林科技大学学报, 2005, 33(8): 122-125.
    115.张菊先.硅溶胶纳米微粒架桥絮凝作用改善留着率和纸页匀度[J].国际造纸, 2006, 25(3): 8-9.
    116.张明祖,蒋春,林关婷,刘建.溶胶-凝胶法制备二氧化钛及其光催化降解氰根的研究[J].应用化工, 2008, 37(10): 1196-1198.
    117.赵清华,全学军,谭怀琴,桑雪梅. La掺杂TiO2光催化剂的制备与表征[J].催化学报, 2008, 29(3): 269-274.
    118.中华人民共和国国家标准(GB 3097-1997)海水水质标准.
    119.中华人民共和国国家标准(GB 5084-2005)农田灌溉水质标准.
    120.中华人民共和国国家标准(GB11607-89)渔业水质标准.
    121.中华人民共和国国家标准(GB3838-2002)地表水环境质量标准.
    122.钟萍,林志芬,刘正文,孔令仁. TiO2光催化氧化法的提高效率方法及其环保应用[J].生态科学, 2004, 23(1): 64-67.
    123.周世杰,张喜燕,贾冲,夏宝玉,周明哲.纳米材料制备技术的研究现状[J].材料导报, 2005, 19: 2-5, 6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700