锂离子电池正极材料Li_3V_2(PO_4)_3/C和LiV_3O_8的合成及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单斜Li3V2(PO4)3具有比容量高(197 mAh g-1)、平台电压高和循环结构稳定性好等优点,被认为是动力电池热点正极材料之一。层状LiV3O8具有高比容量、价格较低等特点,也是极具发展潜力的锂离子电池正极材料之一。本文主要针对Li3V2(PO4)3和LiV3O8的一些不足,通过各种途径对其进行改性研究,以提高它们的电化学性能。
     采用碳热还原法,分别以聚苯乙烯、硬脂酸和抗坏血酸作为碳源制备了Li3V2(PO4)3/C材料。采用聚苯乙烯为碳源时,研究了碳含量对Li3V2(PO4)3/C电化学性能的影响。对比发现,聚苯乙烯为碳源包覆Li3V2(PO4)3效果要明显优于乙炔黑为碳源包覆的材料。在3.0-4.3 V电压范围内,低倍率下较少碳含量的Li3V2(PO4)3/C具有最高放电比容量。但是在高倍率下,较高碳含量的Li3V2(PO4)3/C (碳层厚度约23-27 nm)具有最好的电化学性能。采用硬脂酸为碳源时,分析发现700℃下烧结的Li3V2(PO4)3/C具有最好的电化学性能。该材料在3.0-4.3 V和3.0-4.8 V电压范围内0.1 C下的首次放电比容量分别为130.6和185.9mAhg-1。在高倍率15 C下,3.0-4.3 V和3.0-4.8 V电压范围内放电比容量仍能分别达到103.3和112.1 mAh g-1。采用抗坏血酸为碳源制备Li3V2(PO4)3/C不适合采用碳热还原法,需要采用水热法处理前驱体,这样制备出的Li3V2(PO4)3/C颗粒均匀细小,且碳包覆性好,具有最优的电化学性能。
     采用聚乙烯醇(PVA-124)为碳源,利用碳热还原法制备了Li3V2(PO4)3/C。在-20℃至65℃的电化学性能测试发现,在较低倍率0.1 C下,3.0-4.3 V和3.0-4.8 V电压范围内-20℃下的首次放电比容量分别为84.3和118.9 mAh g-1。但是在高倍率-20℃下,Li3V2(PO4)3/C几乎没有容量。在高温下,3.0-4.3 V电压范围内,Li3V2(PO4)3/C的电化学性能会随温度升高而提高,但是在3.0-4.8 V电压范围内,温度升高反而会恶化Li3V2(PO4)3/C的电化学性能。电化学阻抗谱分析发现电荷转移阻抗可能是影响低温性能的主要因素。而高温电化学性能较差的原因则可能是电解液和Li3V2(PO4)3/C的不稳定性造成的。
     采用水合肼为球化剂,制备了多孔球形Li3V2(PO4)3/C。该材料的多孔性提供了较高的电化学反应界面,表现出优异的电化学性能,在0.2 C下,3.0-4.3 V和3.0-4.8 V电压范围内的放电比容量分别可达129.1和183.8mAhg-1。在高倍率15 C下,该多孔Li3V2(PO4)3/C在3.0-4.3 V和3.0-4.8 V电压范围内的放电比容量仍分别可达100.5和121.5 mAh g-1。采用甘氨酸为形貌控制剂制备了层片状Li3V2(PO4)3/C。该层片状材料在3.0-4.3 V和3.0-4.8 V电压范围内的首次放电比容量分别达125.2和133.1 mAh g-1(3 C),500次循环后放电比容量仍能分别保持到111.8和97.8 mAh g-1,表现出了较好的循环稳定性。
     采用尿素辅助的流变相法合成一维棒状LiV3O8.由于一维材料具有一维电子传输通道和缓冲充放电过程中材料的体积变化的优点,因此具有更为理想的电化学性能。对棒状LiV3O8电化学性能测试发现500℃合成的棒状LiV3O8电化学性能最为优异。在2.0-4.0 V电压范围内,50和120 mA g-1电流密度下的首次放电比容量分别为273.6和250.4 mAh g-1,而且具有较好的循环性能。
     采用甘氨酸辅助的溶液法合成多孔块状L-V-O (LiV3O8和Uio3V2O5两相组成)。对比不同温度烧结的材料发现,温度太低,材料结晶性差;温度升高会使材料的结晶性提高,但同时也缩小了(100)面面间距,影响了锂离子的扩散传输,不利于电化学性能的提高。通过对L-V-O材料的电化学性能测试发现,400℃样品具有最好的电化学性能。在50 mA g-1和120 mA g-1电流密度下的放电比容量分别为265.7 mAh g-1和237.0 mAh g-1。在480 mA g-1电流密度下.该多孔材料还能保持144.7 mAh g-1的放电比容量。多孔块状L-V-O良好的电化学性能因其具有大的比表面积、良好的电解液浸透性,因此减小了锂离子在SEI膜的迁移阻抗和电荷在电化学活性界面上的转移阻抗。恒流间歇滴定法(GITT)计算得到充电态和放电态的锂离子扩散系数在10-14-10-9 cm2 s-1之间。
Monoclinic Li3V2(PO4)3 is an attractive cathode material for the application in electric vehicles (EVs) and hybrid electric vehicles (HEVs) due to its high theoretical capacity (197mAh -1), high operate voltage, and structure stability during the cycling. Layered lithium vanadate oxide LiV3O8,is also regarded as a promising cathode material in rechargeable lithium batteries because of its potentially high specific capacity and low cost. The main objective in this research is to overcome the drawbacks of Li3V2(PO4)3 and LiV3O8 by several methods, in order to improve their electrochemical performance.
     Li3Vi(PO4)3/C cathode materials were synthesized by carbon-thermal reduction method using polystyrene, stearic acid and ascorbic acid as the carbon sources, respectively. When employed polystyrene as the carbon source, we mainly focused on the effects of carbon source and carbon content on the electrochemical performance of Li3V2(PO4)3/CO After comparison, the residual carbon produced by the pyrolysis of PS produced fine particle sizes and uniform carbon distribution on the Li3V2(PO4)3 particle surface; better than in composite with acetylene black. In the potential range of 3.0-4.3 V, the lower polystyrene added Li3V2(PO4)3/C with a thin carbon coating possesses the highest initial discharge capacity at lower current densities. However, at high current densities, the higher polystyrene added Li3V2(PO4)3/C with a thicker carbon coating (23-27 nm) shows best electrochemical performance. By using stearic acid as a carbon source, it is found that the Li3V2(PO4)3/C composite synthesized at 700℃shows the best electrochemical performance. The Li3V2(PO4)3/C shows a high initial discharge capacity of 130.6 mAh g-1between 3.0 and 4.3 V, and 185.9 mAh g-1 between 3.0 and 4.8 V at 0.1 C, respectively. Even at a charge-discharge rate of 15 C, the Li3V2(PO4)3/CO still can deliver a discharge capacity of 103.3 and 112.1 mAh g-1in the potential region of 3.0-4.3 V and 3.0-4.8 V, respectively. It is improper for to adopt carbon-thermal reduction method to prepare Li3V2(PO4)3/CO composite by using ascorbic acid as a carbon source. When the precursor was treated by hydrothermal method, the Li3V2(PO4)3/CO with fine particles and well carbon coating can be obtained, exhibiting good electrochemical performance.
     cathode material was synthesized by carbon-thermal reduction method using polyvinyl alcohol (PVA-124) as a carbon source. The electrochemical properties of the Li.V2(PO4)3/C material at various temperatures (-20.0.25,40 and 65℃) were tested. At-20℃the Li3V2(PO4)3/C electrode presents an high initial discharge capacity of 84.3 mAh g-1 between 3.0 and 4.3 V, and 118.9 mAh g-1 between 3.0 and 4.8 V at 0.1 C, respectively. However, the electrode can only deliver small discharge capacities at -20℃at 10 C rate. At higher temperatures, the capacity increases with the temperature between 3.0 and 4.3 V. but decreases between 3.0 and 4.8 V. EIS analysis reveals that the Ra is considered to be a predominant factor to influence the capacity of the electrode at low temperatures. In the potential range of 3.0-4.8 V. the lower discharge capacity would be mainly resulted from the larger crystal structural distortion and non-uniformity of SEI layer at high temperatures.
     Spherical porous Li3V2(PO4)3/CO composites were synthesized by a soft chemistry route using hydrazine hydrate as the spheroidizing medium. This porous structure can provide sufficient contact between active materials and electrolyte, thus the electrochemical performance of Li3V2(PO4)3/C composites are enhanced. The spherical porous Li3V2(PO4)3/C electrode shows a high discharge capacity of 129.1 mAh g"1 between 3.0 and 4.3 V, and 183.8 mAh g-1 between 3.0 and 4.8 V at 0.2 C, respectively. Even at a charge-discharge rate of 15 C, this material can still deliver a discharge capacity of 100.5 and 121.5 mAh g-'in the potential region of 3.0-.3 V and 3.0-4.8 V, respectively. Plate-like Li3V2(PO4)3/C composite was synthesized via a solution route followed by CTR by using glycine as the morphology control agent. At a charge-discharge rate of 3 C, the plate-like Li3V2(PO4)3/C exhibits an initial discharge capacity of 125.2 and 133.1 mAh g-1in the voltage ranges of 3.0-4.3 V and 3.0-4.8 V, respectively. After 500 cycles, the electrodes still can deliver a discharge capacity of 111.8 and 97.8 mAh g'correspondingly, showing a good cycling stability.
     Rod-like LiVsOs composites were fabricated by using a carbamide-assisted rheological phase reaction method. These one-dimensional (ID) materials have been considered as an effective way for achieving high-rate capability and enhancing power performance because they can provide efficient one-dimensional electron transport pathways and accommodate the volume changes during charge/discharge processes. The rod-like LiV3O8 calcined at 500℃has the optimal performance, delivering an initial discharge capacity of 273.6 and 250.4 mAh g-1between 2.0 V and 4.0 V at a current density of 50 and 120 mA g-1, respectively. After 60 cycles by applying 50 mA g-1a discharge capacity of 213.0 mAh g-1is obtained, showing a good cycling performance.
     Wafer-liked porous xLiV3O8-VyLi0.3V2O5 (Li-V-O) composites are synthesized by a facile self-assembled synthesis using a glycine-assisted solution route followed by a low temperature reaction. The compound synthesized at lower temperature shows low cry stall inity. The higher calcining temperature will result in good crystallinity which leads to the compound have a slightly lower a value, indicating the preferred orientation along the (100) plane and a slightly smaller interlayer spacing in the structure which would lead to a longer diffusion path for the lithium ions and thus depress the electrochemical performance. Among these Li-V-0 composites, the one synthesized at 400℃, which has 27.06 wt.%Li0.3V2O5, exhibits the highest initial discharge capacities of 265.7 and 237.0 mAh g-1at current densities of 50 and 120 mA g-1between 2.0 and 4.0 V, respectively. Even at a high current density of 480 mA g-1 it still can deliver a discharge capacity of 144.7 mAh g"1. The good electrochemical performance of the as-synthesized composite can be attributed to the porous structure, thus highly improves the specific surface area, enhances the contact with electrolyte, and decreases the impedance of Li+migration through surface-passivating layer. In addiction, the diffusion coefficients of Li ions in this composite determined by galvanostatic intermittent titration technique are in the region of 10-'4 to 10-9 cm2 s-1 in the charge/discharge processes.
引文
[1]吴宇平,张汉平,吴峰,李朝晖.聚合物锂离子电池[M].北京:化学工业出版社,2007.
    [2]吴宇平,戴晓兵,马军旗,程预江.锂离子电池应用与实践[M].北京:化学工业出版社,2004.
    [3]L.-X. Yuan, Z.-H. Wang. W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang and J.B. Goodenough. Development and challenges of LiFePO4 cathode material for lithium-ion batteries [J]. Energy& Environmental Science,2011,4 (2):269-284.
    [4]M.-K. Song, S. Park, F.M. Alamgir, J. Cho and M. Liu. Nanostructured electrodes for lithium-ion and lithium-air batteries:the latest developments, challenges, and perspectives [J]. Materials Science and Engineering R,2011.72 (11):203-252.
    [5]F. Beck and P. Ruetschi. Rechargeable batteries with aqueous electrolytes [J]. Electrochimica Acta,2000,45 (15-16):2467-2482.
    [6]Y. Ein-Eli and V.R. Koch. Chemical oxidation:A route to enhanced capacity in Li-lon graphite anodes [J]. Journal of the Electrochemical Society,1997,144 (9):2968-2973.
    [7]T. Zheng, Q. Zhong and J. R. Dahn. High-capacity carbons prepared from phenolic resin for anodes of lithium-Ion batteries [J]. Journal of the Electrochemical Society,1995,142 (11):L211-L214.
    [8]S. Wang, S. Yata, J. Nagano, Y. Okano, H. Kinoshita, H. Kikuta and T. Yamabe. A new carbonaceous material with large capacity and high efficiency for rechargeable Li-lon batteries [J]. Journal of the Electrochemical Society,2000,147 (7):2498-2502.
    [9]T. Zheng, W. R. McKinnon and J. R. Dahn. Hysteresis during lithium insertion in hydrogen-containing carbons [J]. Journal of the Electrochemical Society,1996,143 (7): 2137-2145.
    [10]L.-F. Cui, Y. Yang, C.-M. Hsu and Y. Cui. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries [J]. Nano Letters,2009,9 (9):3370-3374.
    [11]P. Gu, R. Cai, Y.K. Zhou and Z.P. Shao. Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis [J]. Electrochimica Acta,2010,55 (12):3876-3883.
    [12]H.-Y. Lee and S.-M. Lee. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries [J]. Electrochemistry Communications,2004,6 (5): 465-469.
    [13]P. Poizot, S. Laruelle. S. Grugeon, L. Dupont and J-M. Tarascon. Nano-sizedtransition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature,2000,407:496-499.
    [14]G.H. Newman, R. W. Francis, L.H. Gaines and B.M. L. Rao. Hazard investigations of LiClO4/dioxolane electrolyte [J]. Journal of the Electrochemical Society,1980,127 (9): 2025-2027.
    [15]D. Aurbach, A. Zaban, Y. Gofer, Y.E. Ely, I. Weissman, O. Chusid and O. Abramson. Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems [J]. Journal of Power Sources,1995,54 (1): 76-84.
    [16]K. Hayashi. Y. Nemoto, S.-I. Tobishima and J.-I. Yamaki. Mixed solvent electrolyte for high voltage lithium metal secondary cells [J]. Electrochimica Acta,1999,44 (14): 2337-2344.
    [17]R. Fong, U.V. Sacken and J.R. Dahn. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells [J]. Journal of the Electrochemical Society,1990,137 (7):2009-2013.
    [18]G.H. Wrodnigg, J.O. Besenhard and M. Winter. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes [J]. Journal of the Electrochemical Society,1999. 146 (2):470-472.
    [19]C.X. Wang, H. Nakamura, H. Komatsu, M. Yoshio and H. Yoshitake. Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxo1-2-one based electrolyte system [J]. Journal of Power Sources,1998,74 (1):142-145.
    [20]S.-I. Tobishima, K. Hayashi, K.-I. Saito and J.-I. Yamaki. Ethylene carbonate-based ternary mixed solvent electrolytes for rechargeable lithium batteries [J]. Electrochimica Acta,1995, 40 (5):537-544.
    [21]P. Arora and Z.M. Zhang. Battery separators [J]. Chemical Reviews,2004.104 (10): 4419-462.
    [22]C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze and H.Q. Wu. Cathode materials modified by surface coating for lithium ion batteries [J]. Electrochimica Acta, 2006,51 (19):3872-3883.
    [23]H.-S. Kim, T.-K. Ko, B.-K. Na, W.I. Cho and B.W. Chao. Electrochemical properties of LiMxCo1-xO2 [M=Mg, Zr] prepared by sol-gel process [J]. Journal of Power Sources,2004, 138 (1-2):232-239.
    [24]F. Nobili, F. Croce, R. Tossici, I. Meschini, P. Reale and R. Marassi. Sol-gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries [J]. Journal of Power Sources,2012,197:276-284.
    [25]S.H. Oh, S.M. Lee, W.I. Cho and B.W. Cho. Electrochemical characterization of zirconium-doped LiNi0.8Co0.2O2 cathode materials and investigations on deterioration mechanism [J]. Electrochimica Acta,2006,51 (18):3637-3644.
    [26]S. Waki, K. Dokko, T. Itoh, M. Nishizawa, T. Abe and I. Uchida. High-Speed voltammetry of Mn-doped LiCoO2 using a microelectrode technique [J]. Journal of Solid State Electrochemistry,2000,4 (4):205-209.
    [27]P. Ghosh, S. Mahanty and R.N. Basu. Lanthanum-doped LiCoO2 cathode with high rate capability [J]. Electrochimica Acta,2009,54 (5):1654-1661.
    [28]Q. Cao, H.P. Zhang, G.J. Wang, Q. Xia, Y.P. Wu and H.Q. Wu. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery [J]. Electrochemistry Communications, 2007,9(5):1228-1232.
    [29]B.J. Hwang, C.Y. Chen, M.Y. Cheng, R. Santhanam and K. Ragavendran. Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region [J]. Journal of Power Sources.2010,195 (13):4255-265.
    [30]T. Fang and J.-G. Duh. Effect of calcination temperature on the electrochemical behavior of ZnO-coated LiCoO2 cathode [J]. Surface& Coatings Technology,2006,201 (3-4): 1886-1893.
    [31]H.-W. Ha, N.J. Yun, M.H. Kim, M.H. Woo and K. Kim. Enhanced electrochemical and thermal stability of surface-modified LiCoO2 cathode by CeO2 coating [J]. Electrochimica Acta,2006,51 (16):3297-3302.
    [32]Y. Kim, H.S. Kim and S.W. Martin. Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries [J]. Electrochimica Acta,2006,52 (3):1316-1322.
    [33]H.-S. Kim, Y. Kim, S.-l. Kim and S.W. Martin. Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiA1O2 nanoparticles [J]. Journal of Power Sources,2006,61(1):623-627.
    [34]S.-K. Hu, G.-H. Cheng. M.-Y. Cheng, B.-J. Hwang and R. Santhanam. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries [J]. Journal of Power Sources.2009.188 (2):564-569.
    [35]P.X. Zhang, L. Zhang, X.Z. Ren, Q.H. Yuan, J.H. Liu and Q.L. Zhang. Preparation and electrochemical properties of LiNii 3Co1/3Mn1/3O2-PPy composites cathode materials for lithium-ion battery [J]. Synthetic Metals.2011,161 (11-12):1092-1097.
    [36]Y.H. Ding, P. Zhang, Z.L. Long, Y. Jiang and F. Xu. Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning [J]. Journal of Alloys and Compounds,2009,487 (1-2):507-510.
    [37]S.Y Ye, Y.Y. Xia, P.W. Zhang and Z.Y. Qiao. Al, B, and F doped LiNi1/3Co1/3Mn1/3O2 as cathode material of lithium-ion batteries [J]. Journal of Solid State Electrochemistry,2007, 11 (6):805-810.
    [38]L. Liu, K.N. Sun, N.Q. Zhang and T.Y. Yang. Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg, Cr, and Al substitution [J]. Journal of Solid State Electrochemistry,2009,13 (9):1381-1386.
    [39]S. Lim and J. Cho. PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates [J]. Electrochemistry Communications,2008,10 (10): 1478-1481.
    [40]H.-W. Ha, N.J. Yun and K. Kim. Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries [J]. Electrochimica Acta,2007,52 (9):3236-3241.
    [41]D. Arumugam and G.P. Kalaignan. Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries [J]. Journal of Electroanalytical Chemistry,2008,624 (1-2):197-204.
    [42]C.E. Lai, W.Y Ye, H.Y. Liu and W.J. Wang. Preparation of TiO2-coated LiMn2O4 by carrier transfer method [J]. Ionics,2009,15 (3):389-392.
    [43]J. Tu, X.B. Zhao, J. Xie, G.S. Cao, D.G. Zhuang, T.J. Zhu and J.P. Tu. Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries [J]. Journal of Alloys and Compounds,2007,432 (1-2):313-317.
    [44]D.-Q. Liu, X.-Q. Liu and Z.-Z. He. The elevated temperature performance of LiMn2O4 coated with Li4Ti50]2 for lithium ion battery [J]. Materials Chemistry and Physics,2007, 105 (2-3):362-366.
    [45]S.-C. Park, Y.-M. Kim, Y.-M. Kang, K.-T. Kim, PS. Lee and J.-Y. Lee. Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2 [J]. Journal of Power Sources, 2001,103(1):86-92.
    [46]B.J. Hwang, R. Santhanam, C.P. Huang, Y.W. Tsai and J. F. Lee. LiMn2O4 core surrounded by LiCoxMn2-xO4 shell material for rechargeable lithium batteries [J]. Journal of The Electrochemical Society,2002,149 (6):A694-A698.
    [47]K.W. Kim, S.-W. Lee, K.-S. Han, H.J. Chung and S.I. Woo. Characterization of Al-doped spinel LiMn2O4 thin film cathode electrodes prepared by Liquid Source Misted Chemical Deposition (LSMCD) technique [J]. Electrochimica Acta,2003,48 (28):4223-231.
    [48]R. Singhal, S.R. Das, M.S. Tomar, O. Ovideo, S. Nieto, R.E. Melgarejo and R.S. Katiyar. Synthesis and characterization of Nd doped LiMn2O4 cathode for Li-ion rechargeable batteries [J]. Journal of Power Sources,2007,164 (2):857-861.
    [49]C.Q. Xu, Y.W. Tian, Y.C. Zhai and L.Y. Liu. Influence of Y3+ doping on structure and electrochemical property of the LiMn2O4 [J]. Materials Chemistry and Physics.2006.98 (2-3):532-538.
    [50]Y.-L. Ding, J. Xie, G.-S. Cao, T.-J. Zhu. H.-M. Yu and X.-B. Zhao. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries [J]. Advanced Functional Materials,2011.21 (2):348-355.
    [51]H.-W. Lee, P. Muralidharan, R. Ruffo, C.M. Mari, Y. Cui and D.K. Kim. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-Ion batteries [J]. Nano Letters, 2010,10 (10):3852-3856.
    [52]L.J. Xi, H.-E. Wang, Z.G. Lu, S.L. Yang, R.G. Ma, J.Q. Deng and C.Y. Chung. Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries [J]. Journal of Power Sources.2012,198 (15):251-257.
    [53]A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of The Electrochemical Society,1997,144 (4):1188-1194.
    [54]Y.G. Wang, Y.R.Wang, E. Hosono, K.X, Wang and U.S. Zhou. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method [J]. Angewandte Chemie International Edition,2008,47 (39):7461-7465.
    [55]C.R. Sides, F.Croce, V.Y. Young, C.R. Martin and B. Scrosati. A high-rate, nanocomposite LiFePO4/carbon cathode [J]. Electrochemical and Solid-State Letters,2005,8 (9): A484-A487.
    [56]X.G. Yin, K.L. Huang, S.Q. Liu, H.Y. Wang and H. Wang. Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries [J]. Journal of Power Sources,2010,195 (13):4308-4312.
    [57]H.C. Shin, S.B. Park, H. Jang, K.Y. Chung, W.I. Cho, C.S. Kim and B.W. Cho. Rate performance and structural change of Cr-doped LiFePO4/C during cycling [J]. Electrochimica Acta,2008,53 (27):7946-7951.
    [58]J. Ma, B.H. Li, H.D. Du, C.J. Xu and F.Y. Kang. Effects of tin doping on physicochemical and electrochemical performances of LiFe1-xSnxPO4/C (0≤ x≤ 0.07) composite cathode materials [J]. Electrochimica Acta,2011,56 (21):7385-7391.
    [59]J. Molenda, W. Ojczyk, K. Swierczek, W. Zajac, F. Krok, J. Dygas and R.-S. Liu. Diffusional mechanism of deintercalation in LiFe1-yMnyPO4 cathode material [J]. Solid State Ionics,2006,177 (26-32):2617-2624.
    [60]L.-L. Zhang, G. Liang, A. Ignatov, M.C. Croft, X.-Q. Xiong, I.-M. Hung, Y.-H. Huang, X.-L. Hu, W.-X. Zhang and Y.-L. Peng. Effect of vanadium incorporation on electrochemical performance of LiFePO4 for lithium-ion batteries [J]. Journal of Physical Chemistry C.2011, 115(27):13520-13527.
    [61]K.-F. Hsu, S.-Y. Tsay and B.-J. Hwang. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route [J]. Journal of Materials Chemistry,2004,14 (17):2690-2695.
    [62]S. Lim, C.S. Yoon and J. Cho. Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries [J]. Chemistry of Materials,2008,20 (14):4560^564.
    [63]M. Morcrette, J-B. Leriche, S. Patoux, C. Wurm and C. Masquelier. In situ X-Ray diffraction during lithium extraction from rhombohedral and monoclinic Li3V2(PO4)3 [J]. Electrochemical and Solid-State Letters,2003,6 (5):A80-A84.
    [64]S.-C. Yin, H. Grondey, P. Strobel, M. Anne and L. F. Nazar. Electrochemical property: structure relationships in monoclinic Li3-y.V2(PO4) [J]. Journal of the American Chemical Society,2003,125 (34):10402-10411.
    [65]S.-C. Yin, H. Grondey, P. Strobel, H. Huang and L.F. Nazar. Charge ordering in lithium vanadium phosphates:electrode materials for lithium-ion batteries [J]. Journal of the American Chemical Society,2003,125 (2):326-327.
    [66]S. Panero. M. Pasquali and G. Pistoia. Rechargeable Li/Li1-xV3O8 cells [J]. Journal of The Electrochemical Society,1983.130(5):1225-1227.
    [67]A. Yu, N. Kumagai, Z. Liu and J.Y. Lee. A new method for preparing lithiated vanadium oxides and their electrochemical performance in secondary lithium batteries [J]. Journal of Power Sources,199874(1):117-121.
    [68]J. Gaubicher, C. Wurm, G. Goward, C. Masquelier and L. Nazar. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries [J]. Chemistry of Materials,2000,12 (11): 3240-3242.
    [69]J. Gopalakrishnan and K.K. Rangan. V2(PO4)3:A novel NASlCON-type vanadium phosphate synthesized by oxidative deintercalation of sodium from Na3V2(PO4)3 [J]. Chemistry of Materials,1992,4 (4):745-747.
    [70]S.-C. Yin, P. S. Strobel, H. Grondey and L. F. Nazar. Li2.5V2(PO4)3:A room-temperature analogue to the fast-ion conducting high-temperature y-phase of Li3V2(PO4)3 [J]. Chemistry of Materials,2004,16 (8):1456-1465.
    [71]M. Sato, H. Ohkawa, K. Yoshida, M. Saito, K. Uematsu and K. Toda. Enhancement of discharge capacity of Li3V2(PO4) by stabilizing the orthorhombic phase at room temperature [J]. Solid State Ionics,2000,135 (1-4):137-142.
    [72]M.Y. Saidi, J. Barker, H. Huang, J.L. Swoyer and G. Adamson. Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries [J]. Journal of Power Sources,2003,119-121 (1):266-272.
    [73]B. Zhang, J.Q. Liu, Q. Zhang and Y.H. Li. Electrochemical performance of Al-substituted Li3V2(PO4)3 cathode materials synthesized by sol-gel method [J]. Transactions of Nonferrous Metals Society of China,2010,20 (4):619-623.
    [74]D.J. Ai, K.Y. Liu, Z.G. Lu, M.M. Zou, D.Q. Zeng and J. Ma. Aluminothermal synthesis and characterization of Li3V2-xAlx(PO4)3 cathode materials for lithium ion batteries [J]. Electrochimica Acta,2011,56 (7):2823-2827.
    [75]J. Barker, R.K.B. Gover, P. Burns and A. Bryan. The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate, Li3V2(PO4)3 [J]. Journal of The Electrochemical Society,2007,154 (4):A307-A313.
    [76]C.W. Sun. S. Rajasekhara. Y.Z. Dong and J.B. Goodenough. Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries [J]. ACS Applied Materials& Interfaces.2011,3 (9):3772-3776.
    [77]Q. Kuang, Y.M. Zhao, X.N. An, J.M. Liu, Y.Z. Dong and L. Chen. Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries [J]. Electrochimica Acta,2010,55 (5):1575-1581.
    [78]Y.H. Chen, Y.M. Zhao, X.N. An, J.M. Liu, Y.Z. Dong and L. Chen. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries [J]. Electrochimica Acta,2009,54 (24):5844-5850.
    [79]S.K. Zhong, B. Zhao, Y.H. Li, Y.P. Liu, J.Q. Liu and F.P. Li. Synthesis and Electrochemical Properties of Cr-doped Li3V2(PO4)3 Cathode Materials for Lithium-ion Batteries [J]. Journal of Wuhan University of Technolotgy-Mater. Sci. Ed..2009,24 (3):343-346.
    [80]S.Y. Yang, S. Zhang, B.L. Fu, Q. Wu. F.L. Liu and C. Deng. Effects of Cr doping on the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries [J]. Journal of Solid State Electrochemistry,2011,15 (11-12):2633-2638.
    [81]S.K. Zhong, L.T. Liu, J.Q. Liu. J. Wang and J.W. Yang. High-rate characteristic of F-substitution Li3V2(PO4)3 cathode materials for Li-ion batteries [J]. Solid State Communications,2009,149(39-40):1679-1683.
    [82]M.M. Ren, Z. Zhou, Y.Z. Li, X.P. Gao and J. Yan. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries [J]. Journal of Power Sources,2006,162(2):1357-1362.
    [83]S.Q. Liu, S.C. Li, K.L. Huang, B.L. Gong and G. Zhang. Kinetic study on Li2.8(V0.9Ge0.1)2(PO4)3 by EIS measurement [J]. Journal of Alloys and Compounds,2008, 450 (1-2):499-504.
    [84]B.Q. Jiang, S.F. Hu, M.W. Wang, X.P. Ouyang and Z.Y. Gong. Synthesis and electrochemical performance of La-doped Li3V2-x(PO4)3 cathode materials for lithium batteries [J]. Rare Metals,2011,30 (2):115-119.
    [85]Y.Z. Dong, Y.M. Zhao and H. Duan. The effect of doping Mg2+ on the structure and electrochemical properties of Li3V2(PO4)3 cathode materials for lithium-ion batteries [J]. Journal of Electroanalytical Chemistry,2011,660 (1):14-21.
    [86]J.S. Huang, L. Yang, K.Y. Liu and Y.F. Tang. Synthesis and characterization of Li3V(2-2x/3)Mgx(PO4)3/C cathode material for lithium-ion batteries [J]. Journal of Power Sources,2010,195 (15):5013-5018.
    [87]C.S. Dai, Z.Y. Chen, H.Z. Jin and X.G. Hu. Synthesis and performance of Li3(V1-xMgx)2(PO4)3 cathode materials [J]. Journal of Power Sources,2010,195 (17): 5775-5779.
    [88]X.D. Guo, B.H. Zhong, Y. Tang, W.H. Liao and D.Q. Wu. Performance and structure of doped-Mg-Li3V2(PO4)3 cathode material for lithium ion batteries [J]. Chemical Research and Application,2008,20 (5):625-627.
    [89]J. Zhai, M.S. Zhao and D.D. Wang. Effect of Mn-doping on performance of Li3V2(PO4)3/C cathode material for lithium ion batteries [J]. Transactions of Nonferrous Metals Society of China,2011,21 (3):523-528.
    [90]M. Bini, S. Ferrari, D. Capsoni and V. Massarotti. Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material [J]. Electrochimica Acta,2011,56 (6): 2648-2655.
    [91]Q. Kuang, Y.M. Zhao and Z.Y. Liang. Synthesis and electrochemical properties of Na-doped Li3V2(PO4)3 cathode materials for Li-ion batteries [J]. Journal of Power Sources, 2011,196(23):10169-10175.
    [92]Q.Q. Chen, X.C. Qiao, Y.B. Wang, T.T. Zhang, C. Peng, W.M. Yin and L. Liu. Electrochemical performance of Li3-xNaxV2(PO4).VC composite cathode materials for lithium ion batteries [J]. Journal of Power Sources,2012,201:267-273.
    [93]Y. Xia, W.K. Zhang, H. Huang, Y.P. Gan, C.G. Li and X.Y. Tao. Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries [J]. Materials Science and Engineering B,2011,176 (8):633-639.
    [94]L.L. Zhang, X. Zhang, Y.M. Sun, W. Luo. X.L. Hu, X.J. Wu and Y.H. Huang. Improved electrochemical performance in Li3V2(PO4)3 promoted by niobium-incorporation [J]. Journal of The Electrochemical Society,2011,158 (8):A924-A929.
    [95]刘云霞,章芳琴,耿良梅,程龙兵,朱先军Li3V2(PO4)3掺镍的性能研究[J].华中师范大学学报(自然科学版),2008,42(4):578-581.
    [96]何智峰,赵彦明,陈玲,董有忠.锂离子电池正极材料Li3V2.xNix(PO4)3的制备及其性能[J].电源技术,2009,33(5):401-405.
    [97]Y.G. Mateyshin and N.F. Uvarov. Electrochemical behavior of Li3.xM'xV2.yM"v(PO4)3 (M'=K, M"=Sc, Mg+Ti)/C composite cathode material for lithium-ion batteries [J]. Journal of Power Sources,2011,196 (3):1494-1497.
    [98]刘素琴,李世彩,黄可龙,陈朝晖.Ti4+离子掺杂对Li3V2(PO4)3晶体结构与性能的影响[J].物理化学学报,2007,23(4):537-542.
    [99]C. Deng, S. Zhang, S. Y. Yang, Y. Gao, B. Wu, L. Ma, B. L. Fu, Q. Wu and F. L. Liu. Effects of Ti and Mg codoping on the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries [J]. The Journal of Physical Chemistry C,2011,115 (30): 15048-15056.
    [100]S.K. Zhong, L.T. Liu, J.Q. Jiang, Y.W. Li, J. Wang, J.Q. Liu and Y.H. Li. Preparation and electrochemical properties of Y-doped Li3V2(PO4)3 cathode materials for lithium batteries [J]. Journal of Rare Earths,2009,27 (1):134-137.
    [101]J. Barker, M. Y. Saidi and J. L. Swoyer. A carbothermal reduction method for the preparation of electroactive materials for lithium ion applications [J]. Journal of The Electrochemical Society,2003,150 (6):A684-A688.
    [102]Y.Z. Li, Z. Zhou, M.M. Ren, X.P. Gao and J. Yan. Electrochemical performance of nanocrystalline Li3V2(P04)3/carbon composite material synthesized by a novel sol-gel method [J]. Electrochimica Acta,2006,51 (28):6498-6502.
    [103]X.J. Zhu, Y.X. Liu, L.M. Geng, L.B. Chen, H.X. Liu and M.H. Cao. Synthesis and characteristics of Li3V2(PO4)3 as cathode materials for lithium-ion batteries [J]. Solid State Ionics,2008,179(27-32):1679-1682.
    [104]S.K. Zhong, Z.L. Yin, Z.X. Wang, H.J. Guo and X.H. Li. Synthesis and characterization of novel cathode material Li3V2(PO4)3 by carbon-thermal reduction method [J]. Transactions of Nonferrous Metals Society of China,2006,16 (2):s708-s710.
    [105]A.P. Tang, X.Y. Wang and Z.M. Liu. Electrochemical behavior of Li3V2(PO4)3/C composite cathode material for lithium-ion batteries [J]. Materials Letters.2008,62 (10-II):1646-1648.
    [106]A.P. Tang, X.Y. Wang and S.Y. Yang. A novel method to synthesize Li3V2(PO4)3/C composite and its electrochemical Li intercalation performances [J]. Materials Letters, 2008,62 (21-22):3676-3678.
    [107]M.Z. Liu and X.Y. Guo. Synthesis and performance of Li3V2(PO4)3/C composites as cathode materials [J]. Rare Metals.2008,27 (6):571-574.
    [108]S.K. Zhong, J. Wang, L.T. Liu, J.Q. Liu and Y.W. Li. Investigations on the synthesis and electrochemical performance of Li3V2(PO4)3/C by different methods [J]. Ionics,2010,16 (2):117-121.
    [109]P. Fu, Y.M. Zhao, X.N. An, Y.Z. Dong and X.M. Hou. Structure and electrochemical properties of nanocarbon-coated Li3V2(PO4)3 prepared by sol-gel method [J]. Electrochimica Acta.2007,52 (16):5281-5285.
    [110]Y.Z. Li, Z. Zhou, M.M. Ren, X.P. Gao and J. Yan. Improved electrochemical Li insertion performances of Li3V2(PO4)3/carbon composite materials prepared by a sol-gel route [J]. Materials Letters,2007,61 (23-24):4562-4564.
    [111]Y.Z. Li, X. Liu and J.Yan. Study on synthesis routes and their influences on chemical and electrochemical performances of Li3V2(PO4)3/carbon [J]. Electrochimica Acta,2007,53 (2):474-179.
    [112]C.X. Chang, J.F. Xiang, X.X. Shi, X.Y. Han, L.J. Yuan and J.T. Sun. Hydrothermal synthesis of carbon-coated lithium vanadium phosphate [J]. Electrochimica Acta,2008,54 (2):623-627.
    [113]Y.Z. Li, Z. Zhou, X.P. Gao and J. Yan. A promising sol-gel route based on citric acid to synthesize Li3V2(PO4)3/carbon composite material for lithium ion batteries [J]. Electrochimica Acta,2007,52 (15):4922-926.
    [114]Q.Q. Chen, J.M. Wang. Z. Tang, W.C. He, H.B. Shao and J.Q. Zhang. Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol-gel method [J]. Electrochimica Acta,2007,52 (16):5251-5257.
    [115]X.J. Zhu, Y.X. Liu, L.M. Geng and L.B. Chen. Synthesis and performance of lithium vanadium phosphate as cathode materials for lithium ion batteries by a sol-gel method [J]. Journal of Power Sources,2008,184 (2):578-582.
    [116]Q. Zhang, Y.H. Li, S.K. Zhong, X.H. Xiao and B. Yan. Synthesis and electrochemical performance of Li3V2(PO4)3 by optimized sol-gel synthesis routine [J]. Transactions of Nonferrous Metals Society of China,2010,20 (8):1545-1549.
    [117]J. Yan, W. Yuan, H. Xie, Z.Y. Tang, W.F. Mao and L. Ma. Novel self-catalyzed sol-gel synthesis of high-rate cathode Li3V2(PO4)3/C for lithium ion batteries [J]. Materials Letters, 2012,71:1-3.
    [118]F. Yu, J.J. Zhang, Y.F. Yang and G.Z. Song. Preparation and electrochemical performance of Li3V2(PO4)3/C cathode material by spray-drying and carbothermal method [J]. Journal of Solid State Electrochemistry,2010,14 (5):883-888.
    [119]F. Wu, F. Wang, C. Wu and Y. Bai. Rate performance of Li3V2(PO4)3/C cathode material and its Li+ion intercalation behavior [J]. Journal of Alloys and Compounds,2012,513: 236-241.
    [120]W. Yuan, J. Yan, Z.Y. Tang, O. Sha, J.M. Wang, W.F. Mao and L. Ma. Synthesis of Li3V2(PO4)3 cathode material via a fast sol-gel method based on spontaneous chemical reactions [J]. Journal of Power Sources,2012,201:301-306.
    [121]W. Yuan, J. Yan, Z.Y. Tang and L. Ma. Synthesis of high performance Li3V2(PO4)3/C cathode material by ultrasonic-assisted sol-gel method [J]. Ionics,2012,18 (3):329-335.
    [122]X.H. Rui, C. Li and C.H. Chen. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources [J]. Electrochimica Acta,2009, 54(12):3374-3380.
    [123]J.-C. Zheng, X.-H. Li, Z.-X. Wang, H.-J. Guo, Q.-Y. Hu and W.-J. Peng. Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method [J]. Journal of Power Sources,2009,189 (1):476-479.
    [124]G. Yang, H.D. Liu, H.M. Ji, Z.Z. Chen and X.F. Jiang. Temperature-controlled microwave solid-state synthesis of Li3V2(PO4)3 as cathode materials for lithium batteries [J]. Journal of Power Sources,2010,195 (16):5374-5378.
    [125]G. Yang, H.D. Liu, H.M. Ji, Z.Z. Chen and X.F. Jiang. Microwave solid-state synthesis and electrochemical properties of carbon-free Li3V2(PO4)3 as cathode materials for lithium batteries [J]. Electrochimica Acta,2010,55 (8):2951-2957.
    [126]G. Yang, H.M. Ji, H.D. Liu, B. Qian and X.F. Jiang. Crystal structure and electrochemical performance of Li3V2(PO4)3 synthesized by optimized microwave solid-state synthesis route [J]. Electrochimica Acta,2010.55 (11):3669-3680.
    [127]X.C. Zhou, Y.M. Liu and Y.L. Guo. One-step synthesis of Li3V2(PO4)3/C positive material with high performance for lithium-ion batteries [J]. Solid State Communications,2008,146 (5-6):261-264.
    [128]X.C. Zhou, Y.M. Liu and Y.L. Guo. Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction [J]. Electrochimica Acta, 2009,54 (8):2253-2258.
    [129]C.X. Chang, J.F. Xiang, X.X. Shi, X.Y. Han, L.J. Yuan and J.T. Sun. Rheological phase reaction synthesis and electrochemical performance of Li3V2(PO4)3/carbon cathode for lithium ion batteries [J]. Electrochimica Acta,2008,53 (5):2232-2237.
    [130]J.W. Wang, J. Liu, G.L. Yang, X.F. Zhang, X.D. Yan, X.M. Pan and R.S. Wang. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source [J]. Electrochimica Acta,2009,54 (26):6451-6454.
    [131]T. Jiang, W.C. Pan, J. Wang, X.F. Bie, F. Du, Y.J. Wei, C.Z. Wang and G. Chen. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method [J]. Electrochimica Acta,2010,55 (12):3864-3869.
    [132]J.W. Wang, X.F. Zhang, J. Liu, G.L. Yang, Y.C. Ge, Z.J. Yu and R.S. Wang. Long-term cyclability and high-rate capability of Li3V2(PO4)3/C cathode material using PVA as carbon source [J]. Electrochimica Acta,2010,55 (22):6879-6884.
    [133]X.H. Rui, C. Li, J. Liu, T. Cheng and C.H. Chen. The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol-gel route [J]. Electrochimica Acta, 2010,55 (22):6761-6767.
    [134]J.S. Huang, L. Yang and K.Y. Liu. One-pot syntheses of Li3V2(PO4)3/C cathode material for lithium ion batteries via ascorbic acid reduction approach [J]. Materials Chemistry and Physics,2011,128 (3):470-74.
    [135]L.J. Wang, Z.Y. Tang, L. Ma and X.H. Zhang. High-rate cathode based on Li3V2(PO4)3/C composite material prepared via a glycine-assisted sol-gel method [J]. Electrochemistry Communications,2011,13(11):1233-1235.
    [136]J.S. Huang, L. Yang and K.Y. Liu. Organic phosphoric sources for syntheses of Li3V2(PO4)3/C via improved rheological phase reaction [J]. Materials Letters,2012,66 (1): 196-198.
    [137]P. Fu, Y.M. Zhao, Y.Z. Dong, X.N. An and G.P. Shen. Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine [J]. Journal of Power Sources,2006, 162(1):651-657.
    [138]H. Huang, S.C. Yin, T. Kerr, N. Taylor and L.F. Nazar. Nanostructred composites:a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries [J]. Advanced Materials,2002,14 (21):1525-1528.
    [139]L.J. Wang, X.C. Zhou and Y.L. Guo. Synthesis and performance of carbon-coated Li3V2(PO4)3 cathode materials by a low temperature solid-state reaction [J]. Journal of Power Sources,2010,195 (9):2844-2850.
    [140]L.-L. Zhang, Y. Li, G. Peng, Z.-H. Wang, J. Ma, W.-X. Zhang, X.-L. Hu and Y.-H. Huang. High-performance Li3V2(PO4)3/C cathode materials prepared via a sol-gel route with double carbon sources [J]. Journal of Alloys and Compounds,2012,513:414-419.
    [141]L. Wang, X. Li. X.Q. Jiang. F.S. Pan and F. Wu. Wet coordination method to prepare carbon-coated Li3V2(PO4)3 cathode material for lithium ion batteries [J]. Solid State Sciences,2010,12(7):1248-1252.
    [142]L. Wang, X.Q. Jiang, X. Li, X.Q. Pi, Y. Ren and F. Wu. Rapid preparation and electrochemical behavior of carbon-coated Li3V2(PO4)3 from wet coordination [J]. Electrochimica Acta,2010,55 (18):5057-5062.
    [143]L. Zhang, H.F. Xiang, Z. Li and H.H. Wang. Porous Li3V2(PO4)3/C cathode with extremely high-rate capacity prepared by a Sol-gel-combustion method for fast charging and discharging [J]. Journal of Power Sources,2012,203:121-125.
    [144]L.J. Wang, H.B. Liu, Z.Y. Tang, L. Ma and X.H. Zhang. Li3V2(PO4)3/C cathode material prepared via a sol-gel method based on composite chelating reagents [J]. Journal of Power Sources,2012,204:197-199.
    [145]L. Zhang, X.L. Wang, J.Y. Xiang, Y. Zhou, S.J. Shi and J.P. Tu. Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode [J]. Journal of Power Sources,2010,195 (15):5057-5061.
    [146]T. Jiang, Y.J. Wei, W.C. Pan, Z. Li, X. Ming, G. Chen and C.Z. Wang. Preparation and electrochemical studies of Li3V2(PO4)3/Cu composite cathode material for lithium ion batteries [J]. Journal of Alloys and Compounds,2009,488 (1):L26-L29.
    [147]H.D. Liu, P. Gao, J.H. Fang and G. Yang. Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries [J]. Chemical Communications,2011,47 (32):9110-9112.
    [148]Y. Zhang, Y. Lv, L.Z. Wang, A.Q. Zhang, Y.H. Song and G.Y. Li. Synthesis and electrochemical properties of Li3V2(PO4)3/MWCNTs composite cathodes [J]. Synthetic Metals,2011,161 (19-20):2170-2173.
    [149]K.L. Wu. Preparation and characterization of Li3V2(PO4)3/MWCNTs cathode material for lithium-ion batteries [J]. Ionics,2012,18 (1-2):55-58.
    [150]J. Zhai, M.S. Zhao, D.D. Wang and Y.Q. Qiao. Effect of MgO nanolayer coated on Li3V2(PO4)3/C cathode material for lithium-ion battery [J]. Journal of Alloys and Compounds,2010,502 (2):401-06.
    [151]GQ. Zhang, X.X. Li, H.T. Jia, X.X. Pang, H.W. Yang, Y.H. Wang and K.Q. Ding. Preparation and characterization of polyaniline (PANI) doped-Li3V2(PO4)3 [J]. International Journal of Electrochemical Science,2012,7 (1):830-843.
    [152]M.Y. Saidi, J. Barker, H. Huang, J.L. Swoyer and G. Adamson. Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries [J]. Electrochemical and Solid-State Letters,2002,5 (7):A149-A151.
    [153]P. Fu, Y.M. Zhao, Y.Z. Dong, X.N. An and GP. Shen. Low temperature solid-state synthesis routine and mechanism for Li3V2(PO4)3 using LiF as lithium precursor [J]. Electrochimica Acta,2006,52 (3):1003-1008.
    [154]T. Jiang, C.Z. Wang, G Chen, H. Chen, Y.J. Wei and X. Li. Effects of synthetic route on the structural, physical and electrochemical properties of Li3V2(PO4)3 cathode materials [J]. Solid State Ionics,2009,180 (9-10):708-714.
    [155]H.W. Liu, C.X. Cheng, X.T. Huang and J.L. Li. Hydrothermal synthesis and rate capacity studies of Li3V2(PO4)3 nanorods as cathode material for lithium-ion batteries [J]. Electrochimica Acta,2010,55 (28):8461-8465.
    [156]X.P. Zhang, H.J. Guo, X.H. Li, Z.X. Wang and L. Wu. High tap-density Li3V2(PO4)3/C composite material synthesized by sol spray-drying and post-calcining method [J]. Electrochimica Acta,2012,64:65-70.
    [157]K. Nagamine, T. Honma and T. Komatsu. A fast synthesis of Li3V2(PO4)3 crystals via glass-ceramic processing and their battery performance [J]. Journal of Power Sources,2011, 196 (22):9618-9624.
    [158]M.M. Ren, Z. Zhou, X.P. Gao, W.X. Peng and J.P. Wei. Core-shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries [J]. The Journal of Physical Chemistry C,2008,112 (14):5689-5693.
    [159]A.Q. Pan, J. Liu, J.-G. Zhang, W. Xu, G.Z. Cao, Z.M. Nie, B.W. Arey and S.Q. Liang. Nano-structured Li;,V2(PO4)3/carbon composite for high-rate lithium-ion batteries [J]. Electrochemistry Communications,2010,12 (12):1674-1677.
    [160]X. Zhang, S.Q. Liu, K.L. Huang, S.X. Zhuang, J. Guo, T. Wu and P. Cheng. Synthesis and characterization of macroporous Li3V2(PO4)3/C composites as cathode materials for Li-ion batteries [J]. Journal of Solid State Electrochemistry,2012,16 (3):937-944.
    [161]A.Q. Pan, D. Choi, J.-G. Zhang, S.Q. Liang, G.Z. Cao, Z.M. Nie, B.W. Arey and J. Liu. High-rate cathodes based on Li3V2(PO4)3 nanobelts prepared via surfactant-assisted fabrication [J]. Journal of Power Sources,2011,196 (7):3646-3649.
    [162]L. Wang, L.-C. Zhang, I. Lieberwirth, H.-W. Xu and C.-H. Chen. A Li3V2(PO4)3/C thin film with high rate capability as a cathode material for lithium-ion batteries [J]. Electrochemistry Communications,2010,12 (1):52-55.
    [163]B. Huang, X.P. Fan, X.D. Zheng and M. Lu. Synthesis and rate performance of lithium vanadium phosphate as cathode material for Li-ion batteries [J]. Journal of Alloys and Compounds,2011,509 (14):4765-4768.
    [164]B. Huang, X.D. Zheng, M. Lu, S. Dong and Y. Qiao. Novel spherical Li3V2(PO4)3/C cathode material for application in high-power lithium ion battery [J]. International Journal of Electrochemical Science,2012,7 (1):437-144.
    [165]C.P. Hou and M. Yue. A novel cathode material lithium vanadium phosphate synthesized by liquid-phase sphericizing granulation [J]. Acta Physico-Chimica Sinica.2007.23 (12): 1954-1957.
    [166]Y.N. Ko, H.Y. Koo, J.H. Kim, J.H. Yi. Y.C. Kang and J.H. Lee. Characteristics of Li3V2(PO4)3/C powders prepared by ultrasonic spray pyrolysis [J]. Journal of Power Sources, 2011,196 (16):6682-6687.
    [167]Y.N. Ko, J.H. Kim, Y.J. Hong and Y.C. Kang. Electrochemical properties of nano-sized Li3V2(PO4)3/C composite powders prepared by spray pyrolysis from spray solution with chelating agent [J]. Materials Chemistry and Physics,2011,131 (1-2):292-296.
    [168]X.Y. Wang, S.Y. Yin, K.L. Zhang and Y.X. Zhang. Preparation and characteristic of spherical Li3V2(PO4)3 [J]. Journal of Alloys and Compounds,2009,486 (1-2):L5-L7.
    [169]X.H. Rui, Y. Jin, X.Y. Feng, L.C. Zhang and C.H. Chen. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries [J]. Journal of Power Sources,2011,196 (4):2109-2114.
    [170]Z.Y. Chen, C.S. Dai, G. Wu, M. Nelson, X.G. Hu, R.X. Zhang, J.S. Liu and J.C. Xia. High performance Li3V2(PO4)3/C composite cathode material for lithium ion batteries studied in pilot scale test [J]. Electrochimica Acta,2010,55 (28):8595-8599.
    [171]Z.Q. Liu, X.Y. Kang, C.F. Li, N. Hua, T. Wumair and Y. Han. Low-temperature behavior of Li3V2(PO4)3/C as cathode material for lithium ion batteries [J]. Journal of Solid State Electrochemistry, DOI:10.1007/s 10008-011-1584-4
    [172]H.-L. Zhang, J.R. Neilson and D.E. Morse. Vapor-diffusion-controlled sol-gel synthesis of flaky lithium vanadium oxide and its electrochemical behavior [J]. The Journal of Physical Chemistry C,2010,114(45):19550-19555.
    [173]F. Boucher, N. Bourgeon, K. Delbe, P. Moreau, D. Guyomard and G. Ouvrard. Study of Li1+x-V3O8 by band structure calculations and spectroscopies [J]. Journal of Physics and Chemistry of Solids,2006,67 (5-6):1238-1242.
    [174]J. Kawakita, Y. Katayama, T. Miura and T. Kishi. Structural properties of Li1+xV3O8 upon lithium insertion at ambient and high temperature [J]. Solid State Ionics,1998,107 (1-2): 145-152.
    [175]J. Kawakita, T. Miura and T. Kishi. Lithium insertion and extraction kinetics of Li1-XV3O8 [J]. Journal of Power Sources,1999,83 (1-2):79-83.
    [176]J. Kawakita, T. Kato, Y. Katayama, T. Miura and T. Kishi. Lithium insertion behaviour of Li1+XV3O8 with different degrees of crystallinity [J]. Journal of Power Sources,1999,81-82 (81):448-453.
    [177]G. Pistoia, M. Pasquali, G. Wang and L. Li. Li/LiI+XV3O8 secondary batteries-Synthesis and characterization of an amorphous form of the cathode [J]. Journal of The Electrochemical Society,1990,137 (8):2365-2370.
    [178]J.L. Sun, L.F. Jiao, H.T. Yuan, L. Liu, X. Wei, Y.L. Miao, L. Yang and Y.M. Wang. Preparation and electrochemical performance of AgXLi1-XV3O8 [J]. Journal of Alloys and Compounds,2009,472 (1-2):363-366.
    [179]Y. Feng, Y.L. Li and F. Hou. Boron doped lithium trivanadate as a cathode material for an enhanced rechargeable lithium ion batteries [J]. Journal of Power Sources,2009,187 (1): 224-228.
    [180]Z.J. Wu and Y. Zhou. Effect of Ce-doping on the structure and electrochemical performance of lithium trivanadate prepared by a citrate sol-gel method [J]. Journal of Power Sources, 2012,199:300-307.
    [181]Y. Feng, Y.L. Li and F. Hou. Preparation and electrochemical properties of Cr doped LiV3O8 cathode for lithium ion batteries [J]. Materials Letters,2009,63 (15):1338-1340.
    [182]X.Y. Cao, C. Yuan, L.L. Xie, H. Zhan and Y.H. Zhou. Low-temperature synthesis of Cu-doped Li1.2O8 as cathode for reversible lithium storage [J]. Ionics,2010,16 (1): 39-44.
    [183]L.F. Jiao, H.X. Li, H.T. Yuan and Y.M. Wang. Preparation of copper-doped LiV3O8 composite by a simple addition of the doping metal as cathode materials for lithium-ion batteries [J]. Materials Letters,2008,62 (24):3937-3939.
    [184]P. Rozier, M. Morcrette, P. Martin, L. Laffont and J-M. Tarascon. Solid solution (Li1.3-Y.,CuY)V3O8:structure and electrochemistry [J]. Chemistry of Materials,2005,17 (5): 984-991.
    [185]X.Z. Ren, S.M. Hu, C. Shi, P.X. Zhang, Q.H. Yuan and J.H. Liu. Preparation of Ga-doped lithium trivanadates as cathode materials for lithium-ion batteries [J]. Electrochimica Acta, 2012,63:232-237.
    [186]L. Liu, L.F. Jiao, J.L. Sun, M. Zhao, Y.H. Zhang, H.T. Yuan and Y.M. Wang. Electrochemical performance of LiV3-2XNiXMnXO8 cathode materials synthesized by the sol-gel method [J]. Solid State Ionics.2008.178 (33-34):1756-1761.
    [187]S.V. Pouchko, A.K. Ivanov-Schitz, T.L. Kulova, A.M. Skundin and E.P. Turevskaya. Sol-gel fabrication and lithium insertion kinetics of the Mo-doped lithium vanadium oxide thin films Li1-XMoyV3-y.O8 [J]. Solid State Ionics,2002,151 (1-4):129-140.
    [188]J.-G. Xie, J. Xiao, H. Zhan and Y.-H. Zhou. Low temperature synthesis and characterization of Li1.2-,,NarV3O8 (0< y< 1.2) from V2O5 gel [J]. Chinese Journal of Chemistry,2003,21 (3):232-237.
    [189]L. Liu, L.F. Jiao, J.L. Sun, Y.H. Zhang, M. Zhao, H.T. Yuan and Y.M. Wang. Electrochemical performance of LiV3-xNixO8 cathode materials synthesized by a novel low-temperature solid-state method [J]. Electrochimica Acta,2008,53 (24):7321-7325.
    [190]M. Zhao, L.F. Jiao, H.T. Yuan, Y. Feng and M. Zhang. Study on the silicon doped lithium trivanadate as cathode material for rechargeable lithium batteries [J]. Solid State Ionics, 2007,178 (5-6):387-391.
    [191]J.L. Sun, L.F. Jiao, L. Liu, X. Wei, L. Yang, S.C. Liu, H.T. Yuan and Y.M. Wang. Synthesis and electrochemical performance of Ti4+doped LiV3O8 [J]. Chinese Journal of Chemistry, 2009,27 (5):863-867.
    [192]L.Y. Liu, Y.W. Tian, Y.C. Zhai and C.Q. Xu. Influence of Y3+doping on structure and electrochemical performance of layered Lii.05V3O8 [J]. Transactions of Nonferrous Metals Society of China,2007,17 (1):110-115.
    [193]C.Q. Feng, L.F. Huang, Z.P. Guo, J.Z. Wang and H.K. Liu. Synthesis and electrochemical properties of LiY0.1V3O8 [J]. Journal of Power Sources,2007,174 (2):548-551.
    [194]Y.M. Liu, X.C. Zhou and Y.L. Guo. Effects of fluorine doping on the electrochemical properties of LiV3O8 cathode material [J]. Electrochimica Acta,2009,54 (11):3184-3190.
    [195]X.-Y Cao, L.-J. Guo. J.-P. Liu and L.-L. Xie. Preparation of ZnO-coated LiV3O8 as cathode materials for rechargeable lithium batteries [J]. International Journal of Electrochemical Science.2011,6 (2):270-278.
    [196]L.F. Jiao, L. Liu, J.L. Sun, L. Yang, Y.H. Zhang, H.T. Yuan, Y.M. Wang and X.D. Zhou. Effect of AIPO4 nanowire coating on the electrochemical properties of LiV3Os cathode material [J]. Journal of Physical Chemistry C,2008,112 (46):18249-18254.
    [197]C.Q. Feng, S.Y. Chew. Z.P. Guo. J.Z. Wang and H.K. Liu. An investigation of polypyrrole-LiV3O8 composite cathode materials for lithium-ion batteries [J]. Journal of Power Sources,2007,174(2):1095-1099.
    [198]F.H. Tian, L. Liu, Z.H. Yang, X.Y. Wang, Q.Q. Chen and X.Y. Wang. Electrochemical characterization of a LiV3O8-polypyrrole composite as a cathode material for lithium ion batteries [J]. Materials Chemistry and Physics,2011,127(1):151-155.
    [199]S.Y. Chew, C.Q. Feng, S.H. Ng, J.Z. Wang, Z.P. Guo and H.K. Liu. Low-temperature synthesis of polypyrrole-coated LiV3O8 composite with enhanced electrochemical properties [J]. Journal of The Electrochemical Society,2007,154 (7):A633-A637.
    [200]N.H. Idris, M.M. Rahman, J.-Z. Wang, Z.-X. Chen and H.-K. Liu. Synthesis and electrochemical performance of LiV3O8/carbon nanosheet composite as cathode material for lithium-ion batteries [J]. Composites Science and Technology,2011,71 (3):343-349.
    [201]J. Kawakita, T. Miura and T. Kishi. Charging characteristics of Li1+xO8 [J]. Solid State Ionics,1999,118(1-2):141-147.
    [202]A. Yu, N. Kumagai, Z. Liu and J.Y. Lee. A new method for preparing lithiated vanadium oxides and their electrochemical performance in secondary lithium batteries [J]. Journal of Power Sources,1998,74(1):117-121.
    [203]J.L. Sun, W.X. Peng, D.W. Song, Q.H. Wang, H.M. Du, L.F. Jiao, Y.C. Si and H.T. Yuan. Electrochemical properties of facile emulsified LiV3O8 materials [J]. Materials Chemistry and Physics,2010,124 (1):248-251.
    [204]H. Yang, J. Li, X.G. Zhang and Y.L. Jin. Synthesis of LiV3O8 nanocrystallites as cathode materials for lithium ion batteries [J]. Journal of Materials Processing Technology,2008, 207 (1-3):265-270.
    [205]A.M. Kannan and A. Manthiram. Low temperature synthesis and electrochemical behavior of LiV3O8 cathode [J]. Journal of Power Sources,2006,159 (2):1405-1408.
    [206]L. Liu, L.F. Jiao, J.L. Sun, Z.H. Yang, M. Zhao, H.T. Yuan and Y.M. Wang. Electrochemical properties of submicron-sized LiV3O8 synthesized by a low-temperature reaction route [J]. Journal of Alloys and Compounds,2009,471 (1-2):352-356.
    [207]G. Yang, G. Wang and W..H. Hou. Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries [J]. Journal of Physical Chemistry B,2005,109 (22): 11186-11196.
    [208]Y.M. Liu, X.C. Zhou and Y.L. Guo. Effects of reactant dispersion on the structure and electrochemical performance of Li1.2V3O8 [J]. Journal of Power Sources,2008,184 (1): 303-307.
    [209]M. Dubarry, J. Gaubicher, D. Guyomard, O. Durupthy, N. Steunou, J. Livage, N. Dupre and C.P. Grey. Sol gel synthesis of Li1+aV3O81. From precursors to xerogel [J]. Chemistry of Materials,2005,17 (9):2276-2283.
    [210]A. Deptuta, M. Dubarry, A. Noret, J. Gaubicher, T. Olczak, W. Lada and D. Guyomard. Atypical Li1.1V3O$ prepared by a novel synthesis route [J]. Electrochemical and Solid-State Letters,2006,9(1):A16-A18.
    [211]S. Jouanneau, A.L.G.L. Salle, A. Verbaere, M. Deschamps, S. Lascaud and D. Guyomard. Influence of the morphology on the Li insertion properties of Li1.1O8 [J]. Journal of Materials Chemistry,2003,13 (4):921-927.
    [212]Y. Zhou, H.-F. Yue, X.-Y. Zhang and X.-Y. Deng. Preparation and characterization of LiV3O8 cathode material for lithium secondary batteries through an EDTA-sol-gel method [J]. Solid State Ionics,2008,179 (27-32):1763-1767.
    [213]L. Liu, L.F. Jiao, Z.H. Yang, J.L. Sun, L. Yang, Y.L. Miao, H.T. Yuan and Y.M. Wang. Synthesis of LiV3O8 by an improved citric acid assisted sol-gel method at low temperature [J]. Materials Chemistry and Physics,2008,111 (2-3):565-569.
    [214]F. Wu, L. Wang, C. Wu and Y. Bai. Structural characterization and electrochemical performance of lithium trivanadate synthesized by microwave sol-gel method [J]. Electrochimica Acta.2009,54 (20):4613-4619.
    [215]F. Wu. L. Wang, C. Wu, Y. Bai and F. Wang. Study on Li1-x.V3O8 synthesized by microwave sol-gel route [J]. Materials Chemistry and Physics,2009,115 (2-3):707-711.
    [216]G.Q. Liu, N. Xu, C.L. Zeng and K. Yang. Synthesis and electrochemical properties of LiV3O8 phase [J]. Materials Research Bulletin,2002,37 (4):727-733.
    [217]E.P. Koval'chuk, O.V. Reshetnyak, Ya.S. Kovalyshyn, J. Blazejowski. Structure and properties of lithium trivanadate-a potential electroactive material for a positive electrode of secondary storage [J]. Journal of Power Sources,2002,107 (1):61-66.
    [218]J. Kawakita. T. Miura and T. Kishi. Lithium insertion into Li4V3O8 [J]. Solid State Ionics. 1999.120(1-4):109-116.
    [219]X. Cao, C. Yuan, X. Tang, L. Xie, X. Liu, H. Wang and X. Yan. A novel approach to massive preparation of LiV3O8 as a cathode material for lithium rechargeable battery [J]. Journal of The Iranian Chemical Society,2009,6 (4):698-704.
    [220]Q.Y. Liu, H.W. Liu, X.W. Zhou, C.J. Cong and K.L. Zhang. A soft chemistry synthesis and electrochemical properties of LiV3O8 as cathode material for lithium secondary batteries [J]. Solid State Ionics,2005,176(17-18):1549-1554.
    [221]T.J. Patey, S.H. Ng, R. Buchel, N. Tran, F. Krumeich, J. Wang, H.K. Liu and P. Novak. Electrochemistry of LiV3O8 nanoparticles made by flame spray pyrolysis [J]. Electrochemical and Solid-State Letters,2008,11 (4):A46-A50.
    [222]N. Tran, K. G. Bramnik, H. Hibst, J. PrulB, N. Mronga, M. Holzapfel, W. Scheifele and P. Novak. Spray-drying synthesis and electrochemical performance of lithium vanadates as positive electrode materials for lithium batteries [J]. Journal of The Electrochemical Society, 2008,155(5):A384-A389.
    [223]Y.-C. Si, L.-F. Jiao, H.-T. Yuan, H.-X. Li and Y.-M. Wang. Structural and electrochemical properties of LiV3O8 prepared by combustion synthesis [J]. Journal of Alloys and Compounds,2009,486 (1-2):400-405.
    [224]A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R. Chowdari and P.C. Selvin. Preparation, characterization, and electrochemical performance of lithium trivanadate rods by a surfactant-assisted polymer precursor method for lithium batteries [J]. The Journal of Physical Chemistry C,2010,114 (17):8099-8107.
    [225]H.Y. Xu, H. Wang, Z.Q. Song, Y.W. Wang, H. Yan and M. Yoshimura. Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries [J]. Electrochimica Acta,2004,49 (2):349-353.
    [226]H.W. Liu, H.M. Yang and T. Huang. Synthesis, structure and electrochemical properties of one-dimensional nanometer materials LiV3O8 [J]. Materials Science and Engineering B, 2007,143 (1-3):60-63.
    [227]J.Q. Xu, H.L. Zhang, T. Zhang. Q.Y. Pan and Y.H. Gui. Influence of heat-treatment temperature on crystal structure, morphology and electrochemical properties of LiV3Os prepared by hydrothermal reaction [J]. Journal of Alloys and Compounds,2009,467 (1-2): 327-331.
    [228]H.M. Liu, Y.G. Wang, K.X. Wang, Y.R. Wang and H.S. Zhou. Synthesis and electrochemical properties of single-crystalline LiV3O5 nanorods as cathode materials for rechargeable lithium batteries [J]. Journal of Power Sources,2009,192 (2):668-673.
    [229]A.Q. Pan, J. Liu, J.-G. Zhang, G.Z. Cao, W. Xu, Z.M. Nie, X. Jie, D. Choi, B.W. Arey, CM. Wang and S.Q. Liang. Template free synthesis of LiV3O5 nanorods as a cathode material for high-rate secondary lithium batteries [J]. Journal of Materials Chemistry,2011,21 (4): 1153-1161.
    [230]X.H. Liu, J.Q. Wang, J.Y. Zhang and S.R. Yang. Sol-gel template synthesis of LiV3Og nanowires [J]. Journal of Materials Science,2007,42 (3):867-871.
    [231]Y.X. Gu and F.F. Jian. Facile preparation and electrochemical properties of large-scale Li1+.rV3O8 nanobelts [J]. Journal of Sol-Gel Science and Technology,2008,46 (2):161-165.
    [232]W.Z. Wu, J. Ding, H.R. Peng and G.C. Li. Synthesis and electrochemical properties of single-crystalline LiV3O5 nanobelts for rechargeable lithium batteries [J]. Materials Letters, 2011,65 (14):2155-2157.
    [233]Y.X. Gu, D.R. Chen, X.L. Jiao and F.F. Liu. Linear attachment of Lii+aV?Og nanosheets to 1-dimensional (ID) arrays:fabrication, characterization, and electrochemical properties [J]. Journal of Materials Chemistry,2006,16 (44):4361-1366.
    [234]H. Heli, H. Yadegari and A. Jabbari. Low-temperature synthesis of LiV3O8 nanosheets as an anode material with high power density for aqueous lithium-ion batteries [J]. Materials Chemistry and Physics,2011,126 (3):476-479.
    [235]C. Cheng, Z.H. Li, X.Y. Zhan, Q.Z. Xiao, G.T. Lei and X.D. Zhou. A macaroni-like Li1.2V3O8 nanomaterial with high capacity for aqueous rechargeable lithium batteries [J]. ElectrochimicaActa,2010,55 (15):4627-1631.
    [236]H. Ma, Z.Q. Yuan, F.Y. Cheng, J. Liang, Z.L. Tao and J. Chen. Synthesis and electrochemical properties of porous LiV3O8 as cathode materials for lithium-ion batteries [J]. Journal of Alloys and Compounds,2011,509 (20):6030-6035.
    [237]H.M. Liu, Y.G. Wang, W.S. Yang and H.S. Zhou. A large capacity of LiV3O8 cathode material for rechargeable lithium-based batteries [J]. Electrochimica Acta,2011,56 (3): 1392-1398.
    [238]S.H. Ju and Y.C. Kang. Morphological and electrochemical properties of LiV3O8 cathode powders prepared by spray pyrolysis [J]. Electrochimica Acta,2010,55 (20):6088-6092.
    [239]F. Bonino, S. Panero, M. Pasquali and G. Pistoia. Rechargeable lithium batteries based on Lii-.,V3O8 thin films [J]. Journal of Power Sources,1995,56 (2):193-196.
    [240]Q. Shi, R.Z. Hu, L.Z. Ouyang, M.Q. Zeng and M. Zhu. High-capacity LiV3O8 thin-film cathode with a mixed amorphous-nanocrystalline microstructure prepared by RF magnetron sputtering [J]. Electrochemistry Communications,2009,11 (11):2169-2172.
    [241]X.L. Li, P.P. Li, M. Luo, X.Y. Chen and J.H. Chen. Controllable solvo-hydrothermal electrodeposition of lithium vanadate uniform carnation-like nanostructure and their electrochemical performance [J]. Journal of Solid State Electrochemistry,2010,14 (7): 1325-1332.
    [242]Y.D. Cho, G.T.K. Fey and H.M. Kao. The effect of carbon coating thickness on the capacity of LiFePCVC composite cathodes [J]. Journal of Power Sources,2009,189 (1):256-262.
    [243]R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnik. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites [J]. Journal of The Electrochemical Society,2005,152 (3) A607-A610.
    [244]H.C. Shin, W.I. Cho and H. Jang. Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries [J]. Journal of Power Sources,2006, 159(2):1383-1388.
    [245]C.C. Chang and T.K. Chen. Tris(pentafluorophenyl) borane as an electrolyte additive for LiFePO4 batter)'[J]. Journal of Power Sources,2009,193 (2):834-840.
    [246]X.H. Rui, N. Ding, J. Liu, C. Li and C.H. Chen. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material [J]. Electrochimica Acta,2010, 55 (7):2384-2390.
    [247]A.P. Tang, X.Y. Wang, G.R. Xu, Z.H. Zhou and H.D. Nie. Determination of the chemical diffusion coefficient of lithium in Li3V2(PO4)3 [J]. Materials Letters,2009,63 (16): 1439-1441.
    [248]S.B. Tang. M.O. Lai and L. Lu. Study on Li-ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques [J]. Materials Chemistry and Physics,2008,111(1):149-153.
    [249]J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda and O. Yamamoto. Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering [J]. Electrochimica Acta,2009,54 (20):4631-4637.
    [250]R.H. Zeng, W.S. Li, D.S. Lu and Q.M. Huang. A study on insertion/removal kinetics of lithium ion in LiCrrMn2-xO4 by using powder microelectrode [J]. Journal of Power Sources, 2007,174 (2):592-597.
    [251]Y. Cui, X.L. Zhao and R.S. Guo. Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process [J]. Electrochimica Acta,2010,55 (3):922-926.
    [252]H. Huang, T. Faulkner, J. Barker and M.Y. Saidi. Lithium metal phosphates, power and automotive applications [J]. Journal of Power Sources,2009,189 (1):748-751.
    [253]H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu and H.Q. Wu. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique [J]. Journal of Power Sources,2006, 159(1):717-720.
    [254]C. Nakajima, T. Saito, T. Yamaya and M. Shimoda. The effects of chromium compounds on PVA-coated AN and GAP binder pyrolysis, and PVA-coated AN/GAP propellant combustion [J]. Fuel,1998,77 (4):321-326.
    [255]CM. Burba and R. Freeh. Vibrational spectroscopic studies of monoclinic and rhombohedral Li3V2(PO4), [J]. Solid State Ionics,2007,177 (39-40):3445-3454.
    [256]S.S. Zhang, K. Xu and T.R. Jow. The low temperature performance of Li-ion batteries [J]. Journal of Power Sources.2003,115 (1):137-140.
    [257]C.Y. Wan, M.C. Wu and D. Wu. Synthesis of spherical LiMn2O4 cathode material by dynamic sintering of spray-dried precursors [J]. Powder Technology,2010,199 (2): 154-158.
    [258]F. Yu. J.J. Zhang, Y.F. Yang and G.Z. Song. Porous micro-spherical aggregates of LiFePO4/C nanocomposites:A novel and simple template-free concept and synthesis via sol-gel-spray drying method [J]. Powder Technology,2010,195 (19):6873-6878.
    [259]F. Yu, J.J. Zhang, Y.F. Yang and G.Z. Song. Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO4@C nanocomposites [J]. Journal of Materials Chemistry,2009,19 (48):9121-9125.
    [260]K. Dokko, S. Koizumi, H. Nakano and K. Kanamura. Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K [J]. Journal of Materials Chemistry,2007,17 (45):4803-4810
    [261]K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari and J.J. Vittal. Storage performance of LiFePO4 nanoplates [J]. Journal of Materials Chemistry,2009,19 (5): 605-610.
    [262]D. Choi, D.H. Wang, I.T. Bae, J. Xiao, Z.M. Nie, W. Wang, V.V. Viswanathan. Y.J. Lee. J.G. Zhang, G.L. Graff, Z.G. Yang and J. Liu. LiMnPO4 nanoplate grown via solid-State reaction in molten hydrocarbon for Li-ion battery cathode [J]. Nano Letters,2010,10 (8): 2799-2805.
    [263]D.Y. Wang, H. Buqa, M. Crouzet, G. Deghenghi, T. Drezen, I. Exnar, N.H. Kwon, J.H. Miners, L. Poletto and M. Gratzel. High-performance, nano-structured LiMnPO4 synthesized via a polyol method [J]. Journal of Power Sources,2009,189 (1):624-628.
    [264]Y. Yang, C. Xie, R. Ruffo, H. Peng, D.K. Kim and Y. Cui. Single nanorod devices for battery diagnostics:A case study on LiMn2O4 [J]. Nano Letters,2009,9(12):4109-4114.
    [265]Y.Q. Song, S.S. Qin, Y.W. Zhang, W.Q. Gao and J.P. Liu. Large-scale porous hematite nanorod arrays:Direct growth on titanium foil and reversible lithium storage [J]. The Journal of Physical Chemistry C,2010,114 (49):21158-21164.
    [266]K.-I. Park, H.-M. Song, Y. Kim, S. Mho, W.I. Cho and I.-H. Yeo. Electrochemical preparation and characterization of ViOs/polyaniline composite film cathodes for Li battery [J]. Electrochimica Acta,2010,55 (27):8023-8029.
    [267]A.-M. Cao, J.-S. Hu, H.-P. Liang and L.-J. Wan. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries [J]. Angewandte Chemie International Edition,2005,44 (28):4391-4395.
    [268]P. Cui, Z.J. Jia, L.Y. Li and T. He. Study on the performance characteristics of Li-V-0 nanocomposite as cathode material for Li-ion batteries [J]. Electrochimica Acta,2011,56 (12):4571^575.
    [269]M. Dubarry, J. Gaubicher, P. Moreau and D. Guyomard. Formation of Lii+nV3O8/ β-Li1/3V2O5/C nanocomposites by carboreduction and the resulting improvement in Li capacity retention [J]. Journal of The Electrochemical Society,2006,153 (2):A295-A300.
    [270]A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R. Chowdari, H. Nithya and PC. Selvin. Synthesis and electrochemical studies on LiV3O8 [J]. Journal of Solid State Electrochemistry,2010,14(10):1847-1854.
    [271]A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R. Chowdari and P.C. Selvin. Energy storage studies of bare and doped vanadium pentoxide, (V)1.95M0.05)O5, M= Nb, Ta, for lithium ion batteries [J]. Energy& Environmental Science,2011,4 (5):1712-1725.
    [272]Y.J. Wei, C.-W. Ryu and K.-B. Kim. Cu-doped V2O5 as a high-energy density cathode material for rechargeable lithium batteries [J]. Journal of Alloys and Compounds,2008,459 (1-2):L13-L17.
    [273]M. Dubarry, J. Gaubicher, P. Moreau and D. Guyomard. Formation of Li1+nV3O8/ β-Li1/3V2O5/C nanocomposites by carboreduction and resulting improvements of the capacity retention [J]. Journal of Physics and Chemistry of Solids,2006,67 (5-6): 1312-1314.
    [274]S. Gopukumar, K.Y. Chung and K.B. Kim. Novel synthesis of layered LiNi1/2Mn1/2O2 as cathode material for lithium rechargeable cells [J]. Electrochimica Acta,2004,49 (5): 803-810.
    [275]S.R.S. Prabaharan, S. Ramesh, M.S. Michael and K.M. Begam. Characterization of soft-combustion-derived NASICON-type Li2Co2(MoO4)3 for lithium batteries [J]. Materials Chemistry and Physics,2004.87 (2-3):318-326.
    [276]J. Y. Xiang, J. P. Tu, Y. Q. Qiao, X. L. Wang, J. Zhong, D. Zhang and C.D. Gu. Electrochemical impedance analysis of a Hierarchical CuO electrode composed of self-assembled nanoplates [J]. Journal of Physical Chemistry C,2011,115 (5):2505-2513.
    [277]Z. Li, F. Du, X.F. Bie, D. Zhang, Y.M. Cai, X.R. Cui, C.Z. Wang, G. Chen and Y.J. Wei. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS [J]. The Journal of Physical Chemistry C,2010,114 (51):22751-22757.
    [278]K.M. Shaju, G.V.S. Rao and B.V.R. Chowdari. EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x= 0 and 1/3) [J]. Electrochimica Acta,2003.48 (18): 2691-2703.
    [279]W. Weppner and R.A. Huggins. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb [J]. Journal of The Electrochemical Society,1977,124 (10):1369-1578.
    [280]G. Yang, W.H. Hou, Z.Z. Sun and Q.J. Yan. A novel inorganic-rganic polymer electrolyte with a high conductivity:insertion of poly(ethylene) oxide into LiV3O8 in one step [J]. Journal of Materials Chemistry,2005,15 (13):1369-1374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700