锂电池纳米硫正极与凝胶聚合物电解质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单质硫理论比容量高,同时具有低成本、低毒性、环境友好等优点,可望成为新一代高能二次锂电池的正极材料。但是,单质硫作为正极材料也存在着一些问题,一方面单质硫所固有的电子绝缘性使其表现为电化学钝性;另一方面硫电极的放电中间产物多硫化物具有较高的溶解性,易造成活性物质的损失,并且破坏电池体系的循环稳定性。为了解决硫电极存在的关键问题,本文以不同形态的碳材料作为单质硫的载体,通过简单的化学沉积法制备了高容量单质硫-碳复合材料,该类材料导电性良好、电化学可逆性高。通过简单的静电纺织法制备高孔隙率的聚合物电解质膜,与离子液体电解液结合制备高安全性的凝胶聚合物电解质,能够有效抑制多硫化物在电解液中的溶解,提高锂硫电池的循环稳定性。
     分别以活性纳米碳和碳纳米纤维为单质硫的载体,通过化学沉积法制备了具有核壳结构的纳米碳-硫复合材料。活性纳米碳-硫复合材料与碳纳米纤维导电剂组成的电极首次放电容量高达1200mAh/g,50次循环以后保持为668mAh/g。碳纳米纤维-硫复合材料与羧甲基纤维素钠(CMC)+丁苯橡胶(SBR)粘结剂制备的电极首次放电容量达1313mAh/g,60次循环后仍然保持586mAh/g。高导电性的活性纳米碳与碳纳米纤维能够提高活性物质单质硫的导电性,碳纳米纤维能够为硫电极提供网状的导电网络结构。
     以高温碳化法制备多孔纳米碳和多孔碳纳米纤维,分别作为纳米硫的载体,通过简单的化学沉积法制备多孔纳米碳-硫复合物和多孔碳纳米纤维-硫复合物。以多孔纳米碳-硫复合材料为正极的锂电池在0.05C(1C=1672mA/g)下100次循环后的容量仍然保持为740mAh/g以上。硫含量为42%的多孔碳纳米纤维-硫复合物在0.05C(1C=1672mA/g)下30次循环后仍然保持其85%的容量。多孔纳米碳和多孔碳纳米纤维材料不但具有良好的导电结构,并具有较强的吸附能力能有效的阻住充放电过程中产生的多硫化物在电解液中溶解,从而提高电池性能。
     以氧化石墨烯为单质硫的载体,通过化学沉积法制备氧化石墨烯-硫复合材料。氧化石墨烯在热处理后具有更好的电导率,并且其独特的层状结构能够为硫提供良好的导电网络,有效的抑制多硫化物在电解液中的溶解,并能够缓冲电极充放电过程引起的体积变化。电池在0.1C(1C=1672mA/g)下首次放电容量为1000mAh/g,50次循环后容量保持954mAh/g。
     通过静电纺织法制备高孔隙率的聚合物电解质膜,并与不同的离子液体结合制备新型凝胶聚合物电解质。聚丙烯腈/聚甲基丙烯酸酯(PAN/PMMA)聚合物膜与离子液体N-甲基-N-丁基吡咯烷二(三氟甲基)酰亚胺(PYR_(14)TFSI)结合制备新型凝胶聚合物电解质应用于在锂/磷酸铁锂(Li/LiFePO_4)电池中,电池0.2C(1C=1672mA/g)首次放电容量高达134mAh/g,50次循环后保持其92%的容量;应用于锂/硫(Li/S)电池中,与传统有机电解液相比,容量得到极大的提高。以碳纳米纤维-硫复合物为正极和PAN/PMMA聚合物膜与电解液N-甲基-N-丁基哌啶二(三氟甲基磺酰)亚胺(PPR14TFSI):聚乙二醇二甲醚(PEGDME)(1:1)组成的凝胶聚合物电解质组成新型锂硫电池系统,电池在0.1C(1C=1672mA/g)下50次循环后容量仍能保持760mAh/g。
Elemental sulfur is a promising cathode material for the next generation ofhigh-specific-energy rechargeable lithium batteries due to its high theoretical specific capacity.In addition, sulfur is also inexpensive, nontoxic and environmentally benign. However, thelithium sulfur cell still faces several serious challenges. On the one hand, the low utilizationof active material sulfur due to the high electrical resistivity of elemental sulfur. On the otherhand, the rapid capacity loss due to the high solubility (in organic solvent electrolytes) of thepolysulfide ions that are formed during the discharge/charge processes. In order to addressthese challenges, various kinds of carbon materials have been used to accommodate sulfurand to prepare carbon-sulfur composites by simple chemical deposition. These carbon-sulfurcomposites here can overcome the challenges of sulfur as a cathode for lithium battery.Moreover, novel gel polymer electrolytes based on an electrospun polymer membraneincorporating with room-temperature ionic liquid were prepared here to suppress thedissolution of the polysufides generated during the discharge process and to improve the cyclestability of lithium sulfur cell.
     Carbon particle and carbon nanofiber supported carbon-sulfur composites were preparedby a chemical deposition method, respectively. The carbon particle-sulfur cathode withcarbon nanofiber as conductor exhibits an initial discharge capacity of1200mAh/g, andretains668mAh/g after50cycles. The carbon nanofiber-sulfur electrode prepared withcarboxy methyl cellulose (CMC) and styrene butadiene rubber (SBR) binder exhibits aspecific capacity of up to1313mAh/g at the initial discharge and a specific capacity of586mAh/g after60cycles. The carbon particle and carbon nanofiber can improve theconductivity of sulfur, carbon nanofiber can provide a more effective electronicallyconductive network for sulfur electrode.
     Porous carbon and porous carbon nanofiber were prepared by the carbonization of thepolymer mixture. Sulfur is uniformly incorporated into the porous carbon and porous carbonnanofiber via a new simple chemical deposition strategy. The novel porous carbon-sulfurcomposite maintains a stable discharge capacity of more than740mAh/g after100cycles at0.05C(1C=1672mA/g). The porous carbon nanofiber-sulfur nanocomposite with42wt%sulfur maintains85%of its initial capacity after30cycles at0.05C(1C=1672mA/g). Theporous carbon and carbon nanofiber provide an extremely high surface area to adsorb anddisperse sulfur and ameliorate its disadvantages, such as the insulating nature of sulfur and thesolubility of polysulfide intermediates in organic solvent based electrolytes.
     Sulfur was immobilized to graphene oxide to prepare graphene oxide-sulfur compositeby simple chemical deposition. The graphene oxides in the heat-treated composites have goodconductivity, extremely high surface-area, and provide a robust electron transport network.The graphene oxide network also accommodates the volume change of the electrode duringthe lithium-sulfur electrochemical reaction and effectively confines any polysulfides fromdissolving. The lithium sulfur cell exhibits a specific capacity of up to1000mAh/g at theinitial discharge and a specific capacity of954mAh/g after50cycles at0.1C(1C=1672mA/g).
     Poly(acrylonitrile)/poly(methyl methacrylate)(PAN/PMMA) membrane with highporosity was prepared by electrospinning technique, and novel gel polymer electrolytes basedon this fibrous PAN/PMMA activated with room temperature ionic liquid were prepared. Agel polymer electrolyte based on electrospun PAN/PMMA and ionic liquidN-methy-N-butylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR14TFSI) wasprepared and used for lithium/lithium iron phosphate(Li/LiFePO4) and lithium/sulfur(Li/S)cells. In Li/LiFePO4cell, it exhibits an initial discharge capacity of134mAh/g, and retainsretains92%of its initial discharge capacity after50cycles. In Li/S cell, it has higherdischarge capacity than that uses the traditional liquid electrolyte. A new lithium-sulfur cellsystem exhibits excellent performance with a unique combination of carbon nanofiber-sulfurelectrode and gel polymer electrolyte based on electrospun PAN/PMMA membrane andlithium bis (trifluoromethylsulfonyl) imide in N-methyl-N-butylpiperidiniumbis(trifluoromethanesulfonyl)imide (PPR14TFSI)-poly (ethylene glycol) dimethy ether(PPR_(14)TFSI-PEGDME,1:1, by weight) electrolyte. The discharge capacity of this cellremains at760mAh/g after50cycles.
引文
[1] Cairns E. J., Albertus P. Batteries for Electric and Hybrid-Electric Vehicles[J]. AnnualReview of Chemical and Biomolecular Engineering,2010,1(1):299-320
    [2] Armand M., Tarascon J. M. Building better batteries[J]. Nature,2008,451:652-657
    [3] Whittingham M. S. Lithium Batteries and Cathode Materials[J]. Chemical Reviews,2004,104(10):4271-4302
    [4]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社,2002
    [5] Tarascon J. M., Armand M. Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414:359-367
    [6]郭炳醌,李新海,杨松青.化学电源—电池原理及制造技术[M].湖南:中南工业大学出版社,2000
    [7] Yang J., Takeda Y., Imanishi N., et al. SiOx-based anodes for secondary lithiumbatteries[J]. Solid State Ionics,2002,152–153:125-129
    [8] Wang Y., Djerdj I., Smarsly B., et al. Antimony-Doped SnO2Nanopowders with HighCrystallinity for Lithium-Ion Battery Electrode[J]. Chemistry of Materials,2009,21(14):3202-3209
    [9] Ruffo R., Hong S. S., Chan C. K., et al. Impedance Analysis of Silicon Nanowire LithiumIon Battery Anodes[J]. The Journal of Physical Chemistry C,2009,113(26):11390-11398
    [10] Guo H., Zhao H., Yin C., et al. Si/SnSb alloy composite as high capacity anode materialsfor Li-ion batteries[J]. Journal of Alloys and Compounds,2006,426(1–2):277-280
    [11] Chan C. K., Patel R. N., O’Connell M. J., et al. Solution-Grown Silicon Nanowires forLithium-Ion Battery Anodes[J]. ACS Nano,2010,4(3):1443-1450
    [12] Jo M. R., Nam K. M., Lee Y., et al. Phosphidation of Li4Ti5O12nanoparticles and theirelectrochemical and biocompatible superiority for lithium rechargeable batteries[J].Chemical Communications,2011,47(41):11474-11476
    [13]郑洪河等.锂离子电池电解质[M].北京:化学工业出版社,2007
    [14] Croce F., Appetecchi G. B., Persi L., et al. Nanocomposite polymer electrolytes forlithium batteries[J]. Nature,1998,394:456-458
    [15] Stephan A. M. Review on gel polymer electrolytes for lithium batteries[J]. EuropeanPolymer Journal,2006,42(1):21-42
    [16] Croce F., Focarete M. L., Hassoun J., et al. A safe, high-rate and high-energy polymerlithium-ion battery based on gelled membranes prepared by electrospinning[J]. Energy&Environmental Science,2011,4(3):921-927
    [17] Caballero A., Hernán L., Morales J., et al. Enhancing the electrochemical properties ofLT-LiCoO2in lithium cells by doping with Mn[J]. Journal of Power Sources,2004,128(2):286-291
    [18]孔令宇,章福平,潘毅等. LiCoO2掺杂Na合成Li1-xNaxCoO2的研究[J].电池工业,2007,12(3):167-172
    [19] Wang Z., Liu L., Chen L., et al. Structural and electrochemical characterizations ofsurface-modified LiCoO2cathode materials for Li-ion batteries[J]. Solid State Ionics,2002,148(3–4):335-342
    [20]唐致远,李建刚,薛建军等. LiNiO2的制备与改性的探讨[J].电池,2001,31(1):10-13
    [21]吕东生,李伟善,刘煦等. LiMn2O4的容量衰减机理和结构稳定方法[J].电池工业,2004,9(5):244-246
    [22] Lin Y., Yang Y., Ma H., et al. Compressional Behavior of Bulk and Nanorod LiMn2O4under Nonhydrostatic Stress[J]. The Journal of Physical Chemistry C,2011,115(20):9844-9849
    [23] Hirayama M., Ido H., Kim K., et al. Dynamic Structural Changes at LiMn2O4/ElectrolyteInterface during Lithium Battery Reaction[J]. Journal of the American Chemical Society,2010,132(43):15268-15276
    [24] Hosono E., Kudo T., Honma I., et al. Synthesis of Single Crystalline Spinel LiMn2O4Nanowires for a Lithium Ion Battery with High Power Density[J]. Nano Letters,2009,9(3):1045-1051
    [25]米常焕,曹高劭,赵新兵.碳包覆LiFePO4的一步固相法制备及高温电化学性能[J].无机化学学报,2005,21(4):556-560
    [26] Islam M. S., Driscoll D. J., Fisher C. A. J., et al. Atomic-Scale Investigation of Defects,Dopants, and Lithium Transport in the LiFePO4Olivine-Type Battery Material[J].Chemistry of Materials,2005,17(20):5085-5092
    [27] Lou X., Zhang Y. Synthesis of LiFePO4/C cathode materials with both high-ratecapability and high tap density for lithium-ion batteries[J]. Journal of MaterialsChemistry,2011,21(12):4156-4160
    [28] Ohzuku T., Makimura Y. Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2forLithium-Ion Batteries[J]. Chemistry Letters,2001,30(7):642-643
    [29] Kam K. C., Doeff M. M. Aliovalent titanium substitution in layered mixed Li Ni-Mn-Cooxides for lithium battery applications[J]. Journal of Materials Chemistry,2011,21(27):9991-9993
    [30] Yamin H., Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell[J]. Journal ofPower Sources,1983,9(3):281-287
    [31] Yamin H., Penciner J., Gorenshtain A., et al. The electrochemical behavior ofpolysulfides in tetrahydrofuran[J]. Journal of Power Sources,1985,14(1–3):129-134
    [32] Yamin H., Gorenshtein A., Penciner J., et al. Lithium Sulfur Battery[J]. Journal of TheElectrochemical Society,1988,135(5):1045-1048
    [33] Peled E., Sternberg Y., Gorenshtein A., et al. Lithium-Sulfur Battery: Evaluation ofDioxolane-Based Electrolytes[J]. Journal of The Electrochemical Society,1989,136(6):1621-1625
    [34] Evans A., Montenegro M. I., Pletcher D. The mechanism for the cathodic reduction ofsulphur in dimethylformamide: low temperature voltammetry[J]. ElectrochemistryCommunications,2001,3(9):514-518
    [35] Tudron F. B., RAkridge J., Puglisi V. J. Lithium-sulphur rechargeable batteries:characteristics, state of development and applicability to powering portable electronics.in: Proceedings of the41st Power Sources Conference,2004, pp.341-344
    [36] Jeong S. S., Lim Y. T., Choi Y. J., et al. Electrochemical properties of lithium sulfur cellsusing PEO polymer electrolytes prepared under three different mixing conditions[J].Journal of Power Sources,2007,174(2):745-750
    [37] Ryu H.-S., Ahn H.-J., Kim K.-W., et al. Discharge process of Li/PVdF/S cells at roomtemperature[J]. Journal of Power Sources,2006,153(2):360-364
    [38] Wang Y., Huang Y., Wang W., et al. Structural change of the porous sulfur cathodeusing gelatin as a binder during discharge and charge[J]. Electrochimica Acta,2009,54(16):4062-4066
    [39] Shim J., Striebel K. A., Cairns E. J. The Lithium/Sulfur Rechargeable Cell[J]. Journal ofThe Electrochemical Society,2002,149(10): A1321-A1325
    [40] Cheon S.-E., Ko K.-S., Cho J.-H., et al. Rechargeable Lithium Sulfur Battery[J]. Journalof The Electrochemical Society,2003,150(6): A800-A805
    [41] Marmorstein D., Yu T. H., Striebel K. A., et al. Electrochemical performance oflithium/sulfur cells with three different polymer electrolytes[J]. Journal of PowerSources,2000,89(2):219-226
    [42] Dusheiko V. A., Lipkin M. S. Synthesis of sulfide cathodic materials and study of theirphysicochemical properties and electrochemical activity[J]. Journal of Power Sources,1995,54(2):264-267
    [43] Lai C.-H., Huang K.-W., Cheng J.-H., et al. Direct growth of high-rate capability andhigh capacity copper sulfide nanowire array cathodes for lithium-ion batteries[J]. Journalof Materials Chemistry,2010,20(32):6638-6645
    [44] Lai C.-H., Huang K.-W., Cheng J.-H., et al. Oriented growth of large-scale nickel sulfidenanowire arrays via a general solution route for lithium-ion battery cathodeapplications[J]. Journal of Materials Chemistry,2009,19(39):7277-7283
    [45]冯旭,何向明,蒲薇华等.锂电池正极材料FeS2[J].化学进展,2008,20(2/3):396-404
    [46] Montoro L. A., Rosolen J. M. Gelatin/DMSO: a new approach to enhancing theperformance of a pyrite electrode in a lithium battery[J]. Solid State Ionics,2003,159(3–4):233-240
    [47] Choi J.-W., Cheruvally G., Ahn H.-J., et al. Electrochemical characteristics of roomtemperature Li/FeS2batteries with natural pyrite cathode[J]. Journal of Power Sources,2006,163(1):158-165
    [48]段鹤,郑毓峰,张校刚等.水热法合成FeS2粉晶及其生长热动力学的研究[J].物理学报,2005,54(4):1659-1664
    [49] Yang Y., McDowell M. T., Jackson A., et al. New Nanostructured Li2S/SiliconRechargeable Battery with High Specific Energy[J]. Nano Letters,2010,10(4):1486-1491
    [50] Hassoun J., Scrosati B. A High-Performance Polymer Tin Sulfur Lithium Ion Battery[J].Angewandte Chemie International Edition,2010,49(13):2371-2374
    [51] Hassoun J., Sun Y.-K., Scrosati B. Rechargeable lithium sulfide electrode for a polymertin/sulfur lithium-ion battery[J]. Journal of Power Sources,2011,196(1):343-348
    [52] Takeuchi T., Sakaebe H., Kageyama H., et al. Preparation of electrochemically activelithium sulfide–carbon composites using spark-plasma-sintering process[J]. Journal ofPower Sources,2010,195(9):2928-2934
    [53] Oyama N., Tatsuma T., Sato T., et al. Dimercaptan-polyaniline composite electrodes forlithium batteries with high energy density[J]. Nature,1995,373:598-600
    [54] Matsumoto F., Ozaki M., Inatomi Y., et al. Studies on the Adsorption Behavior of2,5-Dimercapto-1,3,4-thiadiazole and2-Mercapto-5-methyl-1,3,4-thiadiazole at Goldand Copper Electrode Surfaces[J]. Langmuir,1999,15(3):857-865
    [55]唐致远,徐国祥.部分二硫代聚苯胺电极材料在锂电池中的应用[J].高分子材料科学与工程,2003,19(3):175-178
    [56]孙莞柠,应皆荣,黄震雷等.锂离子电池有机硫化物电极材料[J].化学进展,2009,21(9):1963-1968
    [57]蔡迎军,王维坤,赵景茂等.多硫化碳炔作为锂二次电池正极材料的研究[J].化工科技,2008,16(3):1-4
    [58]李琰,马志远,邢晨曦.锂电池正极材料多硫化碳炔的制备及性能研究[J].上海化工,2009,34(7):10-12
    [59]宁雅楠,王维坤,黄雅钦等.新型锂电池正极材料多硫代聚苯乙烯的制备[J].化工科技,2004,12(1):29-31
    [60]王维坤,王安邦,曹高平等.锂电池正极材料多硫化碳炔的电化学性能[J].应用化学,2005,22(4):367-371
    [61] Gorkovenko A, Skotheim T. A. Electroactive,energy-storing,highly crosslinked,polysulfide-containing, organic polymers and methods for making same.[P]. USA:US6201100,2001
    [62]王维坤,王安邦,曹高萍等.锂电池用正极材料多硫代苯的电化学性能[J].物理化学学报,2004,20(12):1440-1444
    [63] Kovalev I. P., Annenkov V. V., Carlson S. A., et al. Electroactive polymers of highsulfur content for use in electro-chemical cells[P]. USA: US6652440B1,2003
    [64] Sun M., Zhang S., Jiang T., et al. Nano-wire networks of sulfur–polypyrrole compositecathode materials for rechargeable lithium batteries[J]. ElectrochemistryCommunications,2008,10(12):1819-1822
    [65]王维坤,王安邦,曹高萍等.锂电池阴极材料多硫代聚苯撑的制备及电化学性能[J].高等学校化学学报,2005,26(5):918-921
    [66] Zhu X., Wen Z., Gu Z., et al. Electrochemical characterization and performanceimprovement of lithium/sulfur polymer batteries[J]. Journal of Power Sources,2005,139(1–2):269-273
    [67] Wang J., Yang J., Xie J., et al. A Novel Conductive Polymer–Sulfur Composite CathodeMaterial for Rechargeable Lithium Batteries[J]. Advanced Materials,2002,14(13-14):963-965
    [68] Wang J., Yang J., Wan C., et al. Sulfur Composite Cathode Materials for RechargeableLithium Batteries[J]. Advanced Functional Materials,2003,13(6):487-492
    [69]苑克国,王安邦,曹高萍等.新型锂电池正极材料多硫代聚苯胺的制备和电化学性能[J].高等学校化学学报,2005,26(11):2117-2121
    [70] Wu F., Wu S., Chen R., et al. Sulfur--Polythiophene Composite Cathode Materials forRechargeable Lithium Batteries[J]. Electrochemical and Solid-State Letters,2010,13(4):A29-A31
    [71] Wang J. L., Yang J., Xie J. Y., et al. Sulfur–carbon nano-composite as cathode forrechargeable lithium battery based on gel electrolyte[J]. ElectrochemistryCommunications,2002,4(6):499-502
    [72] Han S.-C., Song M.-S., Lee H., et al. Effect of Multiwalled Carbon Nanotubes onElectrochemical Properties of Lithium/Sulfur Rechargeable Batteries[J]. Journal of TheElectrochemical Society,2003,150(7): A889-A893
    [73] Wu F., Wu S. X., Chen R. J., et al. Electrochemical performance of sulfur compositecathode materials for rechargeable lithium batteries[J]. Chinese Chemical Letters,2009,20(10):1255-1258
    [74] Ji X., Lee K. T., Nazar L. F. A highly ordered nanostructured carbon-sulphur cathode forlithium-sulphur batteries[J]. Nature Materials,2009,8(6):500-506
    [75] Liang C., Dudney N. J., Howe J. Y. Hierarchically Structured Sulfur/CarbonNanocomposite Material for High-Energy Lithium Battery[J]. Chemistry of Materials,2009,21(19):4724-4730
    [76] Zhang B., Qin X., Li G. R., et al. Enhancement of long stability of sulfur cathode byencapsulating sulfur into micropores of carbon spheres[J]. Energy&EnvironmentalScience,2010,3(10):1531-1537
    [77] He G., Ji X., Nazar L. High "C" rate Li-S cathodes: sulfur imbibed bimodal porouscarbons[J]. Energy&Environmental Science,2011,4(8):2878-2883
    [78] Jayaprakash N., Shen J., Moganty S. S., et al. Porous Hollow Carbon@SulfurComposites for High-Power Lithium–Sulfur Batteries[J]. Angewandte Chemie,2011,123(26):6026-6030
    [79] Choi Y.-J., Kim K.-W., Ahn H.-J., et al. Improvement of cycle property of sulfurelectrode for lithium/sulfur battery[J]. Journal of Alloys and Compounds,2008,449(1–2):313-316
    [80]郑伟,胡信国,张翠芬.新型锂蓄电池正极复合材料的制备和电化学性能研究[J].稀有金属材料与工程,2006,35(8):1223-1227
    [81]郑伟,胡信国,张翠芬.胶态电解质锂硫电池电化学性能研究[J].电池工业,2005,10(6):336-339
    [82] Yuan L., Yuan H., Qiu X., et al. Improvement of cycle property of sulfur-coatedmulti-walled carbon nanotubes composite cathode for lithium/sulfur batteries[J]. Journalof Power Sources,2009,189(2):1141-1146
    [83] Yin L., Wang J., Yang J., et al. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNTcomposite cathode material for high-rate rechargeable lithium/sulfur batteries[J]. Journalof Materials Chemistry,2011,21(19):
    [84] Wei W., Wang J., Zhou L., et al. CNT enhanced sulfur composite cathode material forhigh rate lithium battery[J]. Electrochemistry Communications,2011,13(5):399-402
    [85] Cao Y., Li X., Aksay I. A., et al. Sandwich-type functionalized graphene sheet-sulfurnanocomposite for rechargeable lithium batteries[J]. Physical Chemistry ChemicalPhysics,2011,13(17):7660-7665
    [86] Wang H., Yang Y., Liang Y., et al. Graphene-Wrapped Sulfur Particles as aRechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and CyclingStability[J]. Nano Letters,2011,11(7):2644-2647
    [87] Li S., Xie M., Liu J., et al. Layer Structured Sulfur/Expanded Graphite Composite asCathode for Lithium Battery[J]. Electrochemical and Solid-State Letters,2011,14(7):A105-A107
    [88] Wang J.-Z., Lu L., Choucair M., et al. Sulfur-graphene composite for rechargeablelithium batteries[J]. Journal of Power Sources,2011,196(16):7030-7034
    [89] Choi Y.-J., Chung Y.-D., Baek C.-Y., et al. Effects of carbon coating on theelectrochemical properties of sulfur cathode for lithium/sulfur cell[J]. Journal of PowerSources,2008,184(2):548-552
    [90] Choi J.-W., Kim J.-K., Cheruvally G., et al. Rechargeable lithium/sulfur battery withsuitable mixed liquid electrolytes[J]. Electrochimica Acta,2007,52(5):2075-2082
    [91] Lee Y. M., Choi N.-S., Park J. H., et al. Electrochemical performance of lithium/sulfurbatteries with protected Li anodes[J]. Journal of Power Sources,2003,119–121(0):964-972
    [92] Zheng W., Liu Y. W., Hu X. G., et al. Novel nanosized adsorbing sulfur compositecathode materials for the advanced secondary lithium batteries[J]. Electrochimica Acta,2006,51(7):1330-1335
    [93] Zhang B., Lai C., Zhou Z., et al. Preparation and electrochemical properties ofsulfur–acetylene black composites as cathode materials[J]. Electrochimica Acta,2009,54(14):3708-3713
    [94] Wang J., Chew S. Y., Zhao Z. W., et al. Sulfur–mesoporous carbon composites inconjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries[J].Carbon,2008,46(2):229-235
    [95] Wang C., Chen J., Shi Y., et al. Preparation and performance of a core–shellcarbon/sulfur material for lithium/sulfur battery[J]. Electrochimica Acta,2010,55(23):7010-7015
    [96] Chen J., Jia X., She Q., et al. The preparation of nano-sulfur/MWCNTs and itselectrochemical performance[J]. Electrochimica Acta,2010,55(27):8062-8066
    [97] Chang D.-R., Lee S.-H., Kim S.-W., et al. Binary electrolyte based on tetra(ethyleneglycol) dimethyl ether and1,3-dioxolane for lithium–sulfur battery[J]. Journal of PowerSources,2002,112(2):452-460
    [98] Kim S., Jung Y., Lim H. S. The effect of solvent component on the dischargeperformance of Lithium–sulfur cell containing various organic electrolytes[J].Electrochimica Acta,2004,50(2–3):889-892
    [99]余仲宝,王维坤,王安邦等.电解液对硫电极电化学性能的影响[J].电池,2006,36(1):3-4
    [100]苑克国,王安邦,余仲宝等.1,3-二氧戊环基LiCF3SO3电解液对锂硫电池正极材料单质硫的电化学性能影响[J].高等学校化学学报,2006,27(9):1738-1741
    [101] Shin J. H., Cairns E. J. N-Methyl-(n-butyl)pyrrolidiniumbis(trifluoromethanesulfonyl)imide-LiTFSI–poly(ethylene glycol) dimethyl ethermixture as a Li/S cell electrolyte[J]. Journal of Power Sources,2008,177(2):537-545
    [102] Yuan L. X., Feng J. K., Ai X. P., et al. Improved dischargeability and reversibility ofsulfur cathode in a novel ionic liquid electrolyte[J]. Electrochemistry Communications,2006,8(4):610-614
    [103] Guerfi A., Duchesne S., Kobayashi Y., et al. LiFePO4and graphite electrodes with ionicliquids based on bis(fluorosulfonyl)imide (FSI) for Li-ion batteries[J]. Journal of PowerSources,2008,175(2):866-873
    [104] Markevich E., Baranchugov V., Aurbach D. On the possibility of using ionic liquids aselectrolyte solutions for rechargeable5V Li ion batteries[J]. ElectrochemistryCommunications,2006,8(8):1331-1334
    [105] Ishikawa M., Sugimoto T., Kikuta M., et al. Pure ionic liquid electrolytes compatiblewith a graphitized carbon negative electrode in rechargeable lithium-ion batteries[J].Journal of Power Sources,2006,162(1):658-662
    [106] Garcia B., Lavallée S., Perron G., et al. Room temperature molten salts as lithiumbattery electrolyte[J]. Electrochimica Acta,2004,49(26):4583-4588
    [107] Borgel V., Markevich E., Aurbach D., et al. On the application of ionic liquids forrechargeable Li batteries: High voltage systems[J]. Journal of Power Sources,2009,189(1):331-336
    [108] Zhang Z., Zhou H., Yang L., et al. Asymmetrical dicationic ionic liquids based on bothimidazolium and aliphatic ammonium as potential electrolyte additives applied to lithiumsecondary batteries[J]. Electrochimica Acta,2008,53(14):4833-4838
    [109] Egashira M., Tanaka-Nakagawa M., Watanabe I., et al. Charge–discharge and hightemperature reaction of LiCoO2in ionic liquid electrolytes based on cyano-substitutedquaternary ammonium cation[J]. Journal of Power Sources,2006,160(2):1387-1390
    [110] Li Y. J., Wu F., Chen R. J. Synthesis and characterization of mixing soft-segmentedwaterborne polyurethane polymer electrolyte with room temperature ionic liquid[J].Chinese Chemical Letters,2009,20(5):519-522
    [111] Kim H., Nguyen D. Q., Bae H. W., et al. Effect of ether group on the electrochemicalstability of zwitterionic imidazolium compounds[J]. Electrochemistry Communications,2008,10(11):1761-1764
    [112] Nguyen D. Q., Bae H. W., Jeon E. H., et al. Zwitterionic imidazolium compounds withhigh cathodic stability as additives for lithium battery electrolytes[J]. Journal of PowerSources,2008,183(1):303-309
    [113] Zhao L., Yamaki J.-i., Egashira M. Analysis of SEI formed with cyano-containingimidazolium-based ionic liquid electrolyte in lithium secondary batteries[J]. Journal ofPower Sources,2007,174(2):352-358
    [114] Ferrari S., Quartarone E., Mustarelli P., et al. A binary ionic liquid system composed ofN-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide andlithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithiumbatteries[J]. Journal of Power Sources,2009,194(1):45-50
    [115] Byrne N., Howlett P. C., MacFarlane D. R., et al. Effect of zwitterion on the lithiumsolid electrolyte interphase in ionic liquid electrolytes[J]. Journal of Power Sources,2008,184(1):288-296
    [116] Fernicola A., Croce F., Scrosati B., et al. LiTFSI-BEPyTFSI as an improved ionicliquid electrolyte for rechargeable lithium batteries[J]. Journal of Power Sources,2007,174(1):342-348
    [117] Appetecchi G. B., Montanino M., Balducci A., et al. Lithium insertion in graphite fromternary ionic liquid-lithium salt electrolytes: I. Electrochemical characterization of theelectrolytes[J]. Journal of Power Sources,2009,192(2):599-605
    [118] Chew S. Y., Sun J., Wang J., et al. Lithium-polymer battery based on an ionicliquid–polymer electrolyte composite for room temperature applications[J].Electrochimica Acta,2008,53(22):6460-6463
    [119] Sirisopanaporn C., Fernicola A., Scrosati B. New, ionic liquid-based membranes forlithium battery application[J]. Journal of Power Sources,2009,186(2):490-495
    [120] Shin J. H., Basak P., Kerr J. B., et al. Rechargeable Li/LiFePO4cells usingN-methyl-N-butyl pyrrolidinium bis(trifluoromethane sulfonyl)imide–LiTFSI electrolyteincorporating polymer additives[J]. Electrochimica Acta,2008,54(2):410-414
    [121] Zheng H., Li B., Fu Y., et al. Compatibility of quaternary ammonium-based ionic liquidelectrolytes with electrodes in lithium ion batteries[J]. Electrochimica Acta,2006,52(4):1556-1562
    [122] Zheng H., Qin J., Zhao Y., et al. Temperature dependence of the electrochemicalbehavior of LiCoO2in quaternary ammonium-based ionic liquid electrolyte[J]. SolidState Ionics,2005,176(29–30):2219-2226
    [123] Egashira M., Okada S., Yamaki J.-i., et al. The preparation of quaternaryammonium-based ionic liquid containing a cyano group and its properties in a lithiumbattery electrolyte[J]. Journal of Power Sources,2004,138(1–2):240-244
    [124] Marom R., Amalraj S. F., Leifer N., et al. A review of advanced and practical lithiumbattery materials[J]. Journal of Materials Chemistry,2011,21(27):9938-9954
    [125] Scrosati B., Hassoun J., Sun Y.-K. Lithium-ion batteries. A look into the future[J].Energy&Environmental Science,2011,4(9):3287-3295
    [126] Ji X., Nazar L. F. Advances in Li-S batteries[J]. Journal of Materials Chemistry,2010,20(44):9821-9826
    [127] Shin J. H., Cairns E. J. Characterization of N-Methyl-N-ButylpyrrolidiniumBis(trifluoromethanesulfonyl)imide-LiTFSI-Tetra(ethylene glycol) Dimethyl EtherMixtures as a Li Metal Cell Electrolyte[J]. Journal of The Electrochemical Society,2008,155(5): A368-A373
    [128] Narayanan S. R., Shen D. H., Surampudi S., et al. Electrochemical ImpedanceSpectroscopy of Lithium-Titanium Disulfide Rechargeable Cells[J]. Journal of TheElectrochemical Society,1993,140(7):1854-1861
    [129] Wang W., Wang Y., Huang Y., et al. The electrochemical performance oflithium–sulfur batteries with LiClO4DOL/DME electrolyte[J]. Journal of AppliedElectrochemistry,2010,40(2):321-325
    [130] Cheon S.-E., Choi S.-S., Han J.-S., et al. Capacity Fading Mechanisms on Cycling aHigh-Capacity Secondary Sulfur Cathode[J]. Journal of The Electrochemical Society,2004,151(12): A2067-A2073
    [131] Lai C., Gao X. P., Zhang B., et al. Synthesis and Electrochemical Performance ofSulfur/Highly Porous Carbon Composites[J]. The Journal of Physical Chemistry C,2009,113(11):4712-4716
    [132] Sun J., Huang Y., Wang W., et al. Application of gelatin as a binder for the sulfurcathode in lithium–sulfur batteries[J]. Electrochimica Acta,2008,53(24):7084-7088
    [133] Chen Z., Christensen L., Dahn J. R. Comparison of PVDF and PVDF-TFE-P as Bindersfor Electrode Materials Showing Large Volume Changes in Lithium-Ion Batteries[J].Journal of The Electrochemical Society,2003,150(8): A1073-A1078
    [134] Chen Z., Christensen L., Dahn J. R. Large-volume-change electrodes for Li-ionbatteries of amorphous alloy particles held by elastomeric tethers[J]. ElectrochemistryCommunications,2003,5(11):919-923
    [135] Tobishima S.-I., Yamamoto H., Matsuda M. Study on the reduction species of sulfur byalkali metals in nonaqueous solvents[J]. Electrochimica Acta,1997,42(6):1019-1029
    [136] Choi Y. S., Kim S., Choi S. S., et al. Effect of cathode component on the energy densityof lithium–sulfur battery[J]. Electrochimica Acta,2004,50(2–3):833-835
    [137] Zheng W., Hu X. G., Zhang C. F. Electrochemical Properties of Rechargeable LithiumBatteries with Sulfur-Containing Composite Cathode Materials[J]. Electrochemical andSolid-State Letters,2006,9(7): A364-A367
    [138] Han D.-H., Kim B.-S., Choi S.-J., et al. Time-Resolved In Situ SpectroelectrochemicalStudy on Reduction of Sulfur in N,N[sup [prime]]-Dimethylformamide[J]. Journal ofThe Electrochemical Society,2004,151(9): E283-E290
    [139] Sun X., Angell C. A. Doped sulfone electrolytes for high voltage Li-ion cellapplications[J]. Electrochemistry Communications,2009,11(7):1418-1421
    [140] Yu X., Xie J., Li Y., et al. Stable-cycle and high-capacity conductive sulfur-containingcathode materials for rechargeable lithium batteries[J]. Journal of Power Sources,2005,146(1–2):335-339
    [141] Liang X., Liu Y., Wen Z., et al. A nano-structured and highly orderedpolypyrrole-sulfur cathode for lithium–sulfur batteries[J]. Journal of Power Sources,2011,196(16):6951-6955
    [142] Yu X., Xie J., Yang J., et al. All solid-state rechargeable lithium cells based onnano-sulfur composite cathodes[J]. Journal of Power Sources,2004,132(1–2):181-186
    [143] Nagao M., Hayashi A., Tatsumisago M. Sulfur–carbon composite electrode forall-solid-state Li/S battery with Li2S–P2S5solid electrolyte[J]. Electrochimica Acta,2011,56(17):6055-6059
    [144] Kim C., Jeong Y. I., Ngoc B. T. N., et al. Synthesis and Characterization of PorousCarbon Nanofibers with Hollow Cores Through the Thermal Treatment of ElectrospunCopolymeric Nanofiber Webs[J]. Small,2007,3(1):91-95
    [145] Li H., Wang Z., Chen L., et al. Research on Advanced Materials for Li-ion Batteries[J].Advanced Materials,2009,21(45):4593-4607
    [146] Goodenough J. B., Kim Y. Challenges for Rechargeable Li Batteries[J]. Chemistry ofMaterials,2009,22(3):587-603
    [147] Manthiram A., Vadivel Murugan A., Sarkar A., et al. Nanostructured electrodematerials for electrochemical energy storage and conversion[J]. Energy&EnvironmentalScience,2008,1(6):621-638
    [148] Kolosnitsyn V., Karaseva E. Lithium-sulfur batteries: Problems and solutions[J].Russian Journal of Electrochemistry,2008,44(5):506-509
    [149] Jung Y., Kim S. New approaches to improve cycle life characteristics of lithium-sulfurcells[J]. Electrochem. Commun.,2007,9(2):249-254
    [150] Thavasi V., Singh G., Ramakrishna S. Electrospun nanofibers in energy andenvironmental applications[J]. Energy&Environmental Science,2008,1(2):205-221
    [151] Hirata M., Gotou T., Horiuchi S., et al. Thin-film particles of graphite oxide1::High-yield synthesis and flexibility of the particles[J]. Carbon,2004,42(14):2929-2937
    [152] Ji L., Tan Z., Kuykendall T. R., et al. Fe3O4nanoparticle-integrated graphene sheets forhigh-performance half and full lithium ion cells[J]. Physical Chemistry ChemicalPhysics,2011,13(15):7170-7177
    [153] Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set[J]. Physical Review B,1996,54(16):11169-11186
    [154] Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation MadeSimple[J]. Physical Review Letters,1996,77(18):3865-3868
    [155] Bl chl P. E. Projector augmented-wave method[J]. Physical Review B,1994,50(24):17953-17979
    [156] Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wavemethod[J]. Physical Review B,1999,59(3):1758-1775
    [157] Skytt P., Glans P., Mancini D. C., et al. Angle-resolved soft-x-ray fluorescence andabsorption study of graphite[J]. Physical Review B,1994,50(15):10457-10461
    [158] Chen W., Yan L., Bangal P. R. Chemical Reduction of Graphene Oxide to Graphene bySulfur-Containing Compounds[J]. The Journal of Physical Chemistry C,2010,114(47):19885-19890
    [159] Pasquali L., Terzi F., Montecchi M., et al. Adsorption of3,4-ethylenedioxythiophene(EDOT) on noble metal surfaces: A photoemission and X-ray absorption study[J].Journal of Electron Spectroscopy and Related Phenomena,2009,172(1–3):114-119
    [160] Li Z. H., Zhang H. P., Zhang P., et al. Effects of the porous structure on conductivity ofnanocomposite polymer electrolyte for lithium ion batteries[J]. Journal of MembraneScience,2008,322(2):416-422
    [161] Pu W., He X., Wang L., et al. Preparation of PVDF–HFP microporous membrane forLi-ion batteries by phase inversion[J]. Journal of Membrane Science,2006,272(1–2):11-14
    [162] Dong Z., Kennedy S. J., Wu Y. Electrospinning materials for energy-relatedapplications and devices[J]. Journal of Power Sources,2011,196(11):4886-4904
    [163] Cheruvally G., Kim J.-K., Choi J.-W., et al. Electrospun polymer membrane activatedwith room temperature ionic liquid: Novel polymer electrolytes for lithium batteries[J].Journal of Power Sources,2007,172(2):863-869
    [164] Raghavan P., Zhao X., Shin C., et al. Preparation and electrochemical characterizationof polymer electrolytes based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes forlithium batteries[J]. Journal of Power Sources,2010,195(18):6088-6094
    [165] Yokoyama Y., Hattori S., Yoshikawa C., et al. Novel wet electrospinning system forfabrication of spongiform nanofiber3-dimensional fabric[J]. Materials Letters,2009,63(9–10):754-756
    [166] Appetecchi G. B., Montanino M., Carewska M., et al. Chemical–physical properties ofbis(perfluoroalkylsulfonyl)imide-based ionic liquids[J]. Electrochimica Acta,2011,56(3):1300-1307
    [167] Fang S., Jin Y., Yang L., et al. Functionalized ionic liquids based on quaternaryammonium cations with three or four ether groups as new electrolytes for lithiumbattery[J]. Electrochimica Acta,2011,56(12):4663-4671
    [168] Fang S., Zhang Z., Jin Y., et al. New functionalized ionic liquids based onpyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithiumbattery[J]. Journal of Power Sources,2011,196(13):5637-5644
    [169] Choi J.-W., Cheruvally G., Kim Y.-H., et al. Poly(ethylene oxide)-based polymerelectrolyte incorporating room-temperature ionic liquid for lithium batteries[J]. SolidState Ionics,2007,178(19–20):1235-1241
    [170] Liao Y., Rao M., Li W., et al. Improvement in ionic conductivity of self-supportedP(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries[J].Electrochimica Acta,2009,54(26):6396-6402
    [171] Rao M., Liu J., Li W., et al. Polyethylene-supported poly(acrylonitrile-co-methylmethacrylate)/nano-Al2O3microporous composite polymer electrolyte for lithium ionbattery[J]. Journal of Solid State Electrochemistry,2010,14(2):255-261
    [172] Rao M. M., Liu J. S., Li W. S., et al. Performance improvement ofpoly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate)[J]. Journal ofPower Sources,2009,189(1):711-715
    [173] Rao M. M., Liu J. S., Li W. S., et al. Preparation and performance analysis ofPE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion batteryapplication[J]. Journal of Membrane Science,2008,322(2):314-319
    [174] Zhou D. Y., Wang G. Z., Li W. S., et al. Preparation and performances of porouspolyacrylonitrile–methyl methacrylate membrane for lithium-ion batteries[J]. Journal ofPower Sources,2008,184(2):477-480
    [175] Choi S. W., Kim J. R., Jo S. M., et al. Electrochemical and Spectroscopic Properties ofElectrospun PAN-Based Fibrous Polymer Electrolytes[J]. Journal of TheElectrochemical Society,2005,152(5): A989-A995
    [176] Xiao Q., Li Z., Gao D., et al. A novel sandwiched membrane as polymer electrolyte forapplication in lithium-ion battery[J]. Journal of Membrane Science,2009,326(2):260-264
    [177] Kim J. R., Choi S. W., Jo S. M., et al. Electrospun PVdF-based fibrous polymerelectrolytes for lithium ion polymer batteries[J]. Electrochimica Acta,2004,50(1):69-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700