锂离子电池用钛酸锂负极材料及5V镍锰酸锂正极材料的合成与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,锂离子电池在能量密度,倍率性能等方面取得了极大的进步,从而逐渐占据了便携式电子设备的消费市场,并且被认为是最有希望成为电动汽车、混合动力汽车的首选电源体系。本论文旨在于制备高比容量、循环稳定、性能优良的锂离子电池的关键电极材料,主要采用了室温充放电、循环伏安等测试方法,以及XRD、 SEM对材料进行表征。
     钛酸锂Li4Ti5O12充放电过程中体积变化小,循环性能非常优异,但由于本身电位较高,约为1.5V,作为负极材料时,正极材料电位要求尽可能高为好。尖晶石型5V正极材料LiNio.5Mn1.5O4电位约为4.7V,以LiNio.5Mn1.5O4和Li4Ti5O12组成电池,电池电压适中,循环性能好。本文选取Li4Ti5O12和LiNio.5Mn1.5O4为研究对象,对其合成与改性进行系统研究,并将其组成电池体系,研究其电化学性能。
     本文针对Li4Ti5O12材料倍率性能差这一瓶颈问题,以降低材料合成温度和时间,减小材料粒径为目标,研发了湿式及固相煅烧合成工艺。
     首先通过锂源和钛源的筛选得出以LiOH和Ti02为原料能够获得最好的性能。考察了不同烧结温度、烧结时间对钛酸锂结构和性能的影响,750℃下烧结8h获得最佳的电化学性能。研究了Li4Ti5O12的倍率性能和循环性能。在0.5C充放电倍率下,Li4Ti5O12可逆容量达165.5mAh/g,在20C、30C的大倍率充放电条件下,材料仍能拥有131mAh/g、118mAh/g的可逆容量。
     接下来,以通过提高电子导电率改善材料倍率性能为目标,研究了以Mg、Ta为原料的Li4Ti5O12掺杂改性研究。
     考察了不同Mg含量掺杂对Li4Ti5O12结构的影响,XRD分析表明,在Mg掺入量较高时,Li4Ti5O12中会有Li2MgTi308的存在,说明Mg存在时阻止了高温过程中Li盐的扩散,通过对比不同掺入量材料的晶胞参数发现掺入Mg后引起Li4Ti5O12晶胞变大。通过SEM形貌分析发现掺Mg后Li4Ti5O12颗粒变化不大。充放电测试表明,Mg掺入量越多材料的充放电性能越差,而且掺Mg后材料循环性能变差,说明Mg会引起Li4Ti5O12较大的晶格畸变,会带来不利的影响。掺杂Mg0.05的LTO (Li4Ti5012)20C高倍率放电容量为152.1mAh/g;掺杂Mg0.02和Mg0.1的20C放电容量为分别为138.3mAh/g和120.6mAh/g。考察了不同Ta含量掺杂对Li4Ti5O12结构的影响,XRD分析表明,选用Ta5+离子取代Ti4+,有效掺杂后增大晶胞常数,但未引起尖晶石结构的变化;掺杂少量Ta5+离子后材料充放电过程中的电荷转移阻抗显著减小,有利于克服充放电过程的动力学限制,降低电池极化,提高了材料的可逆容量和循环性能。掺杂少量离子半径较Ti4+大的Ta5+离子,有利于形成半径较大的空隙,使Li+可快速嵌入和脱出,同时提高了材料的离子导电性和电子导电性,掺杂后获得了较好的可逆容量和循环性能。
     尖晶石型的锂离子正极材料LiNi0.5Mn1.5O4具有4.7V的高电压放电平台,且具有较高的充放电比容量,表现出了优良的电化学性能,逐渐成为当今正极材料研究的一个热点。采用氢氧化物控制结晶法合成Ni0.25Mn0.75(OH)2时,主要探讨前躯体的合成条件对形貌、粒度、振实比重、比表面积等物理性能的影响。pH值、氨水含量对前躯体微观晶粒形貌影响显著,提高pH值和合成温度,增加反应溶液中的氨水含量,有利于提高前躯体的振实比重,减小比表面积。将前驱体Ni0.25Mn0.75(OH)2与Li2CO3混合,焙烧温度为850℃,焙烧保温时间24h,Li/(Ni+Mn)=0.55。此条件下合成的LiNi0.5Mn1.5O4材料在3.5-5.0V的电压区间,0.2C的充放电倍率下的首次放电比容量达128mAh/g,30次循环后容量保持率为98.4%。
     对LiNi0.5Mn1.5O4正极材料进行A13+和F双掺杂,并研究了双掺杂对LiNi0.5Mn1.5O4性能的影响。实验结果表明,A13+和F-双掺杂对材料的微观结构与表面形貌均没有影响。在阳离子总数不变的前提下,进行双掺杂能显著提升材料的循环稳定性;而引入了阳离子空位后不仅改善了循环稳定性而且大大提高了其倍率性能。倍率性能提升的原因在于空位的存在,减少了锂离子脱嵌时的阻力,增大了电化学反应能力,提高了固相扩散系数。
     组装成新型的电池体系LiNi0.45Mn1.45Al0.1O3.95F0.05/Li3.95Mg0.05Ti5O12,并测试了其电化学性能。20C以下倍率充电具有很强的实际应用价值,放电容量高达140mAh/g。以1C的倍率对LiNi0.45Mn1.45Al0.1O3.95F0.05/Li3.95Mg0.05Ti5O12电池体系进行恒电流充放电测试,以L13.95Mg0.05Ti5O12的活性物质计算,以20C的倍率放电时,放电比容量为141mAh/g。循环200次后,容量保持率为90%,是比较有前途的电池体系之一。
During recent years, lithium ion battery technology has made great progress in terms of energy density and power capability even higher than primary batteries. Thus, lithium ion batteries have rapidly conquered the consumer market of advanced portable electronics and are now considered as the most promising power sources for future electric vehicles (EVs), hybrid EVs and plug-in hybrid EVs. The purpose of the experiment is to synthesize high voltage materials with high specific capacity, steady cyclability, and good high rate cycle performance. The main testing methods include constant current charge-discharge test, cycle voltammagram (CV) and X-ray Diffraction (XRD) as well as scan electron microscope (SEM).
     Lithium titanate Li4Ti5O12due to the small volume change during the charging and discharging cycle performance is very execellent, but because of its high potential of about1.5V, as the anode materials, cathode materials for potential requirement as high as possible as well.5V spinel LiNi0.5Mn1.5O4is one of the most promising and attractive cathodes because of its acceptable stability, good cycling performance and high dominant potential plateau at around4.7V. It has been expected that the3V LiNi0.5Mn1.5O4/Li4Ti5O12cells exhibited good cycling performance, flatness in operating voltage and high rate capability.
     Due to the poor rate performance of Li4Ti5O12materials, and aiming at decreasing calcined temperature and reducing particle size, the wet type and solid state calcination process was developed, the effect of type of raw materials, calcined temperature and alcined time on the structure and properties of materials was studied. The Li4Ti5O12with small particle size and good rate performance was calcined. Aiming at improving the electronic conductivity of Li4Ti5O12, Mg and Ta doping Li4Ti5O12was prepared and studied.
     The LiOH and anatase TiO2were chosen as the raw material to get the best performance. The influence of sintering temperature and time were studied and the results showed that the optimal performance could be achieved by sintering at750℃for8hours. Its reversible capacity was165mAh/g(0.5C),131mAh/g (20C) and118mAh/g(30C).
     Mg and Ta were adopted to improve electrochemical performance of Li4Ti5O12. The X-Ray Diffraction test indicated that Mg doping causesd the lattice parameters of Li4Ti5O12to become larger and produce Li2MgTi3O8which has negative effect on material conductivity and Li ion diffusion.The capacity of Li3.95Mg0.05Ti5O12was152.1mAh/g at20C rate and Li398Mgo.o2Ti5O12and Li3.9Mg0.1Ti5O12was138.3mAh/g and120.6mAh/g. Mg and Ta doping can create Ti3+/Ti4+which increase material conductivity.
     As the cathode material of lithium ion batteries, cubic spinel LiNi0.5Mn1.5O4shows excellent electrochemical performance, such as high discharge plateau at4.7V and high energy density, and it is emerging as an active research topic. Ni0.25Mno.75(OH)2was also synthesized by co-precipitated metal hydroxide by controlling crystallization. The effect of precursor operating conditions on morphology, particle size, tap density and specific surface area was investigated. PH and ammonia content significantly influenced micro-morphology of precursor. With increasing pH, preparing temperature and ammonia content in reaction solution, tap density of precursor was increased and specific surface area was decreased. Meanwhile, influence of sintering temperature and sintering atmosphere of lithiation sintering on material performance was investigated. The optimized sintering conditions were obtained as follows:At the elevating rate of100℃/h, the material was sintered at850℃for24h. The discharge capacity can be reached128mAh/g (0.2C) in the range of3.5V-5.0V and the capacity retention reached98.4%after30cycles.
     It is found that the Al and F can enter into the lattice of material. The method of Al3+and F co-doping was used to improve the cycling stability of LiNi0.5Mn1.5O4cathode material and the effects of substitution of different transition metal elements by Al3+and Al3+content were investigated. The studies showed that Al3+and F co-doping did not change the structure of material, and significantly improved the cycling stability and rate capability. CV and EIS measurements showed that the enhancement of rate performance was due to the existence of vacancies, which reduced the resistance of lithium ion deintercalation and improved solid diffusion coefficient and the electrochemical activity.
     The LiNi0.45Mn1.45Al0.1O3.95F0.05/Li3.95Mg0.05Ti5O12full cell system was also investigated. When the mass ratio of the initial discharge capacity under1C rate was141mAh/g, and after200cycles, with the capacity retention rate about90%.
引文
1. Yang S, Feng X, Zhi L, et al. Nanographene-Constructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage[J]. Adv. Mater.,2010,22:838-842.
    2. Yoshio M, Wang H, Fukuda K, et al. Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium-Ion Battery Anode Material[J]. J. Electrochem. Soc.,2000,147:1245-1250.
    3. Yoshio M, Wang H, Fukuda K. Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material [J]. Angew. Chem.,2003,115: 4335-4338.
    4. Yoshio M, Wang H, Fukuda K, et al. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere [J]. J. Mater. Chem.,2004,14:1754-1758.
    5. Ferg E, Gummow R J, Dekock A, et al. Spinel Anodes for Lithium-Ion Batteries [J]. J. Electrochem. Soc.,1994,141:L147-L150.
    6. Deschanvres A, Raveau B, Sekkal Z. Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2-xO4 0≤x≤0.333 [J]. Mater. Res. Bull.,1971,6:699-704.
    7. Ronci F, Reale P, Scrosati B, et al. High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4 "Zero-Strain" Insertion Material [J]. J. Phys. Chem. B,2002,106:3082-3086.
    8. Sorensen E M, Barry S J, Jung H K, et al. Three-Dimensionally Ordered Macroporous Li4Ti5O12:Effect of Wall Structure on Electrochemical Properties[J]. Chem. Mater.,2006,18:482-489.
    9. Wilkening M, Amade R, Iwaniak W, et al. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 A comparison of results from solid state NMR and impedance spectroscopy[J]. Phys. Chem. Chem. Phys.,2007, 9:1239-1246.
    10. Scharner S, Weppner W, Schmid-Beurmann P, Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel[J].J. Electrochem. Soc.,1999,146:857-861.
    11. Wagemaker M, Simon D R, Kelder E M, et al. A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12[J].Adv. Mater.,2006, 18:3169-3173.
    12. Ronci F, Reale P, Scrosati B, et al. High resolution in-situ structural measurements of the Li4/3Ti5/3O4 "Zero-Strain" insertion material[J]. J Phys Chem B,2002,106:3082-3086.
    13. Colin J F, Godbole V, Novak P. In situ neutron diffraction study of Li insertion in Li4Ti5O12[J]. Electrochem. Commun.,2010,12:804-807.
    14. Jiang J, Dhan J R. Dependence of the heat of reaction of Li0.81C6 (0.1 V), Li7Ti5O12(1.55 V), and Li0.5VO2 (2.45V) reacting with nonaqueous solvents or electrolytes on the average potential of the electrode material [J]. J. Electrochem. Soc,2006,153:A310-A315.
    15. Belharouak I, Sun Y K, Lu W, et al. On the safety of the Li4Ti5O12/LiMn2O4 Lithium-Ion Battery System[J]. J. Electrochem. Soc.,2007,154: A1083-A1087.
    16. Ouyang C Y, Zhong Z H, Lei M S. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel[J]. Electrochem. Commun.,2007, 9:1107-1112.
    17. Brousse T, Fragnaud P, Marchand R. All oxide solid-state lithium-ion cells[J]. J. Power Sources,1997,68:412-415.
    18. Cheng L, Li X L, Liu H J, et al. Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-Ion intercalation[J]. J. Electrochem. Soc.,2007, 154:A692-A697.
    19. Amatucci G G, Badway F, DuPasquier A, et al. An asymmetric hybrid nonaqueous energy storage cell[J]. J. Electrochem. Soc.,2001,148: A930-A939.
    20. Colbow K M, Dahn J R, Haering R R. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4[J]. J. Power Sources,1989,26:397-402.
    21. Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[□Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. J. Electrochem. Soc.,1995, 142:1431-1435.
    22. Pyun S I, Kim S W, Shin H C. Lithium transport through Li1+8[Ti2-yLiy]O4 (y=0; 1/3) electrodes by analysing current transients upon large potential steps[J]. J. Power Sources,1999,81-82:248-254.
    23. Zaghib K, Simoneau M, Armand M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries [J]. J. Power Sources,1999,81-82:300-304.
    24. Zaghib K, Armand M, Gauthier M. Electrochemistry of anodes in solid-state Li-ion polymer batteries[J]. J. Electrochem. Soc,1998,145:3135-3140.
    25. Hsiao K C, Liao S C, Chen J M. Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries[J]. Electrochim. Acta,2008,53:7242-7247.
    26. Ergang N S, Lytle J C, Yan H, et al. Effect of a macropore structure on cycling rates of LiCoO2[J]. J. Electrochem. Soc.,2005,152:A1989-A1995.
    27. Prakash A S, Manikandan P, Ramesha K, et al. Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode[J]. Chem. Mater.,2010,22:2857-2863.
    28. Liu P, Sherman E, Verbrugge M. Electrochemical and structural characterization of lithium titanate electrodes[J]. J. Solid State Electrochem., 2009,14:585-591.
    29. Arico A S, Bruce P, Scrosati B, et al. Nanostrucrured materials for advanced energy conversion and storage devices[J]. Nat. Mater.,2005,4:366-377.
    30. Green M, Fielder E, Scrosati B, et al. Structured silicon anodes for Lithium battery applications [J]. Electrochem. Solid-State Lett.,2003,6:A75-A79.
    31. Lin C Y, Duh J G. Porous Li4Ti5O12 anode material synthesized by one-step solid state method for electrochemical properties enhancement[J]. J. Alloys Compd.,2011,509:3682-3685.
    32. Hao Y J, Lai Q Y, Lu J Z, et al. Influence of various complex agents on electrochemical property of Li4Ti5O12 anode material[J]. J. Alloys Compd., 2007,439:330-336.
    33. Borghols W J, Wagemaker M, Lafont U, et al. Size effects in the Li4+xTi5O12 spinel[J]. J. Am. Chem. Soc,.2009,131:17786-17792.
    34. Wagemaker M, Simon D R, Kelder E M, et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12[J]. Adv. Mater.2006, 18:3169-3173.
    35. Wagemaker M, van Eck E R, Kentgens A P, et al. Li-Ion diffusion in the equilibrium nano morphology of spinel Li4+xTi5O12[J]. J. Phys. Chem. B,2009, 113:224-230.
    36. Wang Y G, Liu H M, Wang K X, et al. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(Ⅲ) and carbon[J]. J. Mater. Chem.,2009,19:6789-6795.
    37. Hao Y J, Lai Q Y, Liu D Q, et al. Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery[J]. Mater. Chem. Phys.,2005,94:382-387.
    38. Lee S S, Byun K T, Park J P, et al. Preparation of Li4Ti5O12 nanoparticles by a simple sonochemical method[J]. Dalton Trans.,2007,4182-4184.
    39. Kavana L, Gratzel M. Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion[J]. Electrochem. Solid-State Lett.,2002,5: A39-A42.
    40. Yuan T, Wang K, Cai R, et al. Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance [J]. J. Alloys Compd.,2009,477:665-672.
    41. Afanasiev P, Geantet C. Synthesis of solid materials in molten nitrates[J]. Coord. Chem. Rev.,1998,178-180:1725-1752.
    42. Cheng L, Liu H G, Zhang J J, et al. Nanosized Li4Ti5O12 Prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors[J]. J. Electrochem. Soc.,2006,153:A1472-1477.
    43. Bai Y, Wang F, Wu F, et al. Influence of composite LiCl-KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12[J]. J.Electrochim. Acta,2008,54:322-327.
    44. Yang L H, Dong C, Guo J. Hybrid microwave synthesis and characterization of the compounds in the Li-Ti-O system[J]. J. Power Sources,2008,175: 575-580.
    45. Li J, Jin Y L, Zhang X G, et al. Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries[J]. Solid State Ionics,2007,178:1590-1594.
    46. Yang G, Wang G, Hou W. Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries[J]. J. Phys. Chem. B,2005,109: 11186-11196.
    47. Jiang C H, Ichihara M, Honma I, et al. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode[J]. Electrochim. Acta,2007, 52:6470-6475.
    48. He N D, Wang B S, Huang J J. Preparation and electrochemical performance of monodisperse Li4Ti5O12 hollow spheres[J].J. Solid State Electrochem., 2009,14:1241-1246.
    49. Tang Y F, Yang L, Fang S H, et al. Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries[J]. Electrochim. Acta,2009,54:6244-6249.
    50. Sing K S, Everrett D H, Haul R A, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl. Chem.,1985,57:603-619.
    51. Li J R, Tang Z L, Zhang Z T. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12[J]. Electrochem. Commun.,2005,7:894-899.
    52. Lee S C, Lee S M, Lee J W, et al. Spinel Li4Ti5O12 nanotubes for energy storage materials[J], J. Phys. Chem. C,2009,113:18420-18423.
    53. Lee D K, Shim H W, An J S, et al. Synthesis of heterogeneous Li4Ti5O12 nanostructured anodes with long-term cycle stability[J]. Nanoscale Res. Lett., 2010,5:1585-1589.
    54. Tang Y F, Yang L, Qiu Z, et al. Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries[J]. J. Mater. Chem.,2009,19:5980-5984.
    55. Shen L F, Yuan C Z, Luo H J, et al. Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries[J]. J. Mater. Chem., 2010,20:6998-7004.
    56. Chen J Z, Yang L, Fang S H, et al. Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries[J]. Electrochim. Acta,2010, 55:6596-6600.
    57. Amine K, Belharouak I, Chen Z H, et al. Nanostructured anode material for high-power battery system in electric vehicles[J]. Adv. Mater.,2010,22: 3052-3057.
    58. Yu S H, Pucci A, Herntrich T, et al. Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications[J]. J. Mater. Chem.,2011,21:806-810.
    59. Xiong Z, Shi S, Ouyang C, et al. Ab initio investigation of the surface properties of Cu(111) and Li diffusion in Cu thin film[J]. Phys. Lett. A,2005, 337:247-255.
    60. Chen C H, Vaughey J T, Jansen A N, et al. Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0< x< 1) for lithium batteries[J]. J. Electrochem. Soc.,2001,148:A102-A104.
    61. Cheng L, Yan J, Zhu G N, et al. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation[J]. J. Mater. Chem.,2010,20:595-602
    62. Hu X B, Lin Z J, Yang K R, et al. Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction[J].Electrochim. Acta,2011,56:5046-5053.
    63. Kang E, Jung Y S, Kim G H, et al. Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method[J]. Adv. Funct. Mater.,2011,21:4349-4357.
    64. Jung H G, Myung S T, Yoon C S, et al. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries[J]. Energy Environ. Sci.,2011,4:1345-1351.
    65. Zhu G N, Liu H J, Zhuang J H, et al. Carbon-coated nano-sized Li4TisOi2 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries[J]. Energy Environ. Sci.,2011,4:4016-4022.
    66. Jung H G, Myung S T, Yoon C S, et al. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries[J]. Energy Environ. Sci.,2011,4:1345-1351.
    67. Yang H, Wu X L, Cao M H, et al. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries[J]. J. Phys. Chem. C,2009,113:3345-3351.
    68. Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science,1996,273:483-487.
    69. Landi B J, Raffaelle R P, Heben M J, et al Single wall carbon nanotube-nafion composite actuators[J]. Nano Lett.,2002,2:1329-1332.
    70. Raffaelle R P, Landi B J, Harris J D, et al. Carbon nanotubes for power applications[J]. Mater. Sci. Eng., B,2005,116:233-243.
    71. Li X, Qu M Z, Yu Z L. Preparation and electrochemical performance of Li4Ti5O12/graphitized carbon nanotubes composite[J]. Solid State Ionics,2010, 181:635-639.
    72. Huang J, Jiang Z. The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery[J]. Electrochim. Acta,2008,53:7756-7759.
    73. Shen L F, Yuan C Z, Luo H J, et al. In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes:novel coaxial nanocables for high rate lithium ion batteries[J]. J. Mater. Chem.,2011,21:761-767.
    74. Naoi K, Ishimoto S, Isobe Y, et al. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors[J]. J. Power Sources, 2010,195:6250-6254.
    75. Wang G X, Shen X P, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon,2009,47:2049-2053.
    76. Pan D Y, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets[J]. Chem. Mater.,2009,21:3136-3142.
    77. Wu Z S, Ren W C, Wen L, et al. Graphene anchored with CO3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano,2010,4:3187-3194.
    78. Wang D H, Choi D W, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion[J]. ACS Nano,2009,3:907-914.
    79. Lei Z B, Christov N, Zhao X S. Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes [J]. Energy Environ. Sci.,2011,4:1866-1873.
    80. Zhu X J, Zhu Y W, Murali S, et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries[J]. ACS Nano,2011,5:3333-3338.
    81. Hao Q L, Wang H L, Yang X J, et al. Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties [J]. Nano Res.,2010,4:323-333.
    82. Zhang J T, Jiang J W, Zhao X S. Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets [J]. J. Phys. Chem. C,2011,115:6448-6454.
    83. Kim H K, Bak S M, Kim K B. Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries[J]. Electrochem. Commun.,2010, 12:1768-1771.
    84. Zhu N, Liu W, Xue M Q, et al. Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries [J]. Electrochim. Acta,2010,55:5813-5818.
    85. Shen L F, Yuan C Z, Luo H J, et al. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries[JJ. Nanoscale,2011,3:572-574.
    86. Xie H M, Wang R S, Ying J R, et al. Optimized LiFePO4-polyacene cathode material for lithium-ion batteries[J]. Adv. Mater.,2006,18:2609-2613.
    87. Sun L Q, Cui R H, Jalbout A F, et al. LiFePO4 as an optimum power cell material[J]. J. Power Sources,2009,189:522-526.
    88. Yu H, Zhang X, Jalbout A F, et al. High-rate characteristics of novel anode Li4Ti5O12/polyacene materials for Li-ion secondary batteries[J]. Electrochim. Acta,2008,53:4200-4204.
    89. Huang S, Wen Z, Zhu X, et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12[J]. Electrochem. Commun.,2004,6:1093-1097.
    90. Huang S, Wen Z, Zhang J, et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery[J]. Solid State Ionics,2006,177:851-855.
    91. Huang S, Wen Z, Zhang J, et al. Improving the electrochemical performance of Li4Ti5O12/Ag composite by an electroless deposition method[J]. Electrochim. Acta,2007,52:3704-3708.
    92. Huang S, Wen Z, Lin B, et al. The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries [J]. J. Alloys Compd.,2008,457:400-403.
    93. Lee J S, Wang X Q, Luo H M, et al. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids[J]. J. Am. Chem. Soc.,2009,131:4596-4597
    94. Hernandez V S, Torres L M, Mather G C, et al. Stoichiometry, structures and polymorphism of spinel-like phases, Li1.33xZn2-2xTi1+0.67x04[J]. J. Mater. Chem.,1996,6:1533-1536.
    95. Nakayama M, Ishida Y, Ikuta H, et al. Mixed conduction for the spinel type (1-x)Li4/3Ti5/3O4-xLiCrTiO4 system[J]. solid State Ionics,1999,117:265-271.
    96. Robertson A D, Trevino L, Tukamoto H, et al. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries[J]. J. Power Sources,1999,81-82:352-357.
    97. Robertson A D, Turamoto H, Irvine J. Li1+xFe1-3XTi1+2xO4(0.0≤x≤0.33) based spinels:possible negative electrode materials for future Li-ion batteries[J]. J. Electrochem. Soc.,1999,146:3958-3962.
    98. Ohzuku T, Tatsumi K, Matoba N, et al. Electrochemistry and structural chemistry of Li[CrTi]O4(Fd3m) in nonaqueous lithium cells [J]. J. Electrochem. Soc,2000,147:3592-3597.
    99. Reale P, Panero S, Ronci F, et al. Iron-substituted lithium titanium spinels:structural and electrochemical characterization[J]. Chem. Mater.,2003, 15:3437-3442.
    100. Jovic N, Antic B, Kremenovic A, et al. Cation ordering and order-disorder phase transitionin Co-substituted Li4Ti5O12 spinels[J]. Phys. Status Solidi A, 2003,198:18-28.
    101. Leonidov I A, Leonidova O N, Samigullina R F, et al. Structural aspects of lithium transfer in solid electrolytes Li2xZn2-3xTi1+x04 (0.33< x< 0.67)[J]. J. Struct. Chem.,2004,45:262-268.
    102. Huang S, Wen Z, Zhu X, et al. Preparation and electrochemical performance of spinel-type compounds Li4AlyTi5-yO12 (y=0,0.10,0.15,0.25)[J]. J. Electrochem. Soc.,2005,152:A186-A190.
    103. Ganesan M. Li4Ti2.5Cr2.5O12 as anode material for lithium battery[J], Ionics, 2007,14:395-401.
    104. Capsoni D, Bini M, Massarotti V, et al. Cr and Ni doping of Li4Ti5O12:cation distribution and functional properties [J]. J. Phys. Chem. C,2009,113: 19664-19671.
    105. Zhang B, Du H D, Li B H, et al. Structure and electrochemical properties of Zn-doped Li4Ti5O12 as anode materials in Li-ion battery [J]. Electrochem. Solid-State Lett.,2010,13:A36-A38.
    106. Huang S, Wen Z, Zhu X, et al. Effects of dopant on the electrochemical performance of Li4TisOi2 as electrode material for lithium ion batteries[J]. J. Power Sources,2007,165:408-412.
    107. Zhao H, Li Y, Zhu Z, Lin J, et al. Structural and electrochemical characteristics of Li4-xAlxTi50i2 as anode material for lithium-ion batteries [J]. Electrochim. Acta,2008,53:7079-1083.
    108. Hao Y J, Lai Q Y, Lu J Z, et al. Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials[J]. Ionics,2007,13:369-373.
    109. Li X, Qu M, Yu Z. Structural and electrochemical performances of Li4Ti5- xZrxO12 as anode material for lithium-ion batteries[J]. J. Alloys Compd.,2009, 487:L12-L17.
    110. Yi T F, Xie Y, Shu J, et al. Structure and electrochemical performance of niobium-substituted spinel lithium titanium oxide synthesized by solid-state method[J].J. Electrochem. Soc.,2011,158:A266-A274.
    111. Dominko R, Dupont L, Gaberscek M, et al. Alkali hexatitanates—A2Ti6O13 (A=Na, K) as host structure for reversible lithium insertion[J]. J. Power Sources,2007,174:1172-1176.
    112. Yi T F, Shu J, Zhu Y R, et al. Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0 V[J]. J. Power Sources,2010,195:285-288.
    113. Kang X H, Utsunomiya H, Achiha T, et al. Effect of conductive additives and surface fluorination on the electrochemical properties of lithium titanate (Li4/3Ti5/3O4)[J]. J. Electrochem. Soc.,2010,157:A437-A442.
    114. Qi Y, Huang Y, Jia D, et al. Preparation and characterization of novel spinel Li4Ti5O12-xBrx anode materials[J]. Electrochim. Acta,2009,54:4772-4776.
    115. Capsoni D, Bini M, Massarotti V, et al. Cations distribution and valence states in Mn-substituted Li4Ti5O12 structure[J]. Chem. Mater.,2008,20:4291-4298.
    116. Chen C H, Vaughey J T, Jansen A N, et al. Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0    117. Huang S, Wen Z, Gu Z, et al. Preparation and cycling performance of Al3+and F- co-substituted compounds Li4AlxTi5-xFyO12-y[J]. Electrochim. Acta,2005, 50:4057-4062.
    118. Allen J L, Jow T R, Wolfenstine J. Low temperature performance of nanophase Li4Ti5O12[J]J. Power Sources,2006,159:1340-1345.
    119. Zhong Z. Synthesis of Mo4+ substituted spinel Li4Ti5-xMoxO12[J]. Electrochem. Solid-State Lett.,2007,10:A267-A269.
    120. Wolfenstine J, Allen J L. Electrical conductivity and charge compensation in Ta doped Li4Ti5O12[J]. J. Power Sources,2008,180:582-585.
    121. Yi T F, Shu J, Zhu Y R, et al. High-performance Li4Ti5-xVxO12 (0≤x≤0.3) as an anode material for secondary lithium-ion battery [J]. Electrochim. Acta, 2009,54:7464-7470.
    122. Ji S Z, Zhang J Y, Wang W W, et al. Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery[J]. Mater. Chem. Phys.,2010,123:510-515.
    123. Cai R, Yuan T, Ran R, et al. Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery[J]. Int. J. Energy Res.,2011,35:68-77.
    124. Jansen A N, Kahaian A J, Kepler K D, et al. Development of a high-power lithium-ion battery[J]. J. Power Sources,l 999,81-82:902-905.
    125. Scrosati B, Garche J. Lithium batteries:status, prospects and future[J]. J. Power Sources,2010,195:2419-2430.
    126. Lu W, Liu J, Sun Y K, et al. Electrochemical performance of Li4/3Ti5/3O4/Li1+x(Ni1/3Co1/3Mn1/3)1-xO2 cell for high power applications [J]. J. Power Sources,2007,167:212-216.
    127. Reale P, Fernicola A, Scrosati B. Compatibility of the Py24TFSI-LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes [J]. J. Power Sources,2009,194:182-189.
    128. Pasquier A D, Huang C C, Spitler T. Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life [J]. J. Power Sources,2009, 186:508-514.
    129. Ionica-Bousquet C M, Munoz-Rojas D, Casteel W J, et al. Polyfluorinated boron cluster-based salts:A new electrolyte for application in Li4Ti5O12/LiMn2O4 rechargeable lithium-ion batteries [J].J. Power Sources, 2010,195:1479-1485.
    130. Belharouak I, Sun Y K, Lu W, et al. On the safety of the LiM4Ti5O12/LiMn2O4 lithium-ion battery system[J]. J. Electrochem. Soc, 2007,154:A1083-A1087.
    131. Reale S P, Panero B, Scrosati. Sustainable high-voltage lithium ion polymer batteries[J]. J. Electrochem. Soc.,2005,152:A1949-A1954.
    132. Xiang H F, Jin Q Y, Wang R, et al. Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4 and Li4Ti5O12[J]. J. Power Sources,2008,179:351-356.
    133. Xiang H F, Zhang X, Jin Q Y, et al. Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells[J]. J. Power Sources,2008,183:355-360.
    134. Ariyoshi K, Yamamoto S, Ohzuku T.Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4[J]. J. Power Sources,2003,119-121:959-963.
    135. Hu X, Deng Z, Suo J, et al. A high rate, high capacity and long life (LiMn2O4+AC)/Li4Ti5O12 hybrid battery-supercapacitor[J]. J. Power Sources, 2009,187:635-639.
    136. Panero S, Satolli D, Salomon M, et al. A new type of lithium-ion cell based on the Li4Ti5O12/Li2Coo.4Feo.4Mn3.208 high-voltage, electrode combination[J]. Electrochem. Commun.,2000,2:810-813.
    137. Patoux S, Daniel L, Bourbon C, et al. High voltage spinel oxides for Li-ion batteries:from the material research to the application[J]. J Power Sources, 2009,189:344-352.
    138. Amine K, Tukamoato H, Yasuda H, et al. A new three-volt spinel Li1+xMn1.5Nio.504 for secondary lithium batteries[J]. J Electrochem Soc,1996, 143:1607-1613.
    139. Strobel P, Palos A, Anne M, et al. Structural, magnetic and lithium insertion properties of spinel-type Li2Mn3MO8 oxides (M= Mg, Co, Ni, Cu) [J]. J Mater Chem,2000,10:429-436.
    140. Morales J, Sanchez L, Tirado J. New doped Li-M-Mn-O (M=A1, Fe, Ni) spinels as cathodes for rechargeable 3V lithium batteries[J]. J Solid State Electrochem,1998,2:420-426.
    141. Wagemaker M, Ooms F, Kelder E, et al. Extensive migration of Ni and Mn by lithiation of ordered LiMg0.1Ni0.4Mn1.5O4 spinel[J]. J Am Chem Soc,2004, 126:13526-13533.
    142. Gryffroy D, Vandenberghe R, Legrand E. A Neutron diffraction study of some spinel compounds containing octahedral Ni and Mn at a 1:3 ratio[J]. Mater Sci Forum,1991,79-82:785-790.
    143. Ooms F, Wagemaker M, van W, et al. Structure determination of high-voltage LiMgdNi0.5-dMn1.5O4 spinels for Li-ion batteries[J]. J Appl Phys A,2002, 74:S1089-S1091.
    144. Kim J, Myung S, Yoon C, et al. Comparative study of LiNi0.5Mn1.504-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures:Fd3m and P4332[J]. Chem Mater,2004,16:906-914.
    145. Amdouni N, Zaghib K, Gendron F, et al. Magnetic properties of LiNio.5Mn1.5O4 spinels prepared by wet chemical methods[J]. J Magn Magn Mater,2007,309:100-105.
    146. Zhong Q M, Bonakdarpour A, Zhang M J, et al. Synthesis and electrochemistry of LiNixMn2-x04[J]. J Electrochem Soc,1997,144:205-213.
    147. Sigala C, Guyomard D, Verbaere A, et al. Positive electrode materials with high operating voltage for lithium batteries:LiCryMn2-yO4 (0≤y≤1)[J]. Solid State lonics,1995,81:167-170.
    148. Yang S H, Middaugh R L. Redox reactions of cobalt, aluminum and titanium substituted lithium manganese spinel compounds in lithium cells[J]. Solid State Ionics,2001,139:13-25.
    149. Kawai H, Nagata M, Tukamoto H, et al. High-voltage lithium cathode materials[J]. J Power Sources,1999,81-82:67-72.
    150. Ein-Eli Y, Lu S H, Rzeznik M A. LiCuxMn2-xO4 spinels (0.1≤x≤0.5):a new class of cathode materials for Li batteries[J]. J Electrochem Soc,2004, 145:3383-3386.
    151. Ein-Eli Y, Howard W F, Lu S H, et al. LiMn2-xCux04 Spinels (0.1≤x≤0.5):a new class of 5 V cathode materials for Li batteries[J]. J Electrochem Soc,1998, 1451:1238-1244.
    152. Biskup N, Martinez J L, Dompablo M, et al. Relation between the magnetic properties and the crystal and electronic structures of manganese spinels LiNi0.5Mn1.5O4 and LiCu0.5Mn1.5O4-d (0    153. Shigemura H, Tabuchi M, Kobayashi H, et al. Structural and electrochemical properties of Li(Fe, Co)xMn2-xO4 solid solution as 5 V positive electrode materials for Li secondary batteries[J]. J Mater Chem,2002,12:1882-1891.
    154. Oikawa K, Kamiyama T, Izumi F, et al. Neutron and x-ray powder diffraction studies of LiMn2-yCry04[J]. J Solid State Chem,1999,146:322-328.
    155. Sigala C, Verbaere A, Mansot J L, et al. The Cr-substituted spinel Mn oxides LiCryMn2-yO4 (0    156. Obrovac M N, Gao Y, Dahn J R. Explanation for the 4.8 V plateau in LiCrxMn2-x04[J]. Phys Rev B Condens Matter,1998,57:5728-5733.
    157. Aklalouch M, Amarilla J M, Rojas R M, et al. Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mni.504-based positive electrode[J]. J Power Sources,2008,185: 501-511.
    158. Shigemura H, Sakaebe H, Kageyama H, et al. Structure and electrochemical properties of LiFexMn2-xO4 (0≤x≤0.5)spinel as 5 V electrode material for lithium batteries[J]. J Electrochem Soc,2001,148:A730-A736.
    159. Amine K, Tukamoto H, Yasuda H, et al. Preparation and electrochemical investigation of LiMn2-xMex04 (Me:Ni, Fe, and x=0.5,1) cathode materials for secondary lithium batteries[J]. J Power Sources,1997,68:604-608.
    160. Eftekhari A. Fabrication of 5 V lithium rechargeable micro-battery [J]. J Power Sources,2004,132:240-243.
    161. Song D, Ikuta H, Uchida T, et al. The spinel phases LiAlyMn2-yO4 (y=0,1/12, 1/9,1/6,1/3) and Li(Al,M)1/6Mn11/6O4 (M=Cr, Co) as the cathode for rechargeable lithium batteries[J]. Solid State lonics,1999,117:151-156.
    162. Kim J S, Vaughey J T, Johnson C S, et al. Significance of the tetrahedral a site on the electrochemical performance of substituted Li1.05M0.05Mn1.90O4 spinel electrodes(M=Li,Mg,Zn,Al)in lithium cells[J]. J Electrochem Soc,2003, 150:A1498-A1502.
    163. Lee Y J, Park S H, Eng C, et al. Cation ordering and electrochemical properties of the cathode materials LiZnxMn2-xO4,0    164. Shin Y, Manthiram A. Origin of the high voltage (>4.5 V) capacity of spinel lithium manganese oxides[J]. Electrochim Acta,2003,48:3583-3592.
    165. Ohzuku T, Takeda S, Iwanaga M. Solid-state redox potentials for Li[Mei/2Mn3/2]O4 (Me:3d-transition metal) having spinel-framework structures:a series of 5 volt materials for advanced lithium-ion batteries [J]. J Power Sources,1999,81-82:90-94.
    166. Terada Y, Yasaka K, Nishikawa F, et al. In situ XAFS analysis of Li(Mn, M)2O4 (M=Cr, Co, Ni) 5V cathode materials for lithium-Ion secondary batteries[J]. J Solid State Chem,2001,156:286-291.
    167. Ariyoshi K, Iwakoshi Y, Nakayama N, et al. Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells[J]. J Electrochem Soc, 2004,151:A296-A303.
    168. Idemoto Y, Narai H, Koura N. Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Nio.5O4 as a cathode material for secondary lithium batteries[J]. J Power Sources,2003,119-121:125-129.
    169. Fang H S, Wang Z X, Li X H, et al. Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction[J]. J Power Sources,2006, 153:174-176.
    170. Fang H S, Wang Z X, Li X H, et al. Low temperature synthesis of LiNi0.5Mn1.5O4 spinel[J]. Mater Lett,2006,60:1273-1275.
    171. Chen Z Y, Ji S, Linkov V, et al. Performance of LiNi0.5Mn1.5O4 prepared by solid-state reaction[J]. J Power Sources,2009,189:507-510.
    172. Takahashi Y, Sasaoka H, Kuzuo R, et al. A low-temperature synthetic route and electrochemical properties of micrometer-sized LiNi0.5Mn1.5O4 single crystals[J]. Electrochem Solid-State Lett,2006,9:A203-A206.
    173. Zhang B, Wang Z X, Guo H J. Effect of annealing treatment on electrochemical property of LiNi0.5Mn1.5O4 spinel[J]. Trans Nonferr Met Soc China,2007,17:287-290.
    174. Fan Y K, Wang J M, Ye X B, et al. Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method[J]. Mater Chem Phys,2007,103:19-23.
    175. Liu G Q, Wang Y J, Lu Q. Synthesis and electrochemical performance of LiNi0.5Mn1.5O4 spinel compound[J]. Electrochim Acta,2005,50:1965-1968.
    176. Xiao L F, Zhao Y Q, Yang Y Y, et al. Electrochemical properties of nano-crystalline LiNi0.5Mn1.5O4 synthesized by polymer-pyrolysis method[J], J Solid State Electrochem,2008,12:687-691.
    177. Yu L H, Cao Y L, Yang H X, et al. Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method[J]. J Solid State Electrochem,2006,10:283-287.
    178. Yi T F, Zhu Y R. Synthesis and electrochemistry of 5 V LiNi0.4Mn1.6O4 cathode materials synthesized by different methods[J]. Electrochim Acta,2008, 53:3120-3126.
    179. Yi T F, Hu X G. Preparation and characterization of sub-micro LiNi0.5-xMn1.5+xO4 for 5 V cathode materials synthesized by an ultrasonic-assisted co-precipitation method[J]. J Power Sources,2007, 167:185-191.
    180. Fu L J, Liu H, Li C, et al. Electrode materials for lithium secondary batteries prepared by sol-gel methods[J]. Prog Mater Sci,2005,50:881-928.
    181. Liu H, Wu Y P, Rahm E, et al. Cathode materials for lithium ion batteries prepared by sol-gel methods[J]. J Solid State Eletrochem,2004,8:450-466.
    182. Yi T F, Li C Y, Zhu Y R,et al. Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials[J]. J Solid State Electrochem,2009,13:913-919.
    183. Xu H Y, Xie S, Ding N, et al. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel prepared by radiated polymer gel method[J]. Electrochim Acta,2006,51:4352-4357.
    184. Lazarraga M G, Pascual L, Gadjov H, et al. Nanosize LiNiyMn2-yO4 (0    185. Wu H M, Tu J P, Chen X T, et al. Synthesis and characterization of abundant Ni-doped LiNixMn2-xO4 (x=0.1-0.5) powders by spray-drying method[J]. Electrochim Acta,2006,51:4148-4152.
    186. Kovacheva D, Markovsky B, Salitra G, et al. Electrochemical behavior of electrodes comprising micro-and nano-sized particles of LiNi0.5Mn1.5O4:A comparative study[J]. Electrochim Acta,2005,50:5553-5560.
    187. Arrebola J C, Caballero A, Hernan L, et al. Expanding the rate capabilities of the LiNi0.5Mn1.5O4 spinel by exploiting the synergistic effect between nano and microparticles[J]. Electrochem Solid-State Lett,2005,8:A641-A645.
    188. Wen L, Lu Q, Xu G X. Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials[J]. Electrochim Acta,2006,51:4388-4392.
    189. Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery [J]. Electrochim Acta,2004,49:219-227.
    190. Amarilla J M, Rojas R M, Pico F, et al. Nanosized LiMYMn2-YO4 (M= Cr, Co and Ni) spinels synthesized by a sucrose-aided combustion method:Structural characterization and electrochemical properties[J]. J Power Sources,2007, 174:1212-1217.
    191. Caballero A, Cruz M, Hernan L, et al. Oxygen deficiency as the origin of the disparate behavior of LiM0.5Mn1.504(M=Ni,Cu)nanospinels in lithium Cells[J]. J Electrochem Soc,2005,152:A552-A559.
    192. Kunduraci M, Amatucci G G. The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+sNi0.5-δO4 spinel[J]. Electrochim Acta, 2008,53:4193^199.
    193. Xia H, Lu L, Lai M O. Li diffusion in LiNi0.5Mn0.5O2 thin film electrodes prepared by pulsed laser deposition[J]. Electrochim Acta,2009,54:5986-5991.
    194. Caballero A, Hernan L, Melero M, et al. LiNi0.5Mn1.5O4 thick-film electrodes prepared by electrophoretic deposition for use in high voltage lithium-ion batteries[J]. J Power Sources,2006,158:583-590.
    195. Arrebola J C, Caballero A, Hernan L, et al. Electrochemical properties of LiNi0.5Mn1.5O4 films prepared by spin-coating deposition[J]. J Power Sources, 2006,162:606-613.
    196. Zhang L, Lv X Y, Wen Y X, et al. Carbon combustion synthesis of LiNi0.5Mn1.5O4 and its use as a cathode material for lithium ion batteries[J]. J Alloys Compd,2009,480:802-805.
    197. Zhao Z Q, Ma J F, Tian H, et al. Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 cathode material by the soft combustion reaction method[J]. J Am Ceram Soc,2005,88:3549-3552.
    198. Xia H, Meng Y S, Lu L, et al. Electrochemical properties of nonstoichiometric LiNi0.5Mni.504-8 thin-film electrodes prepared by pulsed laser deposition[J]. J Electrochem Soc,2007,154:A737-A743.
    199. Li D C, Ito A, Kobayakawa K, et al. Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing[J]. Electrochim Acta,2007,52:1919-1924.
    200. Takahashi K, Saitoh M, Sano M, et al. Electrochemical and structural properties of a 4.7V class LiNi0.5Mn1.5O4 positive electrode material prepared with a self-reaction method[J]. J Electrochem Soc,2004,151:A173-A177.
    201. Raja M W, Mahanty S, Basu R N. Multi-faceted highly crystalline LiMn2O4 and LiNi0.5Mn1.5O4 cathodes synthesized by a novel carbon exo-templating method[J]. Solid State Ionics,2009,180:1261-1266.
    202. Yamada M, Dongying B, Kodera T, et al. Mass production of cathode materials for lithium ion battery by flame type spray pyrolysis[J]. J Ceram Soc Jpn,2009,117:1017-1020.
    203. Amatucci G G, Schmutz C N, Bylr A, et al. Materials'effects on the elevated and room temperature performance of Li-ion batteries [J]. J Power Sources, 1997,69:11-25.
    204. Sun Y K, Kim D W, Choi Y M. Synthesis and characterization of spinel LiMn2-xNixO4 for lithium/polymer battery applications[J]. J Power Sources, 1999,79:231-237.
    205. Markovsky B, Talyossef Y, Salitra G, et al. Cycling and storage performance at elevated temperatures of LiNio.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteries[J]. Electrochem Commun,2004,6:821-826.
    206. Yamane H, Inoue T, Fujita M, et al. A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80℃, and the suppressing substances of its fading[J]. J Power Sources,2001,99:60-65.
    207. Arrebola J C, Caballero A, Hernan L, et al. Re-examining the effect of ZnO on nanosized 5 V LiNi0.5Mn1.5O4 spinel:An effective procedure for enhancing its rate capability at room and high temperatures [J]. J Power Sources,2010, 195:4278-4284.
    208. Sun Y K, Hong K J, Prakash J, et al. Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures[J]. Electrochem Commun,2002,4:344-348.
    209. Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat Mater,2005,4:366-377.
    210. Bruce P, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angew Chem Int Ed,2008,47:2930-2946.
    211. Talyosef Y, Markovsky B, Lavi R, et al. Comparing the behavior of nano-and microsized particles of LiNi0.5Mn1.5O4 spinel as cathode materials for Li-ion batteries[J]. J Electrochem Soc,2007,154:A682-A691.
    212. Lafont U, Locati C, Kelder E M. Nanopowders of spinel-type electrode materials for Li-ion batteries [J]. Solid State Ionics,2006,177:3023-3029.
    213. Lafont U, Locati C, Borghols W J H, et al. Nanosized high voltage cathode material LiMg0.05Ni0.45Mn1.5O4:structural, electrochemical and in situ investigation[J]. J Power Sources,2009,189:179-184.
    214. Thirunakaran R, Sivashanmugam A, Gopukumar S, et al. Phthalic acid assisted nano-sized spinel LiMn2O4 and LiCrxMn2-xO4 (x=0.00-0.40) via sol-gel synthesis and its electrochemical behaviour for use in Li-ion-batteries[J]. Mater Res Bull,2008,43:2119-2129.
    215. Kunduraci M, Amatucci G G. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries[J]. J Electrochem Soc,2006,153:A1345-A1352.
    216. Shaju K M, Bruce P G. Nano-LiNi0.5Mn1.5O4 spinel:a high power electrode for Li-ion batteries[J]. Dalton Trans,2008,40:5471-5475.
    217. Arrebola J C, Caballero A, Cruz M, et al. Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinel via polymer-assisted synthesis:a Method for improving its rate capability and performance in 5V lithium batteries[J]. Adv Funct Mater,2006,16:1904-1911.
    218. Kunduraci M, Al-Sharab J F, Amatucci G G. High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology [J]. Chem Mater,2006,18:3585-3592.
    219. Leon B, Lloris J M, Vicente C P, et al. Structure and lithium extraction mechanism in LiNi0.5Mn1.5O4 after double substitution with iron and titanium[J]. Electrochem Solid-State Lett,2006,9:A96-A100.
    220. Alcantara R, Jaraba M, Lavela P, et al. Synergistic effects of double substitution in LiNi0.5-yFeyMn1.5O4 spinel as 5V cathode materials[J]. J Electrochem Soc,2005,152:A13-A18.
    221. Liu J, Manthiram A. Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.504[J]. J Phys Chem C,2009,113:15073-15079.
    222. Eli Y E, Vaughey J T, Thackeray M M, et al. LiNixCu0.5-xMn1.5O4 spinel electrodes, superior high-potential cathode materials for Li batteries:I. electrochemical and structural Studies[J]. J Electrochem Soc,1999, 146:908-913.
    223. Alcantara R, Jaraba M, Lavela P, et al. New LiNiyCo1-2yMn1+yO4 spinel oxide solid solutions as 5 V electrode material for Li-ion batteries[J]. J Electrochem Soc,2004,151:A53-A58.
    224. Ito A, Li D, Lee Y, et al. Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiMn1.5Ni0.504[J]. J Power Sources,2008,185:1429-1433.
    225. Kim J H, Myung S T, Yoon C S, et al. Effect of Ti substitution for Mn on the structure of LiNi0.5Mn1.5-xTixO4 and their electrochemical properties as lithium insertion material[J]. J Electrochem Soc,2004,151:A1911-A1918.
    226. Liu G Q, Yuan W S, Liu G Y, et al. The electrochemical properties of LiNi0.5Mn1.2Tio.3O4 compound[J]. J Alloys Compd,2009,484:567-569.
    227. Alcantara R, Jaraba M, Lavela P, et al. Structural and electrochemical study of new LiNio.5TixMn1.5-xO4 spinel oxides for 5V cathode materials [J]. Chem Mater,2003,15:2376-2382.
    228. Park S B, Eom W S, Cho W, et al. Electrochemical properties of LiNi0.5Mn1.5O4 cathode after Cr doping[J]. J Power Sources,2006, 159:679-684.
    229. Aklalouchb M, Amarilla J M, Roja R M, et al. Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mn1.5O4 based positive electrode[J]. J Power Sources,2008, 185:501-511.
    230. Hong K J, Sun Y K. Synthesis and electrochemical characteristics of LiCrxNi0.5-xMn1.5O4 spinel as 5V cathode materials for lithium secondary batteries[J]. J Power Sources,2002,109:427-430.
    231. Liu G Q, Xie H W, Liu L Y, et al. Synthesis and electrochemical performances of spinel LiCr0.1Ni0.4Mn1.5O4 compound[J]. Mater Res Bull, 2007,42:1955-1961.
    232. Aklalouch M, Rojas R M, Rojo J M, et al. The role of particle size on the electrochemical properties at 25 and at 55℃ of the LiCro.2Ni0.4Mn1.4O4 spinel as 5V cathode materials for lithium-ion batteries[J]. Electrochim Acta,2009, 54:7542-7550.
    233. Ooms F G B, Kelder E M, Schoonman J, et al. High-voltage LiMg5Ni0.5-δMn1.5O4 spinels for Li-ion batteries[J]. Solid State Ionics,2002, 152-153:143-153.
    234. Liu J, Manthiram A. Improved electrochemical performance of the 5V spinel cathode LiMn1.5Ni0.42Zn0.08O4 by surface modification[J]. J Electrochem Soc, 2009,156:A66-A72.
    235. Wang H L, Xia H, Lai M O, et al. Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping[J]. Electrochem Commun,2009,11:1539-1542.
    236. Oh S W, Park S H, Kim J H, et al. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution[J]. J Power Sources, 2006,157:464-470.
    237. Xu X X, Yang J, Wang Y Q, et al. LiNi0.5Mn1.5O3.975F0.05 as novel 5 V cathode material[J]. J Power Sources,2007,174:1113-1116.
    238. Du G D, NuLi Y, Yang J, et al. Fluorine-doped LiNi0.5Mn.5O4 for 5V cathode materials of lithium-ion battery [J]. Mater Res Bull,2007,43:3607-3613.
    239. Liu J, Manthiram A. Kinetics study of the 5V spinel cathode LiMn1.5Nio.5O4 before and after surface modifications[J]. J Electrochem Soc,2009, 156:A833-A838.
    240. Liu J, Manthiram A. Understanding the improvement in the electrochemical properties of surface modified 5V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells[J]. Chem Mater,2009,21:1695-1707.
    241. Sun Y K, Lee Y S, Yoshio M, et al. Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5V cathode material for lithium secondary batteries[J]. Electrochem Solid-State Lett,2002,5:A99-A102.
    242. Sun Y K, Yoon C S, Oh I H. Surface structural change of ZnO-coated LiNio.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures [J]. Electrochim Acta,2003,48:503-506.
    243. Kobayashi Y, Miyashiro H, Takei K, et al.5V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.504[J]. J Electrochem Soc, 2003,150:A1577-A1582.
    244. Fan Y, Wang J, Tang Z, et al. Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries[J]. Electrochim Acta,2007,52:3870-3875.
    245. Alcantara R, Jaraba M, Lavela P, et al. X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNio.5Mn1.5O4 electrodes[J]. J Electrochem Soc,2004,566:187-192.
    246. Arrebola J, Caballero A, Hernan L, et al. Effects of coating with gold on the performance of nanosized LiNio.5Mn1.5O4 for lithium batteries[J]. J Electrochem Soc,2007,154:A178-A184.
    247. Arrebola J, Caballero A, Hernan L, et al. Adverse effect of Ag treatment on the electrochemical performance of the 5V nanometric spinel LiNio.5Mn1.5O4 in lithium cells[J]. Electrochem Solid-State Lett,2005,8:A303-A307.
    248. Xiang H F, Zhang X, Jin Q Y, et al. Effect of capacity matchup in the LiNi0.5Mm.5O4/Li4Ti5O12 cells[J]. J Power Sources,2008,183:355-360.
    249. Xiang H F, Jin Q Y, Wang R, et al. Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4 and Li4Ti5O12[J]. J Power Sources,2008,179:351-356.
    250. Ariyoshi K, Yamamoto S, Ohzuku T. Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4[J]. J Power Sources,2003,119:959-963.
    251. Wu H M, Belharouak I, Deng H, et al. Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life[J]. J Electrochem Soc, 2009,156:A1047-A1050.
    252. Imazaki M, Ariyoshi K, Ohzuku T. An approach to 12V "lead-free" batteries: tolerance toward overcharge of 2.5V battery consisting of LTO and LAMO[J]. J Electrochem Soc,2009,156:A780-A786.
    253. Ohzuku T, Ariyoshi K, Yamamoto S, et al. A 3 volt lithium-ion cell with Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4:a method to prepare stable positive-electrode material of highly crystallized Li[Ni1/2Mn3/2]O4[J]. Chem Lett,2001,12:1270-1271.
    254. Maeda Y, Ariyoshi K, Kawai T, et al. Effect of deviation from Ni/Mn stoichiometry in Li[Ni1/2Mn3/2]O4 upon rechargeable capacity at 4.7V in nonaqueous lithium cells[J]. J Ceram Soc Jpn,2009,117:1216-1220.
    255. Zaghib K, Simoneau M, Armand M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. J Power Sources,1999,81:300-305.
    256. Zaghib K, Armand M, Gauthier M. Electrochemistry of anodes in solid-state Li-ion polymer batteries[J]. J Electrochem Soc,1998,145:3135-3140.
    257. Arrebola J C, Caballero A, Gomez-Camer J L, et al. Combining 5V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries[J]. Electrochem Commun,2009,11:1061-1064.
    258. Xia Y Y, Sakai T, Fujieda T, et al. A 4 V Lithium-ion battery based on a 5 V LiNixMn2-xO4 cathode and a flake Cu-Sn microcomposite anode[J]. Electrochem Solid-State Lett,2001,4:A9-A11.
    259. Mergos J A, Dervos C T. Structural and dielectric properties of Li2O doped TiO2 [J]. Mater. Charact,2009,60 (8):848-857.
    260. Harrison M R, Edwards P P, Goodenough J B. Fabrication of all solid-state rechargeable lithium battery and its electrochemical properties [J]. Philos. Mag.B.1985,52(3):679-683.
    261. Kataoka K, Takahashi Y, Kijima N, et al. A single-crystal study of the electrochemically Li-ion intercalated spinel-type Li4Ti5O12 [J]. Solid State Ionics,2009,180:631-635.
    262. Phillips R, Rohani S, Baldyga J. Micromixing in a single-feed semi-batch precipitation process [J]. AIChE Journal,1999,45(1):82-92.
    263. Majima M, Tada T, Jiie S U, et al. Design and characteristics of large-scale lithium ion battery[J].J.Power Sources,1999,81(1):877-881.
    264. Thackery M M. Structural Consideration of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries [J]. J. Electrochem. Soc.,1995,142, (8): 2558-2563.
    265. Molenda M, Dziembaj R, Podstawka E, et al. Changes in Local Structure of Lithium Manganese Spinels (Li:Mn= 1:2) Characterised by XRD, DSC, TGA, IR, and Raman Spectroscopy [J]. J. Phys. Chem. Solids,2005,66:1761-1768.
    266. Ohzuku T, Takeda S, Iwanaga M. Solid-state Redox Potentials for Li[Me1/2Mn3/2]O4 (Me:3d-transition Metal) Having Spinel-framework Structures:A Series of 5 Volt Materials for Advanced Lithium-ion Batteries. J. Power Sources,1999,81-82:90-94.
    267. Gummow R J, Kock A D, Thackeray M M. Improved Capacity Retention in Rechargeable 4 V Lithium/Lithium Manganese Oxides (spinel) cell [J]. Solid State Ionic,1994,69 (1):59-60.
    268. Xia Y Y, Zhou Y H, Yoshio M. Capacity Fading on Cycling of 4 V C/LiMn2O4 Cells [J]. J. Electrochem. Soc.,1997,144 (8):2593-2600.
    269. Jang D H, Oh S M. Electrolyte Effects on Spinel Dissolution and Carhodic Capacity Losses in 4 V Li/LixMn2O4 Rechargeble Cells [J]. J. Electrochem. Soc.,1997,144(10):3342-3348.
    270. Jang D H, Oh S M. Effects of Carbon Additives on Spinel Dissolution and Carhodic Capacity Losses in 4 V Li/LixMn2O4 Rechargeble Cells [J]. Electrochim. Acta,1998,43 (9):1023-1029.
    271. Matsummura Y, Wang S, Mondori J. Mechanism Leading to Irreversible Capacity Loss in Ion Rechargeable Batteries [J]. J. Electrochem. Soc.,1995, 142 (9):2914-2918.
    272. Morita M, Nakagawa T, Yamada O. Influences of the Electrolyte Composition on the Charge and Discharge Charateristics of LiCr0.1Mn1.9O4 Positive Electrode [J]. J. Power Sources,2001,97-98:354-357.
    273. Nazri G A, Pistoia G. Lithium Batteries [M]. Boston:Kluwer Academic Publishers,2004:363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700