熔盐法制备锂离子电池正极材料的影响因素与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池作为清洁高效的能源已经广泛应用于照相机、手机、笔记本电脑等便携式移动设备,并逐渐应用于电动汽车。一直以来,昂贵的价格制约着锂离子电池大规模车用化的发展。降低锂离子电池成本的关键是研究开发价格低廉的新材料以及采用简单易行的低成本制备方法。新材料的开发到最终应用往往需要数十年的时间,而制备工艺的优化通常能应用于多种材料的合成。
     熔盐合成法是一种工艺简单的制备多元复合氧化物的方法,目前已经应用于个别电池材料的研究,但研究熔盐种类有限,缺乏系统性。本论文选择了层状结构材料Li(Ni0.5Mn0.5)O2、Li(Ni0.2Mn0.2Co0.6)O2和尖晶石结构LiMn2O4作为研究对象,系统研究了熔盐种类以及反应条件在熔盐法合成中对这些材料结构、形貌和电化学性能的影响。探索了熔盐法在合成层状和尖晶石状结构材料时,熔盐的选择规律。
     在对Li(Ni0.5M0.5)O2材料的研究中,发现LiCl熔盐易造成最终产物的缺锂。LiNO3和Li2CO3作为熔盐均能合成出Li(Ni0.5Mn0.5)O2层状材料。LiNO3作为熔盐制备的材料循环稳定性好,其放电比容量大于Li2CO3熔盐制备的材料,但Li2CO3熔盐制备的材料放电比容量随循环有增大的趋势。将LiNO3和Li2CO3按不同比例组合所得熔盐对制备的Li(Ni0.5Mn0.5)O2形貌影响很大。当用0.9LiNO3-0.05Li2CO3作熔盐时,Li(Ni0.5Mn0.5)O2颗粒尺寸均匀,表面光滑,在恒流模式下充放电,放电比容量为150 mAh g-1,恒流恒压模式下为200 mAh g-1。
     0.9LiNO3-0.05Li2CO3和0.38LiOH-0.62LiNO3均能作为熔盐制备Li(Ni0.2Mn0.2Co0.6)O2材料,但因为熔盐熔点不同,材料颗粒形貌不同,且放电比容量均不高。高温下的二次热处理能有效提高材料的放电比容量,以0.38LiOH-0.62LiNO3为熔盐,经二次处理过的Li(Ni0.2Mn0.2Co0.6)O2材料放电比容量达150 mAh g-1此外,氯化物和硫酸盐实验证明不适合制备层状Li(Ni0.2Mn0.2Co0.6)O2材料。
     氯化物在制备尖晶石结构材料时优势明显。0.5NaCl-0.5KCl和0.6LiCl-0.4KCl都能制备出LiMn2O4材料。以0.5NaCl-0.5KCl作为熔盐制备的LiMn2O4材料具有一次纳米颗粒团聚成二次微米颗粒的形貌。具有该形貌的LiMn2O4,能达到124 mAh g-1的放电比容量,且循环性能优异。
     最后,在上述材料的研究基础上,本论文总结了熔盐法合成锂离子电池正极材料的熔盐选择规律以及制备工艺影响。用熔盐法制备的锂离子电池材料均具有较好的循环性能。除氯化物和硫酸盐外,其它含锂单组分盐或者复合熔盐均能用于制备层状结构材料。熔盐的熔点对合成材料的形貌影响很大,进而影响材料的电化学性能。氯化物可优先选为制备尖晶石结构材料所用熔盐。熔盐法合成在高温(800℃左右)加热5-6小时就能制备出结构、形貌和电化学性能良好的电池材料。
Lithium-ion battery as a clean and efficient energy storage device has been widely used in cameras, mobile phones, notebook computers and other portable mobile devices. Lithium-ion battery also gradually finds application in electric vehicle, but its high price considerably restricts its viability as vehicule power source. The key methods to reduce the cost of lithium-ion battery rely on the new low cost materials and low cost preparation processes. On one hand, development of new materials often requires decades to reach commercial product and research on a selected material has often prove to be very specific. On the other hand, optimization of preparation technique has more impact as the same preparation route can be readily applied to synthesize a variety of materials.
     Molten salt synthesis method is a simple process for preparing multiple complex oxides. Despite those key advantages, molten salt technique has not been studied in a complete and systematic way. This thesis uses molten salt method to synthesize layered structure material Li(Ni0.5Mn0.5)O2, Li (Ni0.2Mn0.2Co0.6)O2, and spinel structure LiMn2O4. The effects of the molten salts and reaction conditions on the structure, morphology, and electrochemical properties have been systematically investigated. One of the aims of the present thesis is to outline general rules when choosing molten salts in synthesis of layered and spinel structure mateirals.
     Li(Ni0.5Mn0.5)O2 materials can not be synthesized from LiCl molten salt, since this synthesis route could easily lead to lack of lithium in the final product. Alternative salts to synthesize Li(Ni0.5Mn0.5)O2 layered materials include LiNO3 and Li2CO3. The material made by LiN03 molten salt shows good cycling stability and its discharge capacity is greater than material made by Li2CO3 molten salt. However, the material prepared with Li2CO3 molten salt shows an increasing discharge capacity with cycling. To tentatively use advantages of both materials, combination of LiNO3 and Li2CO3 in different proportions also can be used as molten salt, which have different effect on the morphology of Li(Ni0.5Mn0.5)O2. When 0.9LiNO3-0.05Li2CO3 is used as molten salt, the Li(Ni0.5Mn0.5)O2 has a homogeneous particle size distribution. The discharge capacity is 150 mAh g-1 in CC mode, and 200 mAh g-1 in CCCV mode.
     0.9LiNO3-0.05Li2CO3 and 0.38LiOH-0.62LiNO3 molten salt combination both can be used to synthesize Li(Ni0.2Mn0.2Co0.6)O2 materials. Because of the different melting point of the molten salts, the materials have different morphology. Both materials have low discharge capacity. Additionnal high temperature heat treatment can improve the discharge capacity of the material synthesized using 0.38LiOH-0.62LiNO3 as molten salt. The discharge capacity of Li(Ni0.2Mn0.2Co0.6)O2 can reach 150 mAh g-1 after two heat treatments. Other salts such as chloride and sulfate have proved not to be suitable for preparation of layered Li(Ni0.2Mn0.2Co0.6)O2 materials.
     Chloride is good at preparation of spinel materials.0.5NaCl-0.5KCl and 0.6LiCl-0.4KCl both can be used to synthesize LiMn2O4 materials. Morphology of LiMn2O4 prepared using 0.5NaCl-0.5KCl as molten salt has aggregated spherical particles in the nanosized range. The resulting discharge capacity is 124 mAh g-1 with excellent cycling performance.
     Finally, on the basis of the above-mentioned materials, the thesis summarizes molten salt selection rules and the preparation parameters for the molten salt synthesis of lithium-ion battery cathode material. Except for chloride and sulfate, other lithium containing salts or combinations can be used for the preparation of layered materials. Chloride molten salt is useful to prepare spinel structure material. Molten salt synthesis at around 800℃for 5-6 hours is enough to obtain battery materials with good morphology and electrochemical properties. Paremeters of salts such as melting point affects the morphology and thereby affects the electrochemical performance. Therefore choice of the salts combination as well as the synthesis parameters has proved to be critical to the cycling performance.
引文
[1]Tsutomu Ohzuku, Ralph J.Brodd. An overview of positive-electrode materials for advanced lithium-ion batteries. Journal of Power Sources,2007,174:449-456.
    [2]J.B.Goodenough, K.Mizushima. United Kingdom Patent,1979, GB 11953/79.
    [3]Kazunori Ozawa. Lithium ion rechargeable batteries. Wiley-vch, Weinheim,2009.
    [4]郭炳焜,徐徽,王先友,肖立新.锂离子电池.中南大学出版社,长沙,2002.
    [5]http://crdm.medtronic.com.cn/patients/history_of_pacemakers.htm
    [6]韩立明,谭玲生,刘浩杰.锂离子电池在航天领域的应用.电子元器件资讯,2008,11: 63-65.
    [7]http://www.transportation.anl.gov/,2000
    [8]M.Armand, J.-M.Tarascon. Building better batteries. Nature,2008,451:652-657.
    [9]Argonne national laboratory. Costs of lithium-ion batteries for vehicles.
    [10]Tsutomu Ohzuku, Atsushi Ueda. Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ionics,1994,69,201-211.
    [11]Gholam-Abbas Nazri, Gianfranco Pistoia (Eds.) Lithium batteries science and technology. Kluwer Academic Publishers, Norwell (USA),2004
    [12]W.Li, J.Currie. Morphology effects on the electrochcemical performance of LiNi1-xCoxO2. Journal of The Electrochemical Society,1997,144:2773-2779.
    [13]Tsutomu Ohzuku, Yoshinari Makimura. Layered lithium insertion material of LiNi1/2Mn1/2O2:a possible alternative to LiCo02 for advanced lithium-ion batteries. Chemistry Letters,2001:744-745.
    [14]Yoshinari Makimura, Tsutomu Ohzuku. Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries. Journal of Power Sources,2003,119-121:156-160.
    [15]Tsutomu Ohzuku, Palph J.Brodd. An overview of positive-electrode materials for advanced lithium-ion batteries. Journal of Power Sources,2007,174:449-456.
    [16]M.-H.Lee, Y.-J.Kang, S.-T.Myung, Y.-K.Sun. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. ElectrochimicaActa,2004,50:939-948.
    [17]K.Amine, H.Tukamoto, H.Yasuda, Y.Fujita. A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries. Journal of The Electrochemical Society,1996,143: 1607-1613.
    [18]Qiming Zhong, Arman Bonakdarpour, Meijie Zhang, Yuan Gao, J.R.Dahn. Synthesis and Electrochemistry of LiNixMn2-xO4. Journal of The Electrochemical Society,1997,144, 205-212.
    [19]Tsutomu Ohzuku, Sachio Takeda, Masato Iwanaga. Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me:3d-transition metal) having spinel-framework structures:a series of 5 volt materials for advanced lithium-ion batteries. Journal of Power Sources,1999, 81-82:90-94.
    [20]K.M.Shaju, G.V.Subba Rao, B.V.R.Chowdari. Spinel phases, LiM1/6Mn11/6O4 (M=Co, CoAl, CoCr, CrAl), as cathodes for lithium-ion batteries. Solid State Ionics,2002,148: 343-350.
    [21]J.-H.Kim, S.-T.Myung, Y.-K.Sun. Molten salt synthesis of LiNi0o.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochimica Acta,2004,49: 219-227.
    [22]A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of The Electrochemical Society,1997,144:1188-1194.
    [23]常照荣,吕豪杰,汤宏伟,付小宁.高密度LiFePO4/C正极材料的合成及其电化学性能研究.功能材料,2009,4:618-620.
    [24]N.Ravet, Y.Chouinard, J.F.Magnan, S.Besner, M.Gauthier, M.Armand. Electroactivity of natural and synthetic triphylite. Journal of Power Sources,2001,97-98:503-507.
    [25]Chen YK, Okada S, Yamaki J. Preparation and characterization of LiFePO4/Ag composite for Li-ion batteries. Composite Interfaces,2004,11:277-283.
    [26]Abbate M, Lala SM, Montoro LA. Ti-, Al-, and Cu-doping induced gap states in LiFePO4. Electrochemical and Solid State Letters,2005,8:A288-A290.
    [27]Li CS, Zhang SY, Cheng FY. Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium ion batteries. Nano Research,2008,1:242-248.
    [28]Brian L.Cushing, John B.Goodenough. Influence of carbon coating on the performance of a LiMn0.5Ni0.5O2 cathode. Solid State Sciences,2002,4:1487-1493.
    [29]J.M.Tarascon, D.Guyomard. Li metal-free rechargeable batteries based on Li1+xMn2O4 cathodes (0≤x≤1) and carbon anodes. Journal of The Electrochemical Society,1991,138: 2864-2868.
    [30]F.Lian, P.Axmann, C.Stinner, Q.G.Liu, M.Wohlfahrt-Mehrens. Comparative study of the preparation and electrochemical performance of LiNi1/2Mn1/2O2 electrode material for rechargeable lithium batteries. Journal of Applied Electrochemistry,2008,38:613-617.
    [31]Xiong Wang, Fu Zhou, Xuemei Zhao, Zude Zhang, Mingrong Ji, Chenming Tang, Tao Shen, Huagui Zheng. Fabrication and characterization of nanosized single-crystalline LiNi0.5Mn0.5O2. Journal of Crystal Growth,2004,267:184-187.
    [32]Yun-sung Lee, Yang-Kook Sun, Kee-Suk Nahm. Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries. Solid State Ionics,1998,109:285-294.
    [33]程永亮,宋武林,谢长生.燃烧法制备氧化物纳米材料的研究进展.材料导报,2003,17:70-72.
    [34]Periasamy P, Kim HS, Na SH. Synthesis and characterization of LiNi0.8Co0.2O2 prepared by a combustion solution method for lithium batteries. Journal of Power Sources,132, 1-2:213-218.
    [35]Park YJ, Hong YS, Wu XL. Structural investigation and electrochemical behaviour of Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 Compounds by a simple combustion method. Journal of Power Sources,129,2:288-295.
    [36]Kwon I, Song MY. Electrochemical properties of LiCoyMn2-yO4 synthesized by the combustion method for lithium secondary battery. Solid State Ionics,2003,158:103-111.
    [37]Yong Joon Park, Young-Sik Hong, Xianglan Wu, Kwang Sun Ryu, Soon Ho Chang. Structural investigation and electrochemical behaviour of Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 compounds by a simple combustion method. Journal of Power Sources,2004,129: 288-295.
    [38]E.I.Santiago, S.T.Amancio-Filho, P.R.Bueno, L.O.S.Bulhoes. Electrochemical performance of cathodes based on LiMn2O4 spinel obtained by combustion synthesis. Journal of Power Sources,2001,97-98:447-449.
    [39]李春喜,王子镐.超声技术在纳米制备中的应用.化学通报,2001,5:268-271.
    [40]S.H.Park, S.K.Kang, Y.C.Kang, Y.S.Lee, Y.K.Sun. Preparation of layered Li[Ni1/2Mn1/2]O2 by ultrasonic spray pyrolysis method. Chemistry Letters,2003,32: 446-447.
    [41]I.Taniguchi, C.K.Lim, D.Song, M.Wakihara. Particle morphology and electrochemical performances of spinel LiMn2O4 powders synthesized using ultrasonic spray pyrolysis method. Solid State Ionics,2002,146:239-247.
    [42]Chi-Hwan Han, Young-Sik Hong, Chang Moon Park, Keon Kim. Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl-Li2CO3. Journal of Power Sources,2001,92:95-101.
    [43]Yongyao Xia, Hidefumi Takeshige, Hideyuki Noguchi, et al. Studies on an Li-Mn-O spinel system (obtained by melt-impregnation) as a cathode for 4V lithium batteries Part 1. Synthesis and electrochemical behaviour of LixMn2O4. J.Power Sources,56,1995:61-67.
    [44]Weiping Tang, Hirofumi Kanoh, Kenta Ooi. Preparation of lithium cobalt oxide by LiCl-flux method for lithium rechargeable batteries. Electrocehmcial and Solid-State Letters,1998,1:145-146.
    [45]Xiaojing Yang, Weiping Tang, Hirofumi Kanoh, Kenta Ooi. Synthesis of lithium manganese oxide in different lithium-containing fluxes. Journal of Materials Chemistry, 1999,9:2683-2690.
    [46]Chi-Hwan Han, Young-Sik Hong, Chang Moon Park, Keon Kim. Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl-Li2CO3. Journal of Power Sources,2001,92:95-101.
    [47]Hongying Liang, Xinping Qiu, Hailong Chen, Zhiqi He, Wentao Zhu, Liquan Chen. Analysis of high rate performance of nanoparticled lithium cobalt oxides prepared in molten KNO3 for rechargeable lithium-ion batteries. Electrochemistry Communications, 2004,6:789-794.
    [48]Hongying Liang, Xinping Qiu, Shicao Zhang, Zhiqi He, Wentao Zhu, Liquan Chen. High performance lithium cobalt oxides prepared in molten KCl for rechargeable lithium-ion batteries. Electrochemistry Communications,2004,6:505-509.
    [49]K.S.Tan, M.V.Reddy, G.V.Subba Rao, B.V.R.Chowdari. High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries. Journal of Power Sources,2005, 147:241-248.
    [50]Hailong Chen, Clare P.Grey. Molten salt synthesis and high rate performance of the "Desert-Rose" form of LiCoO2. Advanced Materials,2008,20:2206-2210.
    [51]Chi-Hwan Han, Young-Sik Hong, Keon Kim. Cyclic performances of HT-LiCo0.8M0.2O2(M=Al, Ni) powders prepared by the molten salt synthesis method. Solid State Ionics,2003,159:241-247.
    [52]Hyung-Wook Ha, Kyung Hee Jeong, Keon Kim. Effect of titanium substitution in layered LiNiO2 cathode material prepared by molten salt-synthesis. Journal of Power Sources, 2006,161:606-611.
    [53]M.V.Reddy, G.V.Subba Rao, B.V.R.Chowdari. Synthesis and electrochemical studies of the 4 V cathode, Li(Ni2/3Mn1/3)O2. Journal of Power Sources,2006,160:1369-1374.
    [54]M.V.Reddy, G.V.Subba Rao, B.V.R.Chowdari. Synthesis by molten salt and cathodic properties of Li(Ni1/3Co1/3Mn1/3)O2. Journal of Power Sources,2006,159:263-267.
    [55]M.V.Reddy, G.V.Subba Rao, B.V.R.Chowdari. Preparation and characterization of LiNi0.5Co0.5O2 and LiNi0.5Co0.4Al0.1O2 by molten salt synthesis for Li ion batteries. Journal of Physical Chemistry C,2007,111:11712-11720.
    [56]Weiping Tang, Xiaojing Yang, Zhonghui Liu, Shuji Kasaishi, Kenta Ooi. Preparation of fine single crystals of spinel-type lithium manganese oxide by LiCl flux method for rechargeable lithium batteries. Part 1.LiMn2O4. Journal of Materials Chemistry,2002,12: 2991-2997.
    [57]杜柯,杨亚男,胡国荣,彭忠东,其鲁.熔盐法制备LiMn2O4材料的合成条件研究.无机化学学报,2008,24(4):615-620.
    [58]杜柯,其鲁,胡国荣,彭忠东.KCl熔盐法制备LiMn2O4.无机化学学报,2006,22(5):867-871.
    [59]J.-H.Kim, S.-T.Myung, Y.-K.Sun. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary bettery. Electrochimica Acta,2004,49: 219-227.
    [60]Lei Wen, Qi Lu, Guoxiang Xu. Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials. Electrochimica Acta,2006,51:4388-4392.
    [61]E.Rossen, C.D.WJones, J.R.Dahn. Structure and electrochemistry of LixMnyLi1-yO2. Solid State Ionics,1992,57:311-318.
    [62]Steen B.Schougaard, Julien Breger, Meng Jiang, Clare P.Grey, John.B.Goodenough. LiNi0.5+δMn0.5-δO2 a high-rate, high capacity cathode for lithium rechargeable betteries. Advanced Materials,2006,18:905-909.
    [63]Kisuk Kang, Ying Shirley Meng, Julien Breger, Clare P.Grey, Gerbrand Ceder. Electrodes with high power and high capacity for rechargeable lithium batteries. Science,2006,311: 977-980.
    [64]Yoyo Hinuma, Ying S.Meng, Kisuk Kang, Gerbrand Ceder. Phase transitions in the LiNi0.5Mn0.5O2 system with temperature. Chemistry of Materials,2007,19:1790-1800.
    [65]谢高阳,俞练民,刘本耀.无机化学丛书第九卷锰分族铁系铂系.科学出版社,北京,1984.
    [66]温元凯,邵俊.离子极化导论.安徽教育出版社,合肥,1985.
    [67]Remesh Chitrakar, Shuji Kasaishi, Aya Umeno, Kohji Sakane, Norio Takagi, Yang-Soo Kim, Kenta Ooi. Synthesis and characterization of lithium nickel manganese oxides and their delithiated phases. Journal of Solid State Chemistry,2002,169:35-43..
    [68]J.Reed, G.Ceder, A.Van Der Ven. Layered-to-spinel phase transition in LixMnO2. Electrochemical and solid-state letters,2001,4(6):A78-A81.
    [69]Zhonghua Lu, D.D.MacNeil, J.R.Dahn. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochemical and Solid-State Letters,2001,4(11):A191-A194.
    [70]Zhonghua Lu, L.Y.Beaulieu, R.A.Donaberger, C.L.Thomas. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. Journal of The Electrochemical Society,2002,149(6):A778-A791.
    [71]K.M.Shaju, G.V.Subba Rao, B.V.R.Chowdari. X-ray photoelectron spectroscopy and electrochemical behaviour of 4 V cathode, Li(Ni1/2Mn1/2)O2. Electrochimica Acta,2003, 48:1505-1514.
    [72]Seong-Hwang Na, Hyun-Soo Kim, Seong-In Moon. A new synthetic route of LiNi0.5Mn0.5O2 as the cathode material of secondary lithium batteries. Electrochimica Acta,2004,50:449-452.
    [73]Y.-K.Sun, C.S.Yoon, Y.S.Lee. Electrochemical properties and structural characterization of layered Li[Ni0.5Mn0.5]O2 cathode materials. Electrochimica Acta,2003,48: 2589-2592.
    [74]S.-H.Kang, J.Kim, M.E.Stoll, D.Abraham, Y.K.Sun, K.Amine. Layered Li(Ni0.5-xMn0.5-xM'2x)O2 (M'= Co, Al, Ti; x=0,0.025) cathode materials for Li-ion rechargeable batteries. Journal of Power Sources,2002,112:41-48.
    [75]K.Amine, H.Tukamoto, H.Yasuda, Y.Fujita. Preparation and electrochemical investigation of LiMn2-xMexO4 (Me:Ni, Fe, and x= 0.5,1) cathode materials for secondary lithium batteries. Journal of Power Sources,1997,68:604-608.
    [76]O.A.Shlyakhtin, Sun-Hee Choi, Young Soo Yoon, Young-Lei Oh. Accelerated synthesis and electrochemical performance of Li1+x(Ni0.5Mn0.5)O2+δ cathode materials. Journal of Power Sources,2005,141:122-128.
    [77]A.Abdel-Ghany, K.Zaghib, F.Gendron, A.Mauger, C.M.Julien. Structural, magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries. Electrochimica Acta,2007,52:4092-4100.
    [78]Xianglong Meng, Shuimei Dou, Wen-lou Wang. High power and high capacity cathode material LiNi0.5Mn0.5O2 for advanced lithium-ion batteries. Journal of Power Sources, 2008,184:489-493.
    [79]R.J.Gummow, M.M.Thackeray, W.I.F.David, S.Hull. Structure and electrochemistry of lithium cobalt oxide synthesized at 400℃. Materials Research Bulletin,1992,27: 327-337.
    [80]Yongyao Xia, Hidefumi Takeshige, Hideyuki Noguchi, Masaki Yoshio. Studies on an Li-Mn-O spinel system (obtained by melt-impregnation) as a chathode for 4 V lithium batteries part 1. synthesis and electrochemical behavior of LixMn2O4. Journal of Power Sources,1995,56:61-67.
    [81]李智敏,罗发,苏晓磊,朱冬梅,周万城.LiMn2O4正极材料的合成及电化学性能.稀有金属材料与工程,2007,36(8):1382-1385.
    [82]Rongzhong Jiang, Deryn Chu. Voltage-time behavior of a polymer electrolyte membrane full cell stack at constant current discharge. Journal of Power Sources,2001,92:193-198.
    [83]S.-H.Kang, K.Amine. Synthesis and electrochemical properties of layer-structured 0.5Li(Ni0.5Mn0.5)O2-0.5Li(Li1/3Mn2/3)O2 solid mixture. Journal of Power Sources,2003, 124:533-537.
    [84]M.M.Thackeray, S.-H.Kang, C.S.Johnson, J.T.Vaughey, S.A.Hackney. Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M= Mn, Ni, Co) for lithium battreis. Electrochemistry Communications,2006,8:1531-1538.
    [85]S.-H.Kang, P.Kempgens, S.Greenbaum, A.J.Kropf, K.Amine, M.M.Thackeray. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M= Mn0.5-xNi0.5-xCo2x,0≤x≤0.5). Journal of Materials Chemistry,2007,17:2069-2077.
    [86]Jeom-Soo Kim, Christopher S.Johnson, John T.Vaughey, Michael M Thackeray, Stephen A.Hackney, Wonsub Yoon, Clare P.Grey. Electrochemical and structural properties of xLi2M'O3-(1-x)LiMn0.5Ni0.5O2 electrodes for lithium betteries (M'= Ti, Mn, Zr; 0≤x <0.3). Chemistry of Materials,2004,16:1996-2006.
    [87]T.Ogasawara, A.Debart, M.Holzapfel, P.Novak, P.G.Bruce. Rechargeable Li2O2 electrode for lithium batteries. Journal of the American Chemical Society,2006,128:1390-1393.
    [88]http://www.lasurface.com/database/elementxps.php
    [89]Sun-Ho Kang, Sang-Ho Park, Christopher S.Johnson, Khalil Amine. Effects of Li content on structure and electrochemical properties of Li1+x(Ni0.5Mn0.5)1-xO2 (0≤x≤0.15) electrodes in lithium cells (1.0-4.8 V). Journal of The Electrochemical Society,2007, 154(4):A268-A274.
    [90]S.-H.Kang, C.S.Johnson, J.T.Vaughey, K.Amine, M.M. Thackeray. The effects of acid treatment on the electrochemical properties of 0.5Li2Mn03-0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. Journal of Electrochemical Society,2006,153(6): A1186-A1192.
    [91]P.Afanasiev, C.Geantet. Synthesis of solid materials in molten nitrates. Coordination Chemistry Reviews,1998,178-180:1725-1752.
    [92]M.V.Reddy, S.Sundar Manoharan, Jimmy John, Brajendra Singh, G.V.Subba Rao, B.V.R.Chowdari. Synthesis, characterization, and electrochemical cycling behavior of the Ru-doped spinel, Li[Mn2-xRux]O4(x= 0,0.1, and 0.25). Journal of the electrochemical society,2009,156(8):A652-A660.
    [93]M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari. Cathodic behavior of NiO-coated Li(Ni1/2Mn1/2)O2. Electrochimica Acta,2005,50:3375-3382.
    [94]Ki Hyun Yoon, Yong Soo Cho, Dong Heon Kang. Molten salt synthesis of lead-based relaxors. Journal of materials science,1998,33:2977-2984.
    [95]S.H.White, U.M.Twardoch. The influence of gas composition on the oxygen electrode reaction in the molten Li2CO3-Na2CO3-K2CO3 eutectic mixture. Electrochimica Acta, 1982,27:1599-1607.
    [96]J.Jiang, K.W.Eberman, L.J.Krause, J.R.Dahn. Structure, electrochemical properties, and thermal stability studies of Li[Ni0.2Co0.6Mn0.2]O2, effect of synthesis route. Journal of the electrochemical society,2005,152(9):A1874-A1878.
    [97]Yassine Bentaleb, Ismael Saadoune, Kenza Maher, Latifa Saadi, Kenjiro Fujimoto, Shigeru Ito. On the LiNi0.2Mn0.2Co0.6O2 positive electrode material. Journal of Power Sources,2010,195:1510-1515.
    [98]Hong-wei Tang, Zhi-hong Zhu, Zhao-rong Chang, Zhong-jun Chen, Ziao zi Yuan, Haijing Wang. Synthesis and electrochemical properties of high-density LiNi0.8Co0.2O2 for the lithium-ion battery cathode. Electrochemical and solid-state letters,2008,11(3): A34-A37.
    [99]K.Matsuda, I.Taniguchi. Relationship between the electrochemical and particle properties of LiMn2O4 prepared by ultrasonic spray pyrolysis. Journal of Power Sources,2004, 132:156-160.
    [100]Xiangming He, Jianjun Li, Yan Cai, Changyin Jiang, Chunrong Wan. Preparation of spherical spinel LiMn2O4 cathode material for Li-ion batteries. Materials Chemistry and Physics,2006,95:105-108.
    [101]H.Huang, C.H.Chen, R.C.Perego, E.M.Kelder, L.Chen, J.Schoonman, W.J.Weydanz, D.W.Nielsen. Electrochemical characterization of commercial lithium manganese oxide powders. Solid State Ionics,2000,127:31-41.
    [102]yuelan Zhang, Heon-Cheol Shin, Jian Dong, Meilin Liu. Nanostructured LiMn2O4 prepared by a glycine-nitrate process for lithium-ion batteries. Solid State Ionics,2004, 171:25-31.
    [103]T.Le Mercier, J.Gaubicher, E.Bermejo, Y.Chabre, M.Quarton. Morphology and electrochemical behavior of an ultrafine LiMn2O4 powder obtained by a new route, from freeze-dried precursors. Journal of Materials Chemistry,1999,9:567-570.
    [104]Yang-Kook Sun, Sung-Ho Jin. Synthesis and electrochemical characteristics of spinel phase LiMn2O4-based cathode materials for lithium polymer batteries. Journal of Materials Chemistry,1998,8(11):2399-2404.
    [105]J.-H.Choy, D.-H.Kim, C.-W.Kwon, S.-J.Hwang, Y.-I.Kim. Physical and electrochemical characterization of nanocrystalline LiMn2O4 prepared by a modified citrate route. Journal of Power Sources,1999,77:1-11.
    [106]Kwang-Taek Hwang, Woo-Sik Um, Hee-Soo Lee, Jun-Kwang Song, Kyung-Won Chung. Powder synthesis and electrochemical properties of LiMn2O4 prepared by an emulsion-drying method. Journal of Power Souces,1998,74:169-174.
    [107]G.Pistoia, R.Rosati. Synthesis of an efficient LiMn2O4 for lithium-ion cells. Journal of Power Sources,1996,58:135-138.
    [108]B.J.Hwang, R.Santhanam, D.GLiu. Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. Journal of Power Sources,2001,97-98: 443-446.
    [109]Sung Bin Park, Sang Myung Lee, Ho Chul Shin, Won Il Cho, Ho Jang. An alternative method to improve the electrochemical performance of a lithium secondary battery with LiMn2O4. Journal of Power Sources,2007,166:219-225.
    [110]Xian Ming Wu, Xin Hai Li, Zhuo Bing Xiao, Jianben Liu, Wen Bin Yan, Ming You Ma. Synthesis and characterization of LiMn2O4 powders by the combustion-assisted sol-gel technique. Materials Chemistry and Physics,2004,84:182-186.
    [111]Daniela Kovacheva, Hristo Gadjov, Kostadin Petrov, Sankar Mandal, Monica.G.Lazarraga, Laura Pascual, J.Manuel Amerilla, Rosa M.Rojas, Pilar Herrero, Jose M.Rojo. Synthesizing nanocrystalline LiMn2O4 by a combustion route. Journal of Materials Chemistry,2002,12:1184-1188.
    [112]徐俊峰,江志裕.合成条件对尖晶石LiMn2O4的电化学性能的影响.电化学,2001,7(4): 421-426.
    [113]J.T.Son, H.G.Kim, Y.J.Park. New preparation method and electrochemical property of LiMn2O4 electrode. Electrochimica Acta,2004,50:453-459.
    [114]Lianqi Zhang, Takeo Yabu, Izumi Taniguchi. Synthesis of spherical nanostructured LiMxMn2-xO4 (M=Ni2+, Co3+, and Ti4+; 0≤x≤0.2) via a single-step ultrasonic spray pyrolysis method and their high rate charge-discharge performance. Materials Research Bulletin,2009,44:707-713.
    [115]M.V.Reddy, S.Sundar Manoharan, Jimmy John, Brajendra Singh, G.V.Subba Rao, B.V.R.Chowdari. Synthesis, characterization, and electrochemical cycling behavior of the Ru-doped spinel, Li[Mn2-xRux]O4 (x= 0,0.1, and 0.25). Journal of The Electrochemical Society,2009,156(8):A652-A660.
    [116]Ying Bai, Feng Wang, Feng Wu, Chuan Wu, Li-ying Bao. Influence of composite LiCl-KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12. ElectrochemicaActa,2008,54:322-327.
    [117]Yongyao Xia, Masaki Yoshio. Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part Ⅱ. Optimum spinel from γ-MnOOH. Journal of Power Sources,1995,57:125-131.
    [118]Shuhua Ma, Hideyuki Noguchi, Masaki Yoshio. Synthesis and electrochemical studies on Li-Mn-O compounds prepared at high temperatures. Journal of Power Sources,2004, 126:144-149.
    [119]V.Chauvaut, E.Duval, B.Malinowska, M.Cassir, P.Marcus. XPS study of titanium species exposed to molten Li2CO3-Na2CO3 in the anodic conditions used in molten carbonate fuel cells. Journal of Materials Science,1999,34:2015-2022.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700