高温胁迫下水稻幼穗基因表达谱和高温诱导型启动子分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候变暖,高温胁迫(热害)已成为全球范围的一个严重影响植物的生长和农作物产量的主要非生物逆境因子。微阵列技术已广泛应用于系统研究植物对复杂的不利环境因子变化的响应机制。微阵列技术可高效获取组织特异性和逆境响应特异表达基因。本研究微阵列分析技术对不同时间高温胁迫下水稻减数分裂后期幼穗进行了全基因组水平表达谱分析以获取高温胁迫响应基因信息。高效逆境特异响应启动子可用于驱动耐逆相关基因的高效表达以提高植物耐逆性。本研究从已有水稻微阵列数据筛选出来6个非生物胁迫应答基因,进一步利用定量PCR分析了这6个基因的在不同的器官和非生物逆境胁迫下表达模式;对其中3个胁迫诱导基因进行了启动子元件分析和启动子驱动的GUS表达分析。主要研究结果如下:
     1.利用Agilent44K水稻芯片获得了不同时间高温胁迫下水稻减数分裂后期幼穗的全基因组水平表达谱。获得了1815个水稻幼穗高温胁迫下差异表达基因进行了分析和评价。
     2.GO分类和基因表达模式分析结果表明,水稻穗中的热响应(HR)调控基因主要涉及转录因子、蛋白质修饰和降解、植物激素响应因子、受体激酶,钙相关蛋白质等。热激响应调控相关的转录因子家族主要包括bZIP、WRKY、NAC、C2H2、 MYB、MADS、bHLH和AP2/ERF家族。在高温胁迫下这些家族的基因大部分受到了不同程度的上调。
     3.基因表达谱分析表明:在高温胁迫下水稻幼穗中活性氧(ROS)系统相关基因的复杂的变化有助于保持ROS的平衡。高温胁迫促进了泛素蛋白酶体系统(UPS)基因表达。一些泛素-蛋白连接酶E3家族基因在高温胁迫下得到不同程度的上调,表明在幼穗高温响应和胁迫应对中发挥重要作用。
     4.水稻穗热响应的代谢相关的基因主要涉及细胞壁的形成和脂质代谢,特别是次生代谢途径。大多数代谢相关基因在高温胁迫下被一定程度下调,这种代谢抑制的将有助于植物应对逆境条件。
     5.从逆境胁迫下水稻微阵列分析数据中筛选除了6个显著高温诱导表达基因。采用定量PCR方法对这6个基因在不同组织器官和高温、盐胁迫聚乙二醇(PEG)和低温胁迫以及和脱落酸(ABA)处理下的表达特征进行了分析。6个基因的表达都受高温显著诱导,对盐胁迫PEG和ABA有一定程度响应,但对低温胁迫几乎不响应。在正常生长条件下6个基因在不同组织器官均有不同程度表达。
     6.利用PlantCARE and PLACE在线软件对3个高温诱导基因的启动子(OsHsfB2c,PM19p和HSP90p)进行了启动子元件分析,发现3个启动子都存在一些逆境响应相关元件,如G-box, GC-motif, HSE and ABRE。利用这3个启动子驱动GUS报告基因在转基因水稻中表达,进行了高温和干旱胁迫下转基因水稻幼穗和叶片中的GUS基因表达、组织化学染色和GUS酶活性分析。在高温胁迫下3个启动子的转基因水稻叶片和幼穗中都表现出很高的GUS活性,以OsHsfB2c和MP19p的幼穗在高温下的活性更高。实验结果表明OsHsfB2c和PM19启动子具有显著高温诱导特性,对其启动子的顺式元件的进一步鉴定和改造有可能获得在植物基因工程应用中具有重要价值的高温诱导型启动子。
With the increasing global warming, heat stress is becoming a major abiotic stress limiting plant growth and productivity around the world. Microarray has been widely used to systematically investigate the molecular reactions by which plants respond and adapt to complicated environment. Microarray was also applied to profile the tissue-specific and stress-specific gene expression. In present study, a time course gene expression profile of post-meiosis rice panicle under heat stress was performed by microarray to uncover the genome-wide gene response to heat stress. Stress-inducible promoters are considered to be ideal for driving specific gene expression for increased abiotic stress tolerance. Six highly heat responsive genes were identified from microarray data for their promoter analysis. The expression patterns of these six genes in different rice organs and under abiotic stresses were further confirmed by quantitative RT-PCR and three highly stress-inducible genes were selected for promoter-driven GUS expression analysis under heat and drought treatments in panicles and flag leaves. The major results are as followed:
     1. A time course whole genome rice gene expression profile in post-meiosis rice panicle under heat stress was obtained using Agilent44K rice microarray. A total of1815differentially expressed genes (DEGs) in rice panicle under heat treatment were identified.
     2. The results from GO retrieve and gene expression pattern analysis showed that the heat-responsive (HR) regulation-related genes in rice panicle are mainly classified as transcription factors, protein modification and degradation, phytohormones responsive factors, receptor kinases, and calcium-related proteins. The HR regulation-related transcription factors consist of bZIP, WRKY, NAC, C2H2, MYB, MADS, bHLH, and AP2/ERF families and more than half of these genes were up-regulated to a different extent under high temperature.
     3. The expression profile analysis showed that the complicated changes of ROS-related genes in rice panicle under heat stress are important in maintaining ROS balance. Ubiquitin-proteasome system (UPS) was enhanced under heat stress. HR UPS-related genes from E3families were up-regulated to different extent upon heat shock in rice panicle, suggesting that the UPS-related genes play important positive roles in panicle response to heat.
     4. Metabolism-related HR genes in rice panicle were mainly involved in cell wall formation, lipid metabolism and especially in secondary metabolisms. Most metabolism- related genes were slightly repressed under heat treatment, which suggested that the inhibition of metabolism in rice panicle under high temperature would be helpful for plant response to adverse environments.
     5. Six highly heat responsive genes were identified from microarray data for their promoter analysis. The expression pattern of these six genes in different rice organs and under abiotic stresses were analyzed by quantitative RT-PCR. Expression of these six genes were highly heat inducible, moderately responded to salt stress, polyethylene glycol (PEG) and abscisic acid (ABA), but little affected to cold treatment. Under normal conditions, expression of the six genes was detected in all the organs analyzed but at different levels.
     6. The promoter analysis of the three highly heat-inducible genes (OsHsfB2cp, PM19p and HSP90p) by PlantCARE and PLACE showed some stress response-related elements, such as G-box, GC-motif, HSE and ABRE in the three promoters. These three promoters were used to drive GUS gene expression in rice. GUS gene expression, histochemical staining and GUS activities in panicles and flag leaves of the transgenic rice plants was analyzed under heat and drought treatments. The three promoters exhibited similar high activity lever in rice leaf under heat, but OsHsfB2cp and PM19p showed much higher activities in panicles under heat stress. Our work confirmed that the OsHsfB2c and PM19promoters were highly heat inducible and further characterization and reconstruction of cis-elements in their promoters could lead to the development of highly effective heat-inducible promoters for plant genetic engineering.
引文
[1]Gao JP, Chao DY, Lin HX. Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice [J]. Journal of Integrative Plant Biology, 2007,49(6):742-750.
    [2]Jung KH, Lee JW, Dardick C, Seo YS, Cao PJ, Canlas P, Phetsom J, Xu X, Shu OY, An KS, Cho YJ, Lee GC, Lee YS, An GH, Ronald CP. Identification and Functional Analysis of Light-Responsive Unique Genes and Gene Family Members in Rice [J]. PLoS Genetics,2008,4(8):1-19.
    [3]Lafitte HR, Ismail A, Bennett J. New directions for a diverse planet. Proceedings of the 4th International Crop Science Congress,26 September-1 October 2004, Brisbane, Australia.
    [4]Li SH, Tian XH, Huang YP, Liu AY, Preliminary analysis of high temperature harm in middle-season rice at flowering stage in Jianghan Plain in the latest 50 years [J]. Chinese Journal of Agrometeorology,2007,28(1):5-8.
    [5]Bray EA, Bailey-Serres J, and Weretilnyk E. Responses to abiotic tresses. In Biochemistry and Molecular Biology of Plants, Buchanan BB, Gruissem W, and Jones RL, eds (Rockville, MD:American Society of Plant Biologists),2000,1158-1203.
    [6]Chinnusamy V, Schumaker K, Zhu J. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants [J]. Journal of Experimental Botany,2004,55:225-236.
    [7]Sarangi S, Ghosh J, Bora A, Das S, Mandal AB. Agrobacterium-mediated genetic transformation of indica rice varieties involving Am-SOD gene [J]. Indian Journal of Biotechnology,2011,10:9-18.
    [8]Bartels D, Sunkar R. Drought and salt tolerance in plants [J]. Crit Rev Plant Sci, 2005,24:23-58.
    [9]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought stress. In K Shinozaki, K Yamaguchi-Shinozaki, eds, Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. R.G. Landes, Austin, TX 1999,11-28.
    [10]Ingram J, Bartels D The molecular basis of dehydration tolerance in plants [J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:377-403.
    [11]Shinozaki K, Yamaguchi-Shinozaki, K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways [J]. Curr. Opin. Plant Biol,2000,3:217-223.
    [12]Zhu JK. Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol,2002,53:247-273.
    [13]Prasad PVV, Staggenborg SA, Ristic Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In:Ahuja L.H., Saseendran S.A., editors. Response of Crops to Limited Water:Understanding and Modeling Water Stress Effects on Plant Growth Processes. (Advances in Agricultural Systems Modeling Series 1). ASA-CSSA, Madison, WI, USA,2008, 301-355.
    [14]Margaret CJ, Campbell BC, Godwin ID. Transgenic Plants for Abiotic Stress Resistance [J]. Transgenic Crop Plants,2010,2:67-132.
    [15]Tester M, Bacic M. Abiotic stress tolerance in grasses. From model plants to crop plants [J]. Plant Physiology,2005,137:791-793.
    [16]Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants [J]. J Exp Bot,2004,55:225-236.
    [17]Boyer JS. Plant productivity and environment [J]. Science,1982,218:443-448.
    [18]Suleyman I. Allakhverdiev, Vladimir D. Kreslavski, Vyacheslav V. Klimov, Dmitry A. Los, Robert Carpentier, Prasanna Mohanty. Heat stress:an overview of molecular responses in photosynthesis [J]. Photosynth Res,2008,98:541-550
    [19]Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants:An overview [J]. Environmental and Experimental Botany,2007,61:199-223.
    [20]Peng SB, Huang JL, Sheehy E J, Laza CR, Visperas MR, Zhong XH, Centeno SG, Khush SG, Cassman GK. Rice yields decline with higher night temperature from global warming [J]. PNAS 2004,101(27):9971-9975.
    [21]Howarth CJ. Genetic improvements of tolerance to high temperature. In:Ashraf M, Harris PJC. (Eds.) Abiotic Stresses:Plant Resistance Through Breeding and Molecular Approaches. Howarth Press Inc, New York.2005
    [22]Smertenko A, Draber P, Viklicky V, Opatrny Z. Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells [J]. Plant Cell Environ, 1997,20:1534-1542.
    [23]Pareek A, Singla SL, Grover A. Immunological evidence for accumulation of two novel 104 and 90 kDa HSPs in response to diverse stresses in rice and in response to high temperature stress in diverse plant genera [J]. Plant Mol. Biol,1995:29:293-300.
    [24]Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen T, Marmiroli N. Molecular genetics of heat tolerance and heat shock proteins in cereals [J]. Journal of Plant Molecular Biology,2002,48:667-681.
    [25]Satake T, Yoshida S. High temperature-induced sterility in indica rices at flowering [J]. Japanese Journal of Crop Science,1978,47:6-17.
    [26]Farrell TC, Fox KM, Williams RL, Fukai S. Genotypic variation for cold tolerance during reproductive development in rice:screening with cold air and cold water [J]. Field Crops Research,2006,98:178-194.
    [27]IRRI (1976). Annual Report. Manila, The Philippines:IRRI.
    [28]Yoshida S. Fundamentals of Rice Crop Science. Los Banos, The Philippines:IRRI. 1981.
    [29]Zhang JZ, Creelman RA, Zhu JK. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops [J]. Plant Physiology,2004,135:615-621.
    [30]Timperio AM, Egidi MG, Zolla L. Proteomics applied on plant abiotic stresses:role of heat shock proteins (HSP) [J]. Journal of Proteomics,2008,71:391-411.
    [31]Shan F, Huang J, Cui K, Nie L, Shan T, Chen C, Wang K. CLIMATE CHANGE AND AGRICULTURE PAPER Impact of high-temperature stress on rice plant and its traits related to tolerance [J]. Journal of Agricultural Science,2011:1-12.
    [32]Chandel G, Dubey M, Meena R. Differential expression of heat shock proteins and heat stress transcription factor genes in rice exposed to different levels of heat stress [J]. J. Plant Biochem. Biotechnol.2013,22(3):277-285.
    [33]Dey MM, Upadhyaya HK. Yield Loss Due to Drought, Cold and Submergence Tolerance. In:Evenson RE, Herdt RW, Hossain M., editors. Rice Research in Asia: Progress and Priorities. UK:International Rice Research Institute in Collaboration with CAB International.1996.
    [34]Wang Y, Xue Y, Li J. Towards molecular breeding and improvement of rice in China [J]. Trends Plant Sci,2005,10:610-614.
    [35]Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought:from genes to the whole plant [J]. Functional Plant Biology,2003,30:239-264.
    [36]Mahajan S, Tuteja N. Cold, salinity and drought stresses:An overview [J]. Archives of Biochemistry and Biophysics,2005,444:139-158.
    [37]Rampino P, Pataleo S, Gererdi C, Mita G, Perrotta C. Drought response in wheat: physiological and molecular analysis of resistant and sensitive genotypes [J]. Plant Cell Environ,2006,29:2143-2152.
    [38]Bartels D, Souer E. Molecular responses of higher plants to dehydration. In Plant Responses to Abiotic Stress (eds H. Hirt and K. Shinozaki), Springer-Verlag, Berlin and Heidelberg, Germany.2004,9-38.
    [39]Zhu X, Gong H, Chen G, Wang S, Zhang C. Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages [J]. Journal of Arid Environments,2005,62:1-14.
    [40]Zhou JL, Wang XF, Jiao YL, Qin YH, Liu XG, He K, Chen C, Ma LQ Wang J, Xiong LZ, Zhang QF, Fan LM, Deng XW. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle [J]. Plant Molecular Biology,2007,63:591-608.
    [41]Battaglia M, Solorzano RM, Hernandez M, Cuellar-Ortiz S, Garcia-Gomez B, Marquez J, Covarrubias AA. Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings [J]. Planta,2007,225:1121-1133.
    [42]Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants [J]. Trends Plant Sci,2007,12:444-451.
    [43]Lafitte HR, Ismail A, Bennett J. Abiotic stress tolerance in rice for Asia:progress and the future. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia,2004.
    [44]Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis [J]. Plant J,2008,56:613-626.
    [45]Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two dimensional electrophoresis [J]. Plant Physiol,2009,149:916-928.
    [46]Vinocur, B, Altman A. Recent advances in engineering plant tolerance to abiotic stress:Achievements and limitations [J]. Curr. Opin. Biotechnol,2005,16:123-132.
    [47]Cramer GR, Nowak RS. Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley [J]. Physiologia Plantarum,1992,84(4):600-605.
    [48]Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. Molecular responses to drought, salinity and frost:common and different paths for plant protection [J]. Current Opinion in Biotechnology,2003,14:194-199.
    [49]Avni Oktem H, Eyidogan F, Selcuk F, Tufan Oz M, da Silva JAT, Yucel M. Revealing Response of Plants to Biotic and Abiotic Stresses with Microarray Technology [J]. Genes, Genomes and Genomics,2008,14-48.
    [50]Bray EA, Bailey-Serres J, Weretilnyk E. Responses to abiotic stresses. In:W. Gruissem, B. Buchnnan and R. Jones (Eds.). Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists. Rockville. MD,2000,1158-1249.
    [51]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance [J]. Planta,2003,218: 1-14.
    [52]Ludwig F, De Kroon H, Berendse F, Prins HHT. The influence of savanna trees on nutrient, water and light availability and the understorey vegetation [J]. Plant Ecol, 2004,170:93-105.
    [53]Zhu JK. Plant salt tolerance [J]. Trends in Plant Sci,2001,6:66-71.
    [54]Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum [J]. Plant Cell,2000,12:111-124.
    [55]Cho H, Brotherton J, Song H, Widholm JM. Increasing tryptophan synthesis in a forage legume Astragalus sinicus by expressing the tobacco feedback-insensitive anthranilate synthase (ASA2) gene [J]. Plant Physiol,2000,123:1069-1076.
    [56]Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells [J]. Biochim. Biophys.Acta,2000,1465:140-151.
    [46]Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management [J]. Agronomy of Sustainable Development, 2009,29:185-212.
    [47]Udvardi MK, Kakar K, Wandrey M, Montanri O, Murray J, Andraiankaja A, Zhang JY, Benedito V, Hofer JMI, Cheng F, Town CD. Legume transcription factors:global regulators of plant development and response to the environment [J]. Plant Physiology,2007,144:538-549.
    [48]Agarwal PK, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signaling [J]. Biologia Plantarum,2010,54:201-212.
    [49]Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, PilgrimM, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. Arabidopsis transcription factor:genome wide comparative analysis among eukaryotes [J]. Science,2000,290:2105-2110.
    [50]Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants:discovering and tailoring genes to unlock the future [J]. Current Opinion in Biotechnology,2006,17:113-122.
    [51]Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid:Emergence of a core signaling network [J]. Annual Reviews in Plant Biology,2010,61:651-679.
    [52]Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI. Guard cell signal transduction network:Advances in understanding abscisic acid, CO2, and Ca2+ signaling [J]. Annual Reviews in Plant Biology,2010,61:561-591.
    [53]Saibo NJM, Lourenco T, Oliveira MM. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses [J]. Annals of Botany,2009,103:609-623.
    [54]Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses [J]. Plant Physiology, 2009,149:88-95.
    [55]Liu AL, Zou J, Zhang XW, Zhou XY, Wang WF, Xiong XY, Chen LY, Chen XB. Expression Profiles of Class A Rice Heat Shock Transcription Factor Genes Under Abiotic Stresses [J]. J. Plant Biol,2010,53:142-149.
    [56]Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis [J]. Planta,2008,227:957-967.
    [57]Miller G, Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants [J]. Annal Bot (Lond),2006,98(2):279-288.
    [58]Iba K. Acclimative response to temperature stress in higher plants:approaches of genetic to high temperature stress in diverse plant genera [J]. Annu Rev Plant Biol, 2002,53:225-245.
    [59]Lohmann C, Schumacher GE, Wunderlich M, Schoffl F. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis [J]. Mol Gen Genomics,2004,271:11-21.
    [60]Wang C, Zhang Q, Shou H. Identification and expression analysis of OsHsfs in rice [J]. J Zhejiang Univ Sci B,2009,10(4):291-300.
    [61]Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice:genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses [J]. Plant Physiol Biochem, 2009,47(9):785-795.
    [62]Mittal D, Enoki Y, Lavania D, Singh A, Sakurai H, Grover G. Binding affinities and interactions among different heat shock element types and heat shock factors in rice (Oryza sativa L.) [J]. FEBS Journal,2011,278(17):3076-3085.
    [63]Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HJ, Marmiroli N. Molecular genetics of heat tolerance and heat shock proteins in cereals [J]. Plant Mol Biol, 2002,48:667-681.
    [64]Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array [J]. BMC Genomics,2008,9:432.
    [65]Huang B, Xu C. Identification and characterization of proteins associated with plant tolerance to heat stress [J]. J Integr Plant Biol,2008,50:1230-1237.
    [66]Ogawa D, Kazuo Y, Takumi N. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth [J]. J Exp Bot,2007,58(12):3373-3383.
    [67]Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis [J]. Planta,2008,227(5):957-967.
    [68]Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters [J]. Trends Plant Sci, 2005,10:88-94.
    [69]Reddy PS, Mallikarjuna G, Kaul T, Chakradhar T, Mishra RN, Sopory SK, Reddy MK. Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses [J]. Mol Gen Genet,2010,283:243-254.
    [70]Chen Q, Lauzon LM, DeRocher AE, Vierling E. Accumulation, stability, and localization of a major chloroplast heat-shock protein [J]. Journal of Cell Biology, 1990,110:1873-1883.
    [71]DeRocher AE, Helm KW, Lauzon LM, Vierling E. Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery [J]. Plant Physiology,1991,96:1038-1047.
    [72]Larkindale J, Mishkind M, Vierling E. Plant responses to high temperature. In Plant Abiotic Stress (Ed. Jenks AW, Hasegawa MP), Blackwell Publishing Ltd,9600 Garsington Road, Oxford OX4 2DQ, UK,2005.
    [73]Kiiltz D. Evolution of the cellular stress proteome:from monophyletic origin to ubiquitous function [J]. Journal of Experimental Biology,2003,206:3119-3124.
    [74]Boston RS. Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants [J]. Plant Moleclar Biology,1996,32:191-222.
    [75]Dynan WS, Tjian R. Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins [J]. Nature,1985,316(6031):774-778.
    [76]Lewin, B. Genes IX. Jones and Barlett Publishers, Inc, Sudburry, MA, USA.2008, 609-629.
    [77]Rombauts S, Florquin K, Lescot M, Marchal K, Rouze P, van de Peer Y. Computational approaches to identify promoters and cis-regulatory elements in plant genomes [J]. Plant Physiol,2003,132(3):1162-1176.
    [78]Featherstone M. Coactivators in transcription initiation:here are your orders [J]. Curr. Opin. Genet. Dev,2002,12 (2):149-155.
    [79]Fessele S, Maier H, Zischek C, Nelson PJ, Werner T. Regulatory context is a crucial part of gene function [J]. Trends Genet,2002,18(2):60-63.
    [80]Bagga R, Michalowski S, Sabnis R, Griffith JD, Emerson BM. HMG I/Y regulates long-range enhancer-dependent transcription on DNA and chromatin by changes in DNA topology [J]. Nucl. Acids Res,2000,28(13):2541-2550.
    [81]Carolina RR. Promoters Used to Regulate Gene Expression. Available online from http://www.patentlens.net/daisy/promoters/ext/navaggregator/Date on line: 11/04/2007.
    [82]Yu SM, Ko SS, Hong CY, Sun HJ, Hsing YI, Tong CG, Ho TH. Global functional analyses of rice promoters by genomics approaches [J]. Plant Mol Biol,2007,65: 417-425.
    [83]Zhu LP, Yu Z, Zou CX, Li QL. Plant stress-inducible promoters and their function [J]. Hereditas (Beijing),2010,32(3):229-34.
    [84]Yu SM, Ko SS, Hong CY, Sun HJ, Hsing YI, Tong CG, Ho TH. Global functional analyses of rice promoters by genomics approaches [J]. Plant Mol Biol,2007,65: 417-425.
    [85]Yi N, Oh SJ, Kim YS, Jang HJ, Park SH, Jeong JS, Song SI, Choi YD, Kim JK. Analysis of the Wsil8, a stress-inducible promoter that is active in the whole grain of transgenic rice [J]. Transgenic Res,2011,20:153-163.
    [86]Bhattacharyya J, Chowdhury AH, Ray S, Jha JK, Das S, Gayen S, Chakraborty A, Mitra J, Maiti MK, Basu A, Sen SK. Native polyubiquitin promoter of rice provides increased constitutive expression in stable transgenic rice plants [J]. Plant Cell Rep, 2011,31(2):271-279.
    [87]Wu XL, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter [J]. Plant Cell Rep,2008,28(1):21-30.
    [88]Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK. Arabidopsis CBF3/DREB1A and ABF3 in Transgenic Rice Increased Tolerance to Abiotic Stress without Stunting Growth [J]. Plant Physiology,2005,138:341-351.
    [89]Ganguly M, Roychoudhury A, Sarkar SN, Sengupta DN, Datta SK, Datta K. Inducibility of three salinity/abscisic acid-regulated promoters in transgenic rice with gusA reporter gene [J]. Plant Cell Rep,2011,30:1617-1625.
    [90]Yi N, Kim YS, Jeong MH, Oh SJ, Jeong JS, Park SH, Jung H, Choi YD, Kim JK. Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth [J]. Planta,2010,232:743-754.
    [91]Rai M, He CK, Wu R. Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice [J]. Transgenic Res 2009,18:787-799.
    [92]Karcher SJ. Blue Plants:Transgenic Plants with the Gus Reporter Gene Association for Biology Laboratory Education (ABLE),2002.
    [93]Jefferson RA, Wilson KJ. The GUS gene fusion system. In Gelvin, S.B. and R.A. Schilperoort (eds.) Plant Molecular Biology Manual, Kluwer Academic Publishers (Dordrecht) 1991, B14:1-33.
    [94]McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ. Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean [J]. Plant Cell,1989,1:229-239.
    [95]Liu ZB, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ. Soybean GH3 promoter contains multiple auxin-inducible elements [J]. Plant Cell,1994,6:645-657.
    [96]Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis [J]. Proc Natl Acad Sci USA,2000,97:11655-11660.
    [97]Deyholos M, Galbraith DW. High-density microarrays for gene expression analysis [J]. Cytometry,2001,43:229-238.
    [98]Avni Oktem H, Eyidogan F, Selcuk F, Tufan Oz M, da Silva JAT, Yucel M. Revealing Response of Plants to Biotic and Abiotic Stresses with Microarray Technology [J]. Genes, Genomes and Genomics,2008,14-48.
    [99]Danby K, Gehring C. Engineering drought and salinity tolerance in plants:lessons from genome-wide expression profiling in Arabidopsis [J]. Trends Biotechnol,2005, 23(11):547-552.
    [100]Kim SH, Song M, Lee KJ, Hwang SG, Jang CS, Kim JB, Kim SH, Ha BK, Kang SY, Kim DS. Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation [J]. Mol Biol Rep,2012,39:11231-11248.
    [101]Donson J, Fang Y, Espiritu-Santo G, Xing W, Salazar A, Miyamoto S, Armendarez V, Volkmuth W. Comprehensive gene expression analysis by transcript profiling [J]. Plant Molecular Biology,2002,48:75-97.
    [102]Jing N, Xianghua L, Leslie MH, Lizhong X. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice [J]. Plant Physiol,2010,152:876-890.
    [103]Felipe KT, Larissa MB, Vinicius CG, Rogerio M, Marcia MP. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments [J]. Planta,2006,224:300-314.
    [104]Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F. Dual action of the oxygen species during plant stress responses [J]. Cell Mol Life Sci, 2000,57:779-795.
    [105]Jung KH, An G. Application of MapMan and RiceNet Drives Systematic Analyses of the Early Heat Stress Transcriptome in Rice Seedlings [J]. J. Plant Biol,2012,55: 436-449.
    [106]Wahida A, Gelania S, Ashrafa M, Foolad MR. Heat tolerance in plants:An overview [J]. Environ Exp Botany,2007,61:199-223.
    [107]Jung KH, Ko HJ, Nguyen MX, Kim SY, Ronald P, An G. Genome-wide Identification and Analysis of Early Heat Stress Responsive Genes in Rice [J]. J. Plant Biol,2012,55:458-468.
    [108]Gusev NB, Bukach OV, Marston SB. Structure, properties, and probable physiological role of small heat shock protein with molecular mass 20 kD (Hsp20, HspB6) [J]. Biochemistry (Mosc),2005,70:629-637.
    [109]Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD. Complexity of the heat stress response in plants [J]. Curr Opin Plant Biol,2007,10: 310-316.
    [110]Mayer MP, Bukau B. Hsp70 chaperones:cellular functions and molecular mechanism [J]. Cell Mol Life Sci,2005,62:670-684.
    [111]Han Y, Zhou D, Pang X, Zhang L, Song Y, Tong Z, Bao J, Dai E, Wang J, Guo Z, Zhai J, Du Z, Wang X, Wang J, Huang P, Yang R. DNA microarray analysis of the heat-and cold-shock stimulons in Yersinia pestis [J]. Microbes and Infection,2005, 7(3):335-348.
    [112]Sung DY, Kaplan F, Lee KJ, Guy CL. Acquired tolerance to temperature extremes [J]. Trends Plant Sci,2003,8:179-187.
    [113]Bohnert HJ, Gong Q, Li P, Ma S. Unraveling abiotic stress tolerance mechanisms-getting genomics going [J]. Curr. Opin. Plant Biol,2006,9:180-188.
    [114]Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N. Molecular genetics of heat tolerance and heat shock proteins in cereals [J]. Plant Mol. Biol, 2002,48:667-681.
    [115]Zhang DB, Wilson ZA. Stamen specification and anther development in rice [J]. Chinese Science Bulletin,2009,54:2342-2353.
    [116]Hobo T, Suwabe K, Aya K, Suzuki G, Yano K, Ishimizu T, Fujita M, Kikuchi S, Hamada K, Miyano M, Fujioka T, Kaneko F, Kazama T, Mizuta Y, Takahashi H, Shiono K, Nakazono M, Tsutsumi N, Nagamura Y, Kurata N, Watanabe M, Matsuoka M. Various spatiotemporal expression profiles of anther-expressed genes in rice [J]. Plant Cell Physiol,2008,49:1417-1428.
    [117]Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M. Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses [J]. Plant Physiol,2005,138:1195-1204.
    [118]Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method [J]. METHODS,2001,25(4):402-408.
    [119]Gonzali S, Loreti E, Novi G, Poggi A, Alpi A, Perata P. The use of microarrays to study the anaerobic response in Arabidopsis [J]. Ann Bot 2005,96(4):661-668.
    [120]Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays [J]. Nat Genet,1999,21(1):33-37.
    [121]Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays [J]. Nature, 2000,405(6788):827-836.
    [122]Fujita M, Horiuchi Y, Ueda Y, Mizuta Y, Kubo T, Yano K, Yamaki S, Tsuda K, Nagata T, Niihama M, Kato H, Kikuchi S, Hamada K, Mochizuki T, Ishimizu T, Iwai H, Tsutsumi N, Kurata N. Rice expression atlas in reproductive development [J]. Plant Cell Physiol,2010,51(12):2060-2081.
    [123]Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q. A dynamic gene expression atlas covering the entire life cycle of rice [J]. Plant J, 2010,61(5):752-766.
    [124]Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development [J]. Plant Cell Physiol,2009,50(11):1911-1922.
    [125]Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature:joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation [J]. Plant Cell Physiol,2010,51(9):795-809.
    [126]Zhang XW, Li JP, Liu AL, Zou J, Zhou XY, Xiang JH, Rerksiri W, Peng Y, Xiong XY, Chen XB. Expression Profile in Rice Panicle:Insights into Heat Response Mechanism at Reproductive Stage [J]. PLOS ONE,2012,7(11):1-17.
    [127]Zhang XW, Rerksiri W, Liu AL, Zhou XY, Xiong HR, Xiang JH, Chen XB, Xiong XY. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf [J]. GENE,2013,530:185-192.
    [128]Jie Zou, Cuifang Liu, Xinbo Chen. Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice [J]. Plant Cell Rep 2011, 30:2155-2165.
    [129]Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabi M, Kawagishil-Kobayashi M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development [J]. Plant and Cell Physiology,2009,50:1911-1922.
    [130]Costa M, Nobre MS, Becker JD, Masiero S, Amorim MI, Pereira LG, Coimbra S. Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes [J]. BMC Plant Biol,2013,13:7.
    [131]Rivero RM, Gimeno J, Van Deynze A, Walia H, Blumwald E. Enhanced Cytokinin Synthesis in Tobacco Plants Expressing PSARK::IPT Prevents the Degradation of Photosynthetic Protein Complexes During Drought [J]. Plant Cell Physiol,2010,51: 1929-1941.
    [132]Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice [J]. Plant Cell Physiol,2011,52:344-360.
    [133]Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice [J]. Plant J,2011,65:907-921.
    [134]Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors [J]. Plant J,2011,66:94-116.
    [135]Nijhawan A, Jain M, Tyagi AK, Khurana JP. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice [J]. Plant Physiol,2008,146:333-350.
    [136]Ray S, Dansana PK, Giri J, Deveshwar P, Arora R, Agarwal P, Khurana JP, Kapoor S, Tyagi AK. Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice [J]. Funct Integr Genomics,2011,11:157-178.
    [137]Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter [J]. Plant Cell Rep,2009,28:21-30.
    [138]Sato M, Yamahata H, Watanabe S, Nimura-Matsune K, Yoshikawa H. Characterization of dnaJ multigene family in the cyanobacterium Synechococcus elongatus PCC 7942 [J]. Biosci Biotechnol Biochem,2007:71:1021-1027.
    [139]Ben-Zvi AP, Goloubinoff P. Review:mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones [J]. J Struct Biol,2001:135:84-93.
    [140]Awad W, Estrada I, Shen Y, Hendershot LM. BiP mutants that are unable to interact with endoplasmic reticulum DnaJ proteins provide insights into interdomain interactions in BiP [J]. Proc Natl Acad Sci USA,2008,105:1164-1169.
    [141]Chang HC, Tang YC, Hayer-Hartl M, Hartl FU. SnapShot:molecular chaperones, Part Ⅰ [J]. Cell,2007,128:212.
    [142]Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Doring P. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors [J]. J Biosci,2004,29:471-487.
    [143]Busch W, Wunderlich M, Schoffl F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana [J]. Plant J,2005, 41:1-14.
    [144]Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice:genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses [J]. Plant Physiol Biochem, 2009,47:785-795.
    [145]Mariani, C. and Wolters-Arts, M. Complex waxes [J]. Plant Cell,2000,12:1795-1798.
    [146]Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K. A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine [J]. Plant Mol. Biol,2003, 53:107-116.
    [147]Hobo T, Suwabe K, Aya K, Suzuki G, Yano K, Ishimizu T, Fujita M, Kikuchi S, Hamada K, Miyano M, Fujioka T, Kaneko F, Kazama T, Mizuta Y, Takahashi H, Shiono K, Nakazono M, Tsutsumi N, Nagamura Y, Kurata N, Watanabe M, Matsuoka M. Various spatiotemporal expression profiles of anther-expressed genes in rice [J]. Plant Cell Physiol,2008,49(10):1417-28.
    [148]Wahid A, Ghazanfar A. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant Physiol,2006:163:723-730.
    [149]Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY. Transcriptional regulation of plant secondary metabolism [J]. J Integr Plant Biol,2012,54(10):703-12.
    [150]Vogt T. Phenylpropanoid biosynthesis [J]. Mol. Plant,2010,3:2-20.
    [151]Vranova E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network [J]. Mol. Plant,2012,5:318-333.
    [152]Hua WH, Hua GH, Hana B. Genome wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice [J]. Plant Science,2009,176(4):583-590.
    [153]Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress [J]. Plant Physiol 2007,143(4):1467-1483.
    [154]Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ. Physiological and proteomic approaches to address heat tolerance during anthesis in rice(Oryza sativa L.) [J]. J Exp Bot,2010,6(1):143-156.
    [155]Chauhan H, Khurana N, Agarwal P, Khurana P. Heat shock factors in rice(Oryza sativa L.):genome-wide expression analysis during reproductive development and abiotic stress [J]. Mol Genet Genomics,2011,286(2):171-187.
    [156]Singh A, Mittal D, Lavania D, Agarwal M, Mishra RC, Grover A. OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.) [J]. Cell Stress and Chaperones,2012,17(2): 243-254.
    [157]Ye SF, Yu SW, Shu LB, Wu JH, Wu AZ, Luo LJ. Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice [J]. Molecular Biology,2012,57(4):336-343.
    [158]Liu AL, Zou J, Zhang XW, Zhou XY, Wang WF, Xiong XY, Chen LY, Chen XB. Expression Profiles of Class A Rice Heat Shock Transcription Factor Genes Under Abiotic Stresses [J]. J. Plant Biol,2010,53:142-149.
    [159]Zou J, Liu AL, Chen XB, Zhou XY, Gao G, Wang W, Zhang XW. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment [J]. Journal of Plant Physiology,2009,166(8):851-861.
    [160]Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set:protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses [J]. Plant J,2007,50:347-363.
    [161]Larkindale J, Hall JD, Knight MR, Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance [J]. Plant Physiol,2005,138:882-897.
    [162]Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses [J]. Plant Physiol,2009, 149:88-95.
    [163]Mangelsen E, Kilian J, Harter K, Jansson C, Wanke D, Sundberg E. Transcriptome Analysis of High-Temperature Stress in Developing Barley Caryopses:Early Stress Responses and Effects on Storage Compound Biosynthesis [J]. Mol Plant,2011,4: 97-115.
    [164]Jagadish SVK, Muthurajan R, Rang ZW, Malo R, Heuer S, Bennett J, Craufurd PQ. Spikelet Proteomic Response to Combined Water Deficit and Heat Stress in Rice (Oryza sativa cv. N22) [J]. Rice,2011,4:1-11.
    [165]Hofgen R, Willmitzer L. Storage of competent cells for Agrobacterium transformation [J]. Nucleic Acids Research,1998,16(20):9877.
    [166]Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice [J]. Plant J,2006,47(6):961-976.
    [167]Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions:β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants [J]. The EMBO Journal, 1987,6(13):3901-3907.
    [168]Fior S, Gerola PD. Impact of ubiquitous inhibitors on the GUS gene reporter system: evidence from the model plants Arabidopsis, tobacco and rice and correction methods for quantitative assays of transgenic and endogenous GUS [J]. Plant Methods,2009,5(19):1-11.
    [169]Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.) [J]. J Exp Bot,2010,6(1):143-156.
    [170]Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. High Temperatures Cause Male Sterility in Rice Plants with Transcriptional Alterations During Pollen Development [J]. Plant Cell Physiol,2009,50(11):1911-1922.
    [171]Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature:joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation [J]. Plant Cell Physiol,2010,51(5):795-809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700