永磁轨道上方高温超导块材磁悬浮实验与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1986年发现了可以工作在液氮温区的YBCO高温超导体以来,世界上许多科学家纷纷对其表示了极大的兴趣并投入大量的精力进行研究,使得高温超导体的性能不断提高,为其在工程方面的应用开辟了广阔的前景。由于YBCO高温超导块材拥有较强的磁通钉扎能力而具有自稳定的悬浮特性,因此具有巨大的应用潜力。本研究小组对高温超导磁悬浮列车系统进行了大量的研究工作,并于2000年12月31日研制成功世界首辆载人高温超导磁悬浮实验车。
     为了使高温超导磁悬浮车系统早日走向工程应用,系统地进行实验研究耗资巨大,所以,本论文提出了一种求解高温超导块材磁悬浮特性的三维数值模型,描述了该磁悬浮三维数值计算原理。本三维模型采用虚拟电导率的方法,将高温超导块材分为两种块材叠加来模拟超导块材内部的电流各向异性;论文中详细地描述了两种永磁轨道产生的轨道磁场的解析计算方法以及三维模型的数值求解过程,采用有限元方法结合时域差分法,使用迭代法处理非线性耦合问题。在FORTRAN平台上编写实现了高温超导磁悬浮三维数值模拟计算程序,同时实验验证了该程序的正确性。从而为高温超导磁悬浮车系统的悬浮性能数值模拟研究和优化设计提供了理论指导。
     通过三维仿真模型对高温超导磁悬浮车用永磁导轨上方高温超导块材电磁特性进行了模拟计算,研究了超导块材在沿永磁轨道无限长方向垂直面内对称外磁场中的端面效应。该研究揭示了由于超导块材端面效应的存在,虽然外磁场在永磁轨道无限长方向磁场分量为零,但是超导块材内部沿此方向的磁场分量不为零,这是目前世界上二维超导磁悬浮计算所不能做到的。
     使用实验与数值计算相结合的方法,研究了高温超导块材在对称分布式永磁轨道和Halbach结构永磁轨道上方悬浮力特性。实验研究和数值计算了在对称分布式永磁轨道下,高温超导块材悬浮力磁滞回线与超导块材横向水平偏移量之间的关系;最大悬浮力与超导块材横向水平偏移量之间的关系。在Halbach结构永磁轨道下,悬浮力磁滞回线与超导块材横向水平偏量之间的关系;最大悬浮力与超导块材横向水平偏移量之间的关系。研究结果表明,悬浮力磁滞回线以及最大悬浮力与块材横向水平偏移量之间的关系与外磁场结构紧密相关;模拟计算和实验结果能够较好的吻合。
     通过三维仿真计算,研究了高温超导磁悬浮列车系统几何参数和物理参数对悬浮性能的影响。
     对于对称分布式永磁轨道,高温超导磁悬浮性能随着轨道横截面厚度的增加和宽度的增加而在一定范围内增加,当永磁轨道横截面积一定时,与永磁轨道的宽度与高度的比值紧密相关。
     对于Halbach结构永磁轨道,高温超导块材的磁悬浮性能比较复杂。在轨道其它参数保持不变的情况下,高温超导磁悬浮性能随着主磁体宽度的增加不仅取决于主磁体宽度与聚磁体宽度的比例,还与主磁体宽度与永磁轨道的高度的比例相关。高温超导磁悬浮性能与聚磁体宽度之间的关系和主磁体宽度与聚磁体宽度的比例值、主磁体宽度与永磁轨道的高度的比例值密切相关。通常上述各比例数值一定的情况下,永磁轨道横截面积的增大能够在一定范围内提升悬浮性能。
     通过仿真计算了对称分布式永磁轨道上方高温超导块材在不同临界电流密度下的悬浮力曲线、Halbach结构永磁轨道上方高温超导块材在不同临界电流密度下悬浮力曲线,得出超导块材临界电流密度对超导体磁悬浮性能的提升,与外磁场结构有着密切的关系。单纯的提升超导块材材料性能,未必能达到优化磁悬浮性能的最终目的。
The discovery of high-temperature superconductors (HTS) in 1986 and YBCO in 1987 made HTS operable at temperatures within the cooling capabilities of liquid nitrogen. Ever since, many scientists have expressed great interest in HTS phenomena and its potential applications and have done a lot of research, for example, YBCO can be argued to be the most studied material in the world. Hence, performance in HTS is constantly improved, making its applications in engineering easier and more realistic. Given the fact that HTS, more specifically YBCO bulks, have a strong flux pinning effect, the stability of the its levitation above a permanent magnet (PMG) can be achieved without any complex control systems making bulk superconductors have great potential. Our research group has performed a lot of research on HTS maglev vehicle systems and was successful in developing the first man-loading HTS maglev test vehicle in Dec 31, 2000.
     In order to promote the application of the HTS maglev vehicle system in engineering applications, a 3D-modeling numerical solutions of electromagnetic behavior of HTS bulk is given in this thesis. In this 3D-modeling, the virtual conductivity method is used; two virtual superconductors were taken in nestification to simulate the anisotropic property of the current density in the interior of the HTS bulk. The magnetic flux density on two different types of PMG were calculated and analyzed with this method. Iteration methods were used to resolve the nonlinear coupling problem. The resolved code of the 3D-modeling of the HTS Maglev was developed using the FORTRAN language. The results of the work presented provide important scientific theories for the optimum design and numerical simulation of HTS Maglev vehicle systems.
     The magnetic behavior of an HTS bulk over a symmetric PMG was computationally simulated with the mentioned 3D-modeling. The results show that the component of the magnetic field, H_z, is not equal to zero because of the terminal-face affection of the limited size of the HTS bulk even though the component of H_z of the external magnetic field generated by the PMG does not exist. This simulation result is different than most HTS maglev magnetic behavior over a PMG in 2D-modeling from other reports.
     The magnetic levitation behavior of the HTS bulk over the symmetrical PMG and a PMG with a Halbach array was studied by numerical simulation and experimental methods. The relationship of the magnetic levitation curve of the HTS bulk with the lateral displacement over the symmetrical PMG and the Halbach PMG was investigated. The relationship of the maximum value of the magnetic levitation of the HTS bulk over the two types PMG with the lateral displacement is also was studied. The experimental and computational results are in good agreement with each other.
     Furthermore, influences of the symmetry geometry and physical parameters of the HTS maglev system to the magnetic levitation behavior was studied by 3D-modeling numerical simulation. For a symmetrical PMG, the behavior of the magnetic levitation is enhanced with the increase of the height and width of the PMG For the Halbach PMG, the behavior of the magnetic levitation of HTS bulk is complicated. The enhancement of the magnetic levitation of the HTS bulk not only depends on the proportionality of the main permanent magnet's (PM) width with the PM assembly but also depends on the proportionality of the main PM width with the height of the PMG There is strong correlation between the magnetic levitation behavior of the proportionality of the main PM with the width assembly and the proportionality of the main PM width with the height of the PMG When the above mentioned proportionalities are kept constant, an increase of the cross-sectional area can enhance the magnetic levitation behavior to within a certain range.
     The magnetic levitation curves of the HTS bulk over the symmetrical PMG and the Halbach array PMG are calculated with 3D-modeling at different critical current densities. The simulation results show that the critical current density can improve the magnetic levitation force, but it is also tightly related to the external magnetic field. Simply improving the critical current density of the HTS samples may not always optimize the magnetic levitation behavior of the HTS maglev system.
引文
[1]杨学实.气悬浮列车研究的新进展.交通运输系统工程与信息,2003,3(3):66
    [2]L.V.King.On the acoustic radiation pressure on spheres.Proc.Roy.Soc.,1934,A147:212
    [3]L.P.Gor'kov.On the forces acting on a small particle in an acoustical field in an ideal fluid.Sov.Phys.Dokl.,1962,6:773
    [4]W.J.Xie,and B.Wei.Parametric study of single-axis acoustic levitation.Appl.phys.Lett,2001,79(6):881
    [5]E.H.Brandt.Levitation in physics.Science.1989,243(4889):349
    [6]A.Ashkin,and J.M.Dziedzic.Optical levitation by radiation pressure.Appl.Phys.Lett,1971,19(6):283
    [7]A.Ashkin.Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.Biophys.J.,1992,61:569
    [8]S.Eamshaw,On the nature of the molecular forces which regulate the constitution of luminiferous ether,Trans.Camb.Phil.Soc.,7(1842),97-112.
    [9]F.C.Moon,Magnete-Solid Mechanics,John Eily&Sons,New York.1984.
    [10]Sinha,P.K.Electromagnetic suspension dynamics & control.Peter Peregrinus Ltd,London,United Kingdom,1987
    [11]Meins J et al.IEEE Trans on Magnetics,1988,MAG-24(2):808-811
    [12]Kemper H.Overhead suspension railway with wheel-less vehicles employing magnetic suspension from iron rails.German Patents.643,326 and 644,302(1934)
    [13]Glatzel,K.,Khurdok G.and Rogg,D.,"The development of the magnetically suspended transportation system in the federal republic of germany",IEEE Transactions on Vehicular Technology,1980,Vol.VT-29,No.1,pp.3-16.
    [14]佟力华,马沂文,胥刃佳等.适用于城市交通的中低速磁悬浮技术.电力机车与成轨车辆,2003,26(5):3-6
    [15]钟俊坚,吴晓,黄新民等.磁悬浮高速列车的主导技术比较与发展.轨道交通,2007,4:61-65
    [16]毛保华,黄荣,贾顺平等.磁悬浮技术在中国的应用前景分析.交通运输系统工程与信息,2008,8(1):29-39.
    [17]Kyotani Y.IEEE Trans on Magnetics,1988,MAG-24:804
    [18]A.A.Abrikosov.On the magnetic properties of superconductors of the second group,Soviet Phys.JETP,1957,6:1174
    [19]U.Essmann,H.Trauble.The direct observation of individual flux lines in type Ⅱ superconductors.Phys.Lett.,24A
    [20]P.L.Gammel,D.J.Bishop.Observation of hexagonally correlated flux quanta in YBCO.1987,Phys.Rev.Lett,59:2592
    [21]Wang Jiasu,Wang Suyu,et al.The first man-loading high temperature superconducting maglev test vehicle in the world.Physica C.2002,378-381(Part 1):809-814
    [22]张龙财.时变外磁场下高温超导体块材YBCO的导向力性能研究.博士学位论文,西南交通大学,2008,pp7-8
    [23]H.K.Onnes,On the sudden change in the rate at which the resistance of mercury disappears,Commun.Phys.Lab.Univ.Leiden,120b(1911).
    [24]W.Meissnerand R.Ochsenfeld.Naturwiss.1933,21:787
    [25]C.J.Gorter and H.B.G.Casimir.Zur Thermodynamik des Supraleitenden Zustandes Phys.Z.,1934,35:963-965
    [26]F.London and H.London.Proc.Roy.Soc.,1935,A149:71;Physica,1935,2:341
    [27]A.B.Pippard,An Experimental and Theoretical Study of the Relation between Magnetic Field and Current in a Superconductor,Proc.Roy.Soc,203(1950),210.
    [28]E.Maxwell,Isotope Effect in the Superconductivity of Mercury.Phys,Rev,78(1950),477.
    [29]C.A.Reynolds,B.Serin,W.H.Writht and L.B.Neslitt,Superconductivity of Isotopes of Mercury,Phys.Rev.,78(1950),487.
    [30]J.Bardeen,L.N.Cooper,and J.R.Schrieffer,Theory of Superconductivity,Phys.Rev.108,1175(1957).
    [31]L.D.Laudau,Phys.Zeit,35(1934),954.
    [32]V.L.Ginzburg,Nuovo Gimento,2(1955),1234.
    [33]A.A.Abrikosov,Sov.Phys.JETP,5(1957),1174.
    [34]L.P.Gorkov,Sov.Phys.JETP,10(1960),593,998.
    [35]J.G.Bednorz,K.A,MOiler.Zs Phys.B.,1986,64:189
    [36]Wu M K,Ashburn J R,Timg C J,Meng R L,Gao L,Huang Z L,Wang Y O,Chu C W.Phys Rev Lett,1987,58:908
    [37]赵忠贤,陈立泉,杨乾声,黄玉珍,陈庚华,唐汝明,刘贵荣,崔长庚,陈烈,王连忠,郭树权,李山林,毕建清,Ba-Y-Cu氧化物液氮温区的超导电性;科学通报,6(1987);412
    [38]H Maeda,Y Tanaka,M Fukitomi and T Asano.Jpn.J Appl Phys,1988,C,27:L209
    [39]http://www.superconductors.org/150k_pat.htm
    [40]http://www.superconductors.org/175k_pat.htm
    [41]http://www.superconductors.org/185k_pat.htm
    [42]http://www.superconductors.org/195k_pat.htm
    [43]http://www.superconductors.org/200k_pat.htm
    [44]F.Hellman,E.M.G.,D.W.Johnson,et al."Levitation of a magnet over flat type Ⅱ superconductors"(1987).J.Appl.Phys.63(2):447.
    [45]Brandt,E.H."Friction in levitated superonductors"(1988).Appl.Phys.Lett.53(16):1554.
    [46] F.C. Moon, M. M. Y., and R. Ware "Hysteretic levitation forces in superconducting ceramics" (1988). Appl. Phys. Lett. 52(18): 1534.
    [47] P.N. Peters, R.C. Sisk, E.W. Urban, et al.Observation of enhanced properties in samples of silver oxide doped YBCO. Appl. Phys. Lett. 1988, 52(24): 2066-2067
    [48] K.B.Ma,Q.Y.Chen,E.Postrekhin,et al.,High temperature superconductor levitation bearing for space application. Physica C, 2000, 341-348:2517-2520
    [49] N. Koshizuka, F. Ishikawa, H. Nasu, et al, Progress of superconducting bearing technologies for flywheel energy storage system. Physica C, 2003, 386:444-450
    [50] T. A. Coombs, A. M. Campbell, R. Storey, et al.,Superconducting Magnetic Bearings for Energy Storage Flywheels. IEEE Trans. APPl.Supercond., 1999,9(2):968-971
    [51] 王家素, Suyu Wang, Changyan Deng, et al.,Laboratory-scale high temperature superconducting maglev launch system. IEEE Trans. APPl. Supercond. Vol. 17.NO.2. JUNE 2007.
    [52] Y. Itoh , and U. Mizutani , " Pulsed field magnetization of melt2processed Y2Ba2Cu2O superconducting bulk magnets ,"Jpn.J . Appl. Phys ., 35 (1996), 2114~2125.
    [53] J . Liu , R. Weinstein , Y. Ren , R. 2P. Sawh , C. Foster, and V. Obot, Program and Extended Abstracts of the 1995 Inter-national Workshop on Superconductivity, Hawaii, 1995 (ISTEC , Tokyo , 1995) :353
    [54] Masaru Tomita and Masato Murakami, Nature , 42(2003) ,517.
    [55] H. Fujimoto, H. Kamijo, et al. Preliminary study of a superconducting bulk manget for the Maglev train. IEEE Transactions on Applied Superconductivity. 1999, 9(2):301-304
    [56] I. G. Chen, J. Chou, et al. Magnetic levitation/suspension system by high temperature superconducting materials. Journal of Applied Physics. 1997, 81(8):4272-4274
    [57] Zhang Yong, Xu Shangang, Research of High Temperature Superconductor MAGLEV Vehicle. Pnxzeedings of the Symposium on MAGLEV Train in China, October, 1997, Hangzhou, China.
    [58] J. R. Wang, M. Z. Wu, et al. High-Tc superconductive vehicle for maglev model. Rare Metal Materials and Engineering. 1998,27(4):240-243
    [59] W M Yang, L Zhou, et al. A small maglev car model using YBCO bulk superconductors. Proceedings of Maglev' 2000, Rio de Janeiro, Brazil, 2000.pp107-110
    [60] John R. Hull, Ahmet Cansiz. Vertical and lateral forces between a permanent magnet and a high-temperature superconductor. Journal of Applied Physics. 1999, 86 (11): 6396-6404
    [61] Zhang Yong, Xu Shangang. Research of high temperature superconductor Maglev vehicle. Proceedings of the Symposium on Maglev Train Application in China(SMLTA' 97),Hangzhou,China,1997.pp.53-58
    [62]Y.Zhang and S.G.Xu.Measurement and analysis of a HTSC Maglev model vehicle.In:L.Z.Lin,G.L.Shen,L.G.Yan,editors.Proceeding of the Fifteenth International Conference on Magnet Technology,Beijing,1998.Science Press,Part one,pp.763-766.
    [63]任仲友,王素玉,王家素等.多块YBCO高温超导体在永磁轨道上的悬浮力.低温与超导.vol 28.No.2.(2000)
    [64]J.S.Wang,S.Y.Wang,Z.Y.Ren,M.Zhu,H.Jiang,et al.Levitation force of a YBCO bulk high temperature superconductor over a NdFeB guideway.IEEE Trans.APP1.Supercond.,VOL.11,NO.1,March 2001.
    [65]S.Y.Wang,J.S.Wang,Z.Y.Ren,et al.Levitation Force of multi-block YBCO bulk high temperature superconductors.IEEE Trans.APP1.Supercond.,VOL.11.No.1.March 2001.
    [66]王素玉,唐启雪,任仲友等,车载高温超导磁悬浮系统的设计.低温与超导.Vol 29,No.1.Feb.2001
    [67]Zhongyou Ren,J.S.Wang,et al.A hybrid maglev vehicle using permanent magnets and high temperature superconductor bulks.Physica C 378-381(2002)873-87
    [68]任仲友,王家素,王素玉,朱敏,江河等.NdFeB永磁导轨上YBCO块材悬浮力与磁场和磁场梯度关系的研究.低温物理学报.Vol.24,No.4,Nov.,2002
    [69]He Jiang,王家素,Suyu Wang,Zhongyou Ren,Min Zhu,et al.,The magnetic levitation performance of YBCO bulk at different temperature.Physica C 378-381(2002) 869-872
    [70]朱敏,任仲友,王素玉,王家素,江河.YBCO超导块的厚度和形状对其悬浮力的影响.低温物理学报.Vol.24,No.3,Aug.,2002.
    [71]Zhongyou Ren,王家素,Suyu Wang,et al.,Influence of shape and thickness on the levitation force of YBCO bulk HTS over a NdFeB guideway.Physica C 384(2003) 159-162.
    [72]J.S.Wang,S.Y.Wang,Z.Y.Ren,et al.Experiment results of high temperature superconducting maglev vehicle.Physica C 386(2003) 431-437.
    [73]X.R.Wang,H.H.Song,Z.Y.Ren,et al.,Levitation force and guidance force of YBCO bulk in applied field.Physica C 386(2003) 536-539
    [74]Ren Zhongyou,Wang Jiasu,Wang Suyu,et al.,Chinese journal of low temperature physics.Vol.25,No.3,Aug.,2003.
    [75]H.H.Song,J.S.Wang,et al.Relationship between levitation force and levitation stiffness in both symmetrical and unsymmetrical applied field.The 4th International Workshop on Processing and Applications of Superconducting(RE)BCO Large Grain Materials(PASREG 2003),Jena,Germany,2003
    [76]Honghai Song,Oliver de Haas,et al.,Influence of the lateral movement on the levitation and guidance force in the high-temperature superconductor maglev system.Applied physics letters.86,192506(2005).
    [77]H.H.song,J.S.Wang,S.Y.Wang,O De Haas,et al.,The relationship between levitation force and stiffness in symmetrical and unsymmetrical applied fields.Suoercond.Sci.Technol.18(2005) 595-598
    [78]宋宏海,王家素,王素玉,王兴志等,高温超导磁悬浮系统中横向运动对悬浮力和导向力影响的研究.低温物理学报.Vol.27,No.5,Nov.,2005.
    [79]Honghai Song,Jun zheng,Minxian Liu,Longcai Zhang,et al.,Optimization and Design of the permanent magnet guideway with the high temperature superconductor.IEEE Trans.APP1.Supercond.,Vol.16,No.2,June 2006.
    [80]Zigang Deng,Jun Zheng,Honghai Song,et al.,A new HTS/PMG Maglev design using halbach array.Materials science Forum Vols.546-549(2007) pp.1941-1944
    [81]Zigang Deng,Jun Zheng,Honghai Song,LuLiu,Lulin Wang,Ya Zhang,Suyu Wang,and 王家素.Free Vibration of the High Temperature Superconducting Maglev Vehicle Model.IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,VOL.17,NO.2,JUNE 2007 2071.
    [82]Jun Zheng,Zigang Deng,Lulin Wang,Lu Liu,Ya Zhang,Suyu Wang,and JiasuWang.Stability of the Maglev Vehicle Model Using Bulk High Tc Superconductors at Low Speed.IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,VOL.17,NO.2,JUNE 2007 2103.
    [83]Longcai Zhang,王家素,Qingyong He et al."Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system",Physica C,2007,459:33-36
    [84]Longcai Zhang,王家素,Suyu Wang et al.,et al."Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway",Physica C,2007,459:43-46
    [85]Longcai Zhang,Suyu Wang et al.,et al."Numerical evaluation of guidance force decay of HTS bulk exposed to AC magnetic field over a NdFeB guideway",Physica C,2007,467:27-30
    [86]Z.G.Deng,J.Zheng,J.Zhang,J.S.Wang,S.Y.Wang,Y Zhang and L Liu,Studies on the levitation height decay of the high temperature superconducting Maglev vehicle.2007 Physica C 463-465 1293
    [87]G T Ma,Q X Lin,J S Wang,S Y Wang,Z G Deng,Y Y Lu,M X Liu and J Zheng.Method to reduce levitation force decay of the bulk HTSC above the NdFeB guideway due to lateral movement.Supercond.Sci.Technol.21(2008)065020(5pp).
    [88]C.P.Bean,Magnetization of hard superconductors.Physical Review Letters.Volume 8,Number 6,March 15,1962.
    [89]C.P.Bean and J.D.Livingston,Surface barrier in type-Ⅱ superconductors.Physical review letters,Volume 12,number 1,6 January 1964.
    [90]C.P.Bean,Magnetization of High-Field Superconductors.Reviews of Modern Physics,vol.36,Issue 1,pp.31-38
    [91] Y. B. Kim, C. F. Hempstead, and A. R. Strnad. Critical persistent currents in hard superconductors. Physical review letters. Volume 9, Number 7, October 1,1962.
    [92] P. W. Anderson and Y. B. Kim. Hard superconductivity: theory of the motion of abrikosov flux lines. Rev. Mod. Phys., 1964, 36:39-45.
    [93] Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Magnetization and critical supercurrents. Physical Review, Volume 120, number 2, 15 January 1963.
    [94] F.Irie and K. Yamafuji, J.Phys. Soc. Jpn. 23, 255(1967)
    
    [95] K.Yamafuji, T. Wakuda and T. Kiss. Generalized critical state model in high-Tc superconductors. Cryogenics 1997 volume 37, Number 8 421.
    [96] Y. Yoshida, M. Uesaka and K. Miya. Evaluation of dynamic magnetic force of high Tc superconductor with flux flow and creep. Int. J. Appl. Electromagn,Mater., 1994, 5:83-89.
    [97] Y. Yoshida, M. Uesaka and K. Miya. Magnetic field and force analysis of high Tc superconductor with flux flow and creep. IEEE Trans. Magn., 1994, 30(5):3503-3506.
    [98] J. Paasi and M. Lahtinen. AC losses in high-temperature superconductors: revisting the fundamentals of the loss modelling.Physica C, 1998, 310: 57-61.
    [99] T. H. Johansen and H. Bratsberg. Theory for lateral stability and magnetic stiffness in a high-Tc superconductor-magnet levitation system. J. Appl. Phys. 74(6), 15 September 1993.
    [100] D. X Chen and R. B. Goldfarb. Kim model for magnetization of type-Ⅱ superconductors. J. Appl. Phys. 66(6), 15 September 1989.
    [101] A. O. Hauser. Calculation of superconducting magnetic bearings using a commercial FE-Program(ANSYS). IEEE TRANSACTIONS ON MAGNETICS. VOL.33, NO.2 MARCH 1997.
    [102] Yoshikatsu Yoshida, Mitsuru Uesaka, and Kenzo Miya. Magnetic field and force analysis of high Tc superconductor with flux flow and creep. IEEE TRANSACTIONS ON MAGNETICS. VOL. 30, NO. 5, SEPTEMBER 1994.
    [103] Xiao-JingZheng, Xiao-FanGou, and You-HeZhou. Influence of Flux Creep on Dynamic Behavior of Magnetic Levitation Systems With a High-Tc Superconductor. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL.15, NO.3, SEPTEMBER 2005
    [104] Xiao Fan Gou,Xiao Jing Zheng, You he Zhou Drift of Levitated/Suspended Body in High-Tc Superconducting levitation systems under vibration-part I: a criterion based on magnetic force-gap relation for gap varying with time. IEEE transactions on applied superconductivity. VOL. 17, NO. 3, SEPTEMBER 2007
    [105] M. J. Qin,G.Li,H.K.Liu,S.X.Dou,E.H.Brandt Calculation of the hysteretic force between a superconductors and a magnet. Physical Review B 66, 024516 (2002)
    [106] D. Ruiz-Alonso, T Coombs and A M Campbell. Computer modelling of high-temperature superconductors using an A-V formulation. Supercond. Sci. Technol.17(2004) S305-S310
    [107]D.Ruiz-Alonso,T Coombs and A M Campbell.Numerical solutions to the critical state in a magnet-high temperature superconductor interaction.Supercond.Sci.Technol.18(2005) S209-S214
    [108]Naoyuki Amemiya,Shun-ichi Murasawa,Nobuya,Banno,Kengo Miyamoto.Numerical modelings of superconducting wires for AC loss calculations.Physica C 310(1998) 16-29
    [109]Leonid Prigozhin.Analysis of Critical-State Problems in Type-ⅡSuperconductivity.IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,VOL.7,NO.4,DECEMBER 1997.
    [110]Leonid Prigozhin.The Bean Model In Superconductivity:Variational Formulation and Numerical Solution.JOURNAL OF COMPUTATIONAL PHYSICS 129.190-200(1996).
    [111]王晓融.高温超导YBCO块材在永磁导轨上方导向力的研究.硕士论文.2003年.西南交通大学.
    [112]Z.Hong,A.M.Campbell,and T.A.Coombs.Numerical solution of critical state in superconductivity by finite element software.Supercond.Sci.Technol.19(2006) 1246-1252.
    [113]Nuria Del Valle,Alvaro Sanchez,and Enric Pardo,Du-Xing Chen.Optimizing levitation force and stability in superconducting levitation with translational symmetry.Applied physics letters 90,042503(2007)
    [114]Alvaro Sanchez,Nuria Del Valle,and Enric Pardo,Du-xing Chen.Magnetic levitation of superconducting bars.Journal of applied physics 99,113904(2006)
    [115]Nuria Del-Valle,Alvaro Sanchez,Caries Navau and Du-Xing Chen.A theoretical study of the influence of superconductor and magnet dimensions on the levitation force and stability of maglev systems.Supercond.Sci.Technol.21(2008)125008(7pp).
    [116]Bossavit A 1994 Numerical modeling of superconductors in three dimensions:a model and a finite element method IEEE Trans.Magn.36 1276-9
    [117]Pecher,R.,McCulloch,M.D.,Chapman,S.J.,Prigozhin,L.,Elliott,C.M.(2003),"3D-modelling of bulk type-Ⅱ superconductors using unconstrained H-formulation",paper presented at EUCAS 2003,Sorrento,.
    [118]Edward P.Furlani.Permanent Magnet and electromechanical devices,pages 126-131.Academic Press,2001
    [119]A.B.Pippard,An Experimental and Theoretical Study of the Relation between Magnetic Field and Current in a Superconductor.Proc.Roy.Soc.(London)A216,547(1953).
    [120]L.D.Laudau,theory of phase transformations Ⅱ.Phys.Z.Sowjetunion,11(1937),129
    [121]章立源,张金龙,崔广霁.超导物理.1987.电子工业出版社.pp9-10
    [122]张裕恒.超导物理.1997年.中国科技术大学出版社.pp8-9
    [123]冯端.金属物理学.第四卷超导电性和磁性.2000年.科学出版社.pp29
    [124]管惟炎、李宏成、蔡建华、吴杭生等著:《超导电性·物理基础》,科学出版社,北京,1981
    [125]吴杭生、管惟炎、李宏成等著:《超导电性·第二类超导体和弱连接超导体》,科学出版社,北京,1979.
    [126]徐祖耀 李麟.材料热力学(第二版).2001年,科学出版社.pp120
    [127]周世勋.量子力学教程.1979.高等教育出版社.pp54
    [128]K.W.Morton,D.F.Mayers.Numerical Solution of Paritial Differential Equations.2006.Posts&Telecom Press.pp237
    [129]Michael Struwe.Variational Methods.2000.Bejing World Publishing Corooration.China.pp94
    [130]王家素,王素玉.超导技术应用.1995.成都科技大学出版社.pp47
    [131]Wangsness,Roald K.Electromagnetic fields.1979.Published in New York,America.pp299
    [132]谢树艺.矢量分析与场论.1985.高等教育出版社.pp76
    [133]J.Rhyner,Magnetic properties and AC-losses of superconductors with power law current-voltage characteristic.Physica C 212 292-300(1993)
    [134]Atsushi Kamitani,Shigetoshi Ohshima,Takafumi Y okono,Magnetic shielding analysis of axisymmetric HTS plate by flux flow creep mode.IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,VOL.9.No.2,JUNE 1999
    [135]王勖成.有限元单元法.2003年.清华大学出版社.pp163-173
    [136]金建铭(美),王建国,葛德彪.电磁场有限元方法.西安电子科技大学出版社.pp133-135
    [137]倪光正,杨仕友,钱秀英,邱捷.工程电磁场数值计算.2004年.机械工业出版社pp233-236
    [138]Hidehito Shimizu,Hiroshi Ueda,Makoto Tsuda,and Atsushi Ishiyama.Trapped field characteristics of Y-Ba-Cu-O bulk in Time-varying external magnetic field.IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,VOL.12,NO.1,MARCH 2002.
    [139]Roberto Brambilla,Francesco Grilli,and Luciano Martini.Development of an edge-element model for AC loss computation of high-temperature superconductors.Supercond.Sci.Technol.20(2007) 16-24.
    [140]Yiyun Lu,Jiasu Wang,Suyu Wang,Jun Zheng.3D-modeling numerical solutions of electromagnetic behavior of HTSC bulk above permanent magnetic guideway.J Supercond Nov Magn(2008) 21:467-472
    [141]S.Y.Wang,J.S.Wang,X.R.Wang,et al.The man-loading high-temperature superconductor maglev test vehicle.IEEE Trans.Appl.Supercond.2003,13(2):2134
    [142]L.Schultz,O.de Hass,P.Verges,C.Beyer,S.Rohlig,et al.Superconductivity levitated transport system-the superaTrans project.IEEE Trans.Appl.Supercond.,2005(2):2301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700