若干先进电磁材料结构的断裂与稳定性等力学特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
力-电-磁多场耦合的电磁材料由于其特殊的性质具有广泛应用于工程领域的潜在背景,其断裂与稳定性等力学特性研究已成为电磁材料应用设计中关注的基础性课题。本学位论文主要针对超导材料、电场活化聚合物、压电压磁和功能梯度材料等当前关注的先进电磁材料,在考虑其力-电-磁耦合的基础上,从理论上研究了这些材料应用中所关注的断裂与稳定性等的力学特性。
     首先,分析了超导材料中的应力、磁致伸缩和裂纹问题。根据弹性理论,讨论了超导体中磁通钉扎产生的应力和超导体中的非超导态夹杂问题,讨论了超导体内的应力分布和弹性模量以及体积分数对超导复合材料中磁致伸缩的影响。另外,基于简单的小裂纹模型,忽略了裂纹对屏蔽电流和磁场的扰动和影响。利用非理想第Ⅱ类超导体中的Bean和Kim临界态模型,并通过断裂力学中的求解方法,分别讨论了矩形和圆柱超导体中的裂纹问题。分析了场冷却和零场冷却两种超导体磁化过程中裂纹尖端应力强度因子的变化规律。在不同的磁场下降过程中,应力强度因子随磁场的变化是不同的。而Bean模型中应力强度因子的变化与Kim模型中也存在着区别。
     其次,研究了电场活化聚合物中的稳定性和粘弹性问题。采用简单的Maxwell应力模型,讨论电场活化聚合物气球受到电场作用的膨胀过程中出现的稳定性问题。气球的失效模式与材料性质及电场的加载方式有关。基于摄动法,分析了小扰动情况下电场活化聚合物中的稳定性问题,得到了不同电场作用下的临界拉伸值。电场活化聚合物中力电耦合的参数不同时,材料稳定性的变化规律也是不同的。同时,基于张量分析和有限元的方法,讨论了电场作用下聚合物中的粘弹性行为,所得数值结果与理论解一致。结果中给出了恒定电场作用下的蠕变行为和周期电场作用下的变形规律。
     最后,讨论了功能梯度材料和电磁弹性材料中的裂纹问题。通过Fourier变换的方法,得到了功能梯度材料中静态裂纹问题的奇异积分方程,并进行数值求解。分析了非均匀常数、几何参数和厚度比等对Ⅲ型裂纹应力强度因子的影响。对于电磁弹性材料中的动态裂纹问题,采用Laplace变换和反演计算,得到了不可渗透裂纹问题的奇异积分方程。结果给出了相对载荷参数κD和κB及裂纹构型对电磁弹性条中裂纹动态行为的影响。对于不可渗透裂纹,电场和磁场的冲击对动态应力强度因子和动态能量释放率有重要的影响。
Due to their unique properties and potential background of applications in engineering, the fracture behavior, instability and other mechanical properties of the electromagnetic materials have become the basic problems in applications and design. This thesis mainly aims at the advanced materials which arouse worldwide attentions recently, such as superconductor, dielectric elastomer, magnetoelectroelastic and functionally graded materials. Based on the Magneto-Electro-Elastic coupling properties, the fracture behavior, instability and other mechanical behavior in electromagnetic materials are investigated.
     Firstly, the stress distribution, the magnetostriction and the crack problem in the superconductor are analyzed. Accroding to the elasticity theory, the stress induced by the flux pinning and the non-superconducting inclusions in the bulk superconductors are analyzed. The stress distribution in the superconductor and the effects of elastic moduli and volume fraction on the magnetostriction in the superconducting composite are discussed. In addition, based on a simple assumption in which the effect and disturbance of the crack on the shielding current and the magnetic field are neglected. The Bean and Kim model are adopted. Using the basic knowledge of the fracture mechanics, the crack problems in the rectangular and cylindrical superconductors are discussed, respectively. The variations of the stress intensity factors are considered in the magnetization process of zero-field cooling (ZFC) and field cooling (FC). When the magnetic field reduction process is different, the variations of the stress intensity factors are different, and there are differences between the results obtained from the Bean model and the Kim model.
     Secondly, the instability and viscoelastic problems in the dielectric elastomer have been taken into account. During the process of inflation of the balloon which subject to the electric field, the Maxwell stress model is used to discuss the instability problem in the dielectric elastomer balloon. The results show that the failure-modes in the dielectric balloon are related to the material properties and the loading history. In addition, using the linear perturbation analysis, the instability problem is discussed in the dielectric elastomer, and the critical stretch values are obtained at different electrical field. It is found that the instability in the dielectric elastomer are dependent of the material parameter. Based on the tensor analysis and the finite element method, the viscoelastic behavior subject to the electric field is obtained in the dielectric elastomer. The numerical resuts agree well with the theoretical results. We further show the creep of the dielectric elastomer subject to a constant electrical field and the strain history of the dielectric elastomer subjected to a cyclic electrical load.
     Finally, the crack problems in the functionally graded materials and the magnetoelectroelastic materials are discussed. Using the Fourier transform method, a singular integral equation for a static crack in the functionally graded materials is obtained, and the equation can be solved numerically. The results obtained show the effects of nonhomogeneity constant, relative crack length and thickness ratio on the stress intensity factor. For the transient crack problem in the magnetoelectroelastic materials, the Laplace transform and inversion are employed to reduce the problem to singular integral equations for the impermeable crack. Numerical results are shown graphically to illustrate the effects of relative loading parametersκD andκB, and the crack configuration on the dynamic behavior of the crack in the magnetoelectroelastic strip. The results indicate that the electric and magnetic impact play a great role in the transient fracture behavior.
引文
[1]H. K. Onnes, The liquefaction of helium, Commun. Phys. Lab. Univ. Leiden,1908, 108.
    [2]H. K. Onnes, On the sudden change in the rate at the resistance of mercury disappears. Commun. Phys. Lab. Univ. Leiden,1911,120b:122b.
    [3]H. K. Onnes, Report on the researches made in the Leiden cryogenics Laboratory between the second and third International Congress of Refrigeration,1913, 133-144:37-70.
    [4]W. Meissner, and R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfahigkeit. Naturwissenschaften,1933,21:787-788.
    [5]J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theroy of superconductivity. Phys. Rev,1957,108:1175-1204.
    [6]B. D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett,1962: 1:251-253.
    [7]J. G. Bednorz, and K. A. Muller, Possible high-c T superconductivity in La-Ba-Cu-O system. Z. Physik. B,1986,64:189-193.
    [8]赵忠贤,陈立泉,杨乾声等,Ba-Y-Cu氧化物液氮温区的超导电性,科学通报,1987,32:412-414.
    [9]C. J. Gorter, and H. B. G. Casimir, Zur thermodynamik des supraleitenden Zustandes. Phys. Z,1934,35:963.
    [10]F. London and H. London, The electromagnetic equations of the superconductor. Proc. Roy. Soc. (London),1935, A149:71-88.
    [11]V. L. Ginzburg and L. D. Landau, On the theory of superconductivity. Zh. Exsperim. iThor. Fiz,1950,20:1064-1082.
    [12]A. A. Abrikosov, and Zh. Eksperim, i Teor. Fiz,1957,32:1442-1452.
    [13]章立源,张金龙,崔广霁.超导物理学.北京:电子工业出版社,1995
    [14]周廉,超导材料发展.世界科技研究与发展—院士论坛,1998,20:46-50.
    [15]苟晓凡,高温超导悬浮体的静、动力特性分析.兰州大学博士论文2004.
    [16]章立源,张金龙,崔广霁.超导物理学.北京:电子工业出版社,1995
    [17]林良真,张金龙等.超导电性及其应用.北京:北京工业大学出版社,1998
    [18]张裕恒编著,1997,超导物理,中国科技大学出版社,合肥
    [19]Y. R. Ren, R. Weinstein, and J. Liu, Damage caused by magnetic pressure at high trapped field. Physica C,1995,251:15-26.
    [20]T. H. Johansen, Pinning-induced stress during activation of bulk HTSs as trapped-field magnets. Supercond. Sci. Technol,2000,13:830-835.
    [21]P. Diko, M. Ausloos, and R. Cloots, Cracking in DyBa2Cu3O7-y superconducting materials synthesized in situ in a magnetic field. Physica. C,1994,359:235-240.
    [22]P. Diko, Cracking in melt-processed RE-Ba-Cu-O superconductor. Supercond. Sci. Technol,1998,11:68-72.
    [23]M. Murakami, Progeress in applications of bulk high temperature superconductors. Supercond. Sci. Technol,2000,13:448-450.
    [24]T. Miyamoto, K. Nagashima, N. Sakai, and M. Murakami, Measurements of the thermal stresses in large-grain Y-Ba-Cu-O superconductors. Physica C,2001,349: 69-74.
    [25]S. Gruss, G Fuchs, G Krabbes, P. Verges, G Stover, K.-H. Muller, J. Fink, and L. Schultz, Superconducting bulk magnets:Very high trapped fields and cracking. Appl. Phys. Lett,2001,79:3131
    [26]G Fuchs, P. Schatzle, G Krabbes, S. GruB P. Verges, K.-H. Miiller, J. Fink, L. Schultz, Trapped magnetic fields larger than 14T in bulk YBa2Cu307-x. Appl. Phys. Lett, 2000,76:2107.
    [27]M. Tomita, M. Murakami, High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K. Nature,421:517-520.
    [28]H. Ikuta, N. Hirota, Y. Nakayama, K. Kishio, and K. Kitazawa, Giant magnetostriction in Bi2Sr2CaCu2O8 single crystal in the superconducting state and its mechanism. Phys. Rev. Lett,1993,70:2166-2169.
    [29]A. Nabialek, H. Szymczak, V. A. Sirenko, and A. I. D'yachenko, Influence of the real shape of a sample on the pinning induced magnetostriction. J. Appl. Phys,1998, 84:3770-3775.
    [30]T. H. Johansen, Flux-pinning-induced stress and strain in superconductors:Long rectangular slab. Phys. Rev. B,1999,59:11187-11190.
    [31]T. H. Johansen, Flux-pinning-induced stress and strain in superconductors:Case of a long circular cylinder. Phys. Rev. B,1999,60:9690-9703.
    [32]Z. Koziol, and R. Dunlap, Magnetostriction of a superconductor:Results from the critical-state model. J. Appl. Phys,1996,79:4662-4664.
    [33]Z. W. Gao, and Y. H. Zhou, Crack growth for a long rectangular slab of superconducting trapped-field magnets. Supercond. Sci. Technol,2008,21:095010.
    [34]Z. W. Gao, and Y. H. Zhou, Fracture behavior for long center slant cracked rectangular slab of superconductor under electromagnetic force. Mod. Phys. Lett. B, 2009,6:825-834.
    [35]Z. W. Gao, and Y. H. Zhou, Fracture behaviors induced by thermal stress in an anisotropic half plane superconductor. Phys. Lett. A,2008,372:5261-5264.
    [36]K. C. Goretta, P. Diko, M. Jiang, M. M. Cuber, M. Xu, J. E.Ostenson, and S. Sengupta, Annealing and mechanical properties of bulk Y-Ba-Cu-O. IEEE Trans. Appl. Supercond,1999,9:2081-2084.
    [37]M. Tomita, M. Murakami, and K. Katagiri, Reliability of mechanical properties for bulk superconductors with resin impregnation. Physica C,2002,378-381:783-787.
    [38]N. Sakai, A. Mase, H. Ikuta, S. J. Seo, U. Mizutani, and M. Murakami, Mechanical properties of Sm-Ba-Cu-O/Ag bulk superconductors. Supercond. Sci. Technol,2000, 13:770-773.
    [39]K. Katagiri, A. Murakami, T. Sato, T. Okudera, N. Sakai, M. Muralidhar, and M. Murakami, Stress-strain characteristics and fracture surface morphology of (Sm,Gd)-Ba-Cu-O bulk superconductor. Physica C,2002,378-381:722-726.
    [40]N. Sakai, S.J. Seo, K. Inoue, T. Miyamoto, and M. Murakami, Mechanical properties of RE-Ba-Cu-O bulk superconductors. Physica C,2000,335:107-111.
    [41]K. C. Goretta, P. Diko, M. Jiang, M. M. Cuber, M. Xu, J. E. Ostenson, and S. Sengupta, Annealing and mechanical properties of bulk Y-Ba-Cu-O, IEEE Trans. Appl. Supercond,1999,9:2081-2084.
    [42]A. Murakami, K. Katagiri, K. Kasaba, Y. Shoji, K. Noto, H. Teshima, M. Sawamura, and M. Murakami, Mechanical properties of Gd123 bulk superconductors at room temperature. Cryogenics,2003,43:345-350.
    [43]X. Y. Zhang, Y. H, Zhou, and J. Zhou, Modeling of symmetrical levitation force under different field cooling processes. Physica C,2008,468:401-404.
    [44]X. Y. Zhang, Y. H. Zhou, and J. Zhou, Reconsideration of the levitation drift subject to a vibration of a permanent magnet. Mod. Phys. Lett. B,2008,22:2659-2666.
    [45]X. Y. Zhang, Y. H. Zhou, and J. Zhou, Suppression of magnetic force relaxation in a magnet-high Tc superconductor system. IEEE Trans. Appl. Supercond,2008,18: 1687-1691.
    [46]Y. H. Zhou, X. Y. Zhang, and J. Zhou, Relaxation transition due to different cooling processes in a superconducting levitation system. J. Appl. Phys,2008,103:123901.
    [47]X. F. Gou, X. J. Zheng and Y. H. Zhou, Drift of levitated/suspended body in high-Tc superconducting levitation systems under vibration-Part Ⅰ:A criterion based on magnetic-gap relaxation for gap varying with time. IEEE Trans. Appl. Supercond,,2007,17:3795-3802.
    [48]X. F. Gou, X. J. Zheng and Y. H. Zhou, Drift of levitated/suspended body in high-Tc superconducting levitation systems under vibration-Part Ⅱ:Drift velocity for gap varying with time. IEEE Trans. Appl. Supercond,2007,17:3803-3808.
    [49]X. J. Zheng, X. F. Gou and Y. H. Zhou, Influence of flux creep on dynamic behavior of magnetic levitation systems with a high-Tc superconductor. IEEE Trans.Appl. Supercond,2005,15:3856-3863.
    [50]郑晓静,苟晓凡,周又和.超导电磁悬浮力的数值模拟.固体力学学报,2003, 24:16-23
    [51]B. D. Josephson, Supercurrents through barriers. Adv. Phys,1965,14:419-451.
    [52]杨勇,高温超导体面内移动时的静力特性研究.兰州大学博士学位论文2007.
    [53]Y. Yang and X. J. Zheng, Method for solution of the interaction between superconductor and permanent magnet. J. Appl. Phys,2007,101:113922.
    [54]Z. G Suo, X. H. Zhao, and W. H. Greene, A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids,2008,56:467-486.
    [55]Z. G. Suo, Lecture notes of Solid Mechanics. http://imechanica.org/node/203
    [56]Z. G. Suo, Lecture notes of Advanced Elasticity. http://imechanica.org/node/725
    [57]A. Dorfmann, and R. W. Ogden, Nonlinear electroelasticity. Acta. Mech,2005,174: 167-183.
    [58]A. Dorfmann, and R. W. Ogden, Nonlinear elastic deformations. J. Elasticity,2006, 82:99-127.
    [59]A. C. Erigen, and G. A. Maugin, Electrodynamics of Continua Ⅰ (Springer, New York, 1990).
    [60]A. Dorfmann, and R. W. Ogden, Nonlinear electroelastostatics:Incremental equations and stability. Int. J. Eng. Sci,2008,48:1-14.
    [61]S. Reese, and S. Govindjee, A theory of finite viscoelasticity and numerical aspects. Int. J. Solids. Struct,1998,35:3455-3482.
    [62]J. Bonet, Large Strain viscoelastic constitutive models. Int. J. Solids. Struct,2001,38: 2953-2968.
    [63]G A. Holzapfel, On large strain viscoelasticity:continuum formulation and finite element applications to elastomeric structures. Int. J. Methods. Eng,1996,39: 3903-3926.
    [64]F. Erdogan, The crack problem for bonded nonhomogeneous materials under antiplane shear loading. J. Appl. Mech,1985,52:823-828.
    [65]Y. F. Chen, and F. Erdogan, Interface crack problem for a nonhomogeneous coating bonded to a homogeneous substrate. J. Mech. Phys. Solids,1996,44:771-787.
    [66]F. Erdogan, and M. Ozturk, Periodic cracking of functionally graded coatings. Int. J. Eng. Sci,1996,33:2179-2195.
    [67]H. J. Choi, Bonded dissimilar strips with a crack perpendicular to the functionally graded interface. Int. J. Solids. Struct,1996,33:4101-4117.
    [68]L. C. Guo, L. Z. Wu, L. Ma, and T. Zeng, Fracture analysis of a functionally graded coating-substrate structure with a crack perpendicular to the interface-Part Ⅰ:Static problem. Int. J. Fract,2004,127:21-38.
    [69]L. C. Guo, L. Z. Wu, L. Ma, and T. Zeng, Fracture analysis of a functionally graded coating-substrate structure with a crack perpendicular to the interface-Part Ⅱ: Transient problem. Int. J. Fract,2004,127:39-59.
    [70]Y. S. Chan, G. H. Paulino, and A. C. Fannjiang, The crack problem for nonhomogeneous materials under antiplane shear loading-a displacement based formulation. Int. J. Solids. Struct,2001,38:2980-3005.
    [71]X. Long, and F. Delale, The mixed mode crack problem in an FGM layer bonded to a homogeneous half-plane. Int. J. Solids. Struct,2005,42:3897-3917.
    [72]L. C. Guo, L. Z. Wu, and T. Zeng, The dynamic response of an edge crack in a functionally graded orthotropic strip. Mech. Res. Commun,2005,32:385-400.
    [73]J. Chen, Z. X. Liu, and Z. Z. Zou, Transient internal crack problem for a nonhomogeneous orthotropic strip (Mode Ⅰ). Int. J. Eng. Sci,2002,40:1761-1774
    [74]S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951).
    [75]F. Erdogan, and B. H. Wu, Crack problem in FGM layers under thermal stresses. J. Therm. Stresses,1996,19:237.
    [76]Y. B. Kim, C. F. Hempstead, and A. R. strand, Critical persistent currents in hard superconductors. Phys. Rev Lett,1962,9:306-309
    [77]Y. B. Kim, and C. F. Hempstead, Resistive states of hard superconductors. Rev. Mod. Phys,1964,36:43-49
    [78]Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Magnetization and Critical Supercurrents. Phys. Rev,1963,129:528-535.
    [79]H. Ikuta, K. Kishio, and K. Kitazawa, Flux-pinning-induced magnetostriction in type-II superconductors. J. Appl. Phys,1994,76:4776-4786.
    [80]D. X. Chen, and R. B. Goldfarb, Kim model for magnetization of type-Ⅱ superconductors. J. Appl. Phys,1989,66:2489-2501.
    [81]T. Mizutani, Permeability dependence of the effective magnetostriction of magnetostrictive composites. J. Mater. Res,1996,11:483-494.
    [82]L. Ceniga, and P. Diko, Analytical model of oxygenation-induced stresses in YBCO superconductor. Physica C,2007,467:179-185.
    [83]Y. P. Wan, and Z. Zhong, Permeability dependence of the effective magnetostriction of magnetostrictive composites. J. Appl. Phys,2004,95:3099-3110.
    [84]R. Pelrine, R. Kornbluh, O. B. Pei, and J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%. Science,2000,287:836.
    [85]X. H. Zhao, W, Hong, and Z. G. Suo, Electromechanical hysteresis and coexistent states in dielectric elastomers. Phys. Rev. B,2007,76:134113
    [86]X. H. Zhao, and Z. G. Suo, Method to analyze electromechanical stability of dielectric elastomer. Appl. Phys. Lett,2007,91:061921
    [87]X. H. Zhao, and Z. G. Suo, Method to analyze programmable deformation of dielectric elastomer layer. Appl. Phy. Lett,2008,93:251902
    [88]X. H. Zhao, and Z. G Suo, Electrostriction in elastic dielectrics undergoing large deformation. J. Appl. Phys,2008,104:123530.
    [89]J. X. Zhou, W. Hong, X. H. Zhao, Z. Q. Zhang, and Z. G Suo, Propagation of instability in dielectric elastomers. Int. J. Solids. Struct,2008,45:3739-3750.
    [90]T. H. He, X. H. Zhao, and Z. G Suo, Dielectric elastomer membranes undergoing inhomogeneous deformation. J. Appl. Phys,2009,106:083522
    [91]S. J. A. Koh, X. H. Zhao, and Z. G Suo, Maximal energy that can be converted by a dielectric elastomer generator. Appl. Phy. Lett,2009,94:262902.
    [92]J. W. Fox, and N. C. Goulbourne, Electric field-induced surface transformations and experimental dynamic characteristics of dielectric elastomer membranes. J. Mech Phys. Solids,2009,57:1417-1435.
    [93]J. Zhu, S. Q. Cai and Z. G Suo, Nonlinear oscillation of a dielectric elastomer balloon. Polymer. Int, 2010,59:378-383.
    [94]J. W. Fox, and N. C. Goulbourne, Electric field-induced surface transformations and experimental dynamic charactristics of dielectric elastomer membranes. J. Mech. Phys. Solids,2008,57:1417-1435.
    [95]Z. G Suo, and J. Zhu, Dielectric elastomer of interpenetrating networks. Appl. Phys. Lett,2009,95:232909.
    [96]S. M. Ha, W. Yuan, Q. B. Pei, R. Pelrine, and S. Stanford, Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv. Mater,2006, 18:887-891.
    [97]M. Wissler, and E. Mazza, Electromechanical coupling in dielectric elastomer actuators. Sens. Actu. A,2007,138:384-393.
    [98]E. M. Mockenstrum, and N. Goulbourne, Dynamic response of dielectric elastomer. Int. J. Non-Linear. Mech,2006,41:388-395.
    [99]N. Goulbourne, E. Mockensturm, and M. Frecker, A nonlinear model for dielectric elastomer membranes. J. Appl. Mech,2005,72:899-906.
    [100]C. Keplinger, M. Kaltenbrunner, N. Arnold, and S. Bauer, Capacitive extensometry for transient strain analysis of dielectric elastomer actuators. Appl. Phy. Lett,2008, 92:192903.
    [101]A. O. Halloran, F. O. Malley, and P. McHugh, A review on dielectric elastomer actuator, technology, applications and challenges. J. Appl. Phys,2008,104:071101.
    [102]M. Wissler, and E. Mazza, Modeling and simulation of dielectric elastomer actuators. Smart. Mater. Struct,2005,14:1396-1402.
    [103]R. Diaz-Calleja, E. Riande, and M. J. Sanchis, On electromechanical stability of dielectric elastomer. Appl. Phys. Lett,2008,93:101902.
    [104]F. Carpi, and D. Rossi, Dielectric elastomer cylindrical actuators:electromechanical modeling and experimental evaluation. Mat. Sci. Eng. C,2004,24:555-562.
    [105]R. Pelrine, R. Kornbluh, J. Joseph, R. Hevdt, Q. B. Pei, and S. Chiba, High-field deformation of elastomeric dielectric for acutators. Mat. Sci. Eng. C,2000,11: 89-100.
    [106]J. S. Plante, and S. Dubowsky, Large-scale failure modes of dielectric elastomer actuators. Int. J. Solids. Struct,2006,43:7727-7751.
    [107]M. Wissler, and E. Mazza, Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sens. Actu. A,2007,134:494-504.
    [108]R. Shankar, T. K. Ghosh, and R. J. Spontak, Dielectric elastomer as next-generation polymeric acutators. Soft. Matter,2007,3:1116-1129.
    [109]R. Palakodeti, and M. R. Kessler, Influence of frequency and prestrain on the mechanical efficiency of dielectric electroactive polymer actuators. Mater. Lett,2006, 60:3437-3440.
    [110]G. Kofod, The static actuation of dielectric elastomer actuators:how does pre-stretch improve actuation? J. Phys. D:Appl. Phys.2008,41:215405.
    [111]F. Carpi, G. Gallone, F. Galantini, and D. D. Ressi, Silicone-Poly blends as elastomers with enhanced electromechanical transduction properties. Adv. Funct. Mater,2008,18:235-241.
    [112]G. K. Lau, J. F. L. Goosen, F. V. Keulen, P. J. French, and P. M. Sarro, Actuated elastomers with rigid vertical electrodes. J. Micromech. Microeng,2006,16: S35-S44.
    [113]P. Dubois, S. Rosset, M. Niklaus, M. Dadras, and H. shea, Voltage control of the resonance frequency of dielectric electroactive polymer membrances. J. Microelectro-mech. Sys,2008,17:1072-1081.
    [114]C. P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett,1962,8: 250-253.
    [115]C. P. Bean, Magnetization of high-field superconductors. Rev. Mod. Phys,1964,36: 31-39.
    [116]C. P. Bean, Surface barrier in type-Ⅱ superconductors. Phys. Rev. Lett,1964,12: 14-16
    [117]T. Miyamoto, K. Nagashima. N. Sakai, and M. Murakami, Direct measurements of mechanical properties for large-grain bulk superconductors. Physica C,2000,340, 41-50.
    [118]M. Tomita, and M. Murakami, Effect of resin layer on the thermal stress of bulk superconductors. Physica C,2003,392-396:493-498.
    [119]J. Y. Li, and M. L. Dunn, Micromechanics of magnetoelectroelastic composite materials:average field and effective behavior. J. Int. Mat. Sys. Struct,1998,9:404-416.
    [120]J. H. Huang, H. K. Liu, and W. L. Dai, The optimized fiber volume fraction for magnetoelectric coupling effect in piezoelectric-piezomagnetic continuous fiber reinforced composites. Int. J. Eng. Sci,2000,38:1207-1217.
    [121]X. Wang, and Y. P. Shen, The general solution of three-dimensional problems in magneto-electroelastic media. Int. J. Eng. Sci,2002,40:1069-1080.
    [122]X. Wang, and Z. Zhong, The general solution of spherically isotropic magnetoelectroelastic media and its applications. Euro. J. Mech. A/Solids,2003,22: 953-969.
    [123]J. X. Liu, X. Liu, and Y. Zhao, Green's functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci,2001, 39:1405-1418.
    [124]C. F. Gao, H. Kessler, and H. Balke, Crack problems in magnetoelectroelastic solids. Part I:Exact solution of a crack. Int. J. Eng. Sci,2003,41:969-981.
    [125]C. F. Gao, H. Kessier, and H. Balke, Crack problems in magnetoelectroelastic solids. Part II:General solution of collinear cracks. Int. J. Eng. Sci,2003,41:983-994.
    [126]B. L. Wang, and Y. W. Mai, Fracture of piezoelectromagnetic materials. Mech. Res. Commun,2004,31:65-73.
    [127]C. F. Gao, P. Tong, and T. Y. Zhang, Fracture mechanics for a mode Ⅲ crack in a magnetoelectroelastic solid. Int. J. Solids. Struct,2004,41:6613-6629.
    [128]K. Q. Hu, and G. Q. Li, Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading. Int. J. Solids. Struct,2005,42:2823-2835.
    [129]K. Q. Hu, and G. Q. Li, Electro-magneto-elatic analysis of a piezoelectromagnetic strip with a finite crack under longitudinal shear. Mech. Mat,2005,37:925-934.
    [130]X. F. Li, Dynamic analysis of a cracked magnetoelectroelastic medium under anti-plane mechanical and in-plane electric and magnetic impacts. Int. J. Solids. Struct,2005,42:3185-3205.
    [131]B. L. Wang, and Y. W. Mai, Impermeable crack and permeable crack assumptions, which one is more realistic? J. Appl. Mech,2004,71:575-578.
    [132]F. Erdogan, Complex function technique. In:Continuum Physics, vol II. (Academic Press, New York,1975, pp.523-603).
    [133]H. J. Choi, Impact response of a surface crack in a coating/substrate system with a functionally graded interlayer:antiplane deformation. Int. J. Solids. Struct,2004,41: 5631-5645.
    [134]M. K. Miller, and W. T. Guy, Numerical inversion of the Laplace transform of Jacobi polynomials. SIAMJ. Num. Anal,1966,3:624-3635.
    [135]Z. F. Song, and G. C. Sih, Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theo. Appl. Fract. Mech,2003,39:189- 207.
    [136]J. Chen, and Z. X. Liu, On the dynamic behavior of a functionally graded piezoelectric strip with periodic cracks vertical to the boundary. Int. J. Solids. Struct, 2005,42:3133-3146.
    [137]X. Y. Wang, and S. W. Yu, Transient response of a crack in a piezoelectric strip objected to the mechanical and electrical impacts:mode III problem. Int. J. Solids. Struct,2000,37:5795-5808.
    [138]G. C. Sih, and E. P. Chen, Dilatational and distortional behavior of cracks in magnetoelectroelastic materials. Theo. Appl. Fract. Mech,2003,40:1-21.
    [139]F. Delale, and F. Erdogan, The crack problem for a nonhomogeneous plane. J. Appl. Mech,1983,50:609-614.
    [140]L. C. Guo, L. Z. Wu, T. Zeng, and L. Ma, Mode I crack problem for a functionally graded orthotropic strip. Euro. J. Mech. A/Solids,2004,23:219-234
    [141]F. Erdogan, The crack problem for bonded nonhomogeneous materials under antiplane shear loading. J. Appl. Mech,1985,52:823-828
    [142]S. Celebi, F. Lnanir, and M. A. R. LeBlanc, Coexistence of critical and normal state magnetostrictions in type Ⅱ superconductors:A model exploration.J. Appl. Phys. 2007,101:013906.
    [143]K. Zmorayova, P. Diko, and G. Krabbes, Oxygenation cracks in top seed melt growth Y-Ba-Cu-O bulk superconductors. Physica C,2006,445-448:436-439.
    [144]N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Noordhoff, Groningen-Holland,1963).
    [145]O. I. Bowie, and D. M. Neal, A modified mapping-collocation technique for accurate calculation of stress intensity factors. Int. J. Fract. Mech,1970,6:199-206.
    [146]H. Johansen, C. Wang, Q. Chen, and W. Chu, Enhancement of tensile stress near a hole in superconducting trapped-field magnets. J. Appl. Phys,2000,88:2730-2733.
    [147]V. V. Eremenko, V. A. Sirenko, H. Szymczak, A. Nabiallek, and M. A. Balbashov, Magnetostriction of thin flat superconductor in a transverse magnetic field. Superlattice. Microst,1998,24:221-226.
    [148]X. J. Zheng, and X. E. Liu, A Nonlinear Constitutive Model for Terfenol-D Rods. J. Appl. Phys,2005,97:053901.
    [149]X. E. Liu, and X. J. Zheng, A nonlinear constitutive model for magnetostrictive materials. Acta. Mech. Sinica,2005,21:278-285.
    [150]Y. H. Zhou, and X. B. Yang, Numerical simulation of thermomagnetic instability in high-Tc superconductors:Dependence on sweep rate and ambient temperature. Phys. Rev. B,2006,74:054507.
    [151]Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-Based Layered Superconductor La[O,.xFx]FeAs (x= 0.05-0.12) with Tc= 26 K. J. M. Chem. Soc,2008,
    130:3296-3297.
    [152]X. J. Zheng, and L. Sun, A nonlinear constitutive model of magneto-thermo-mechanical coupling for giant magnetostrictive materials. J. Appl. Phys,2006,100:063906(1-6).
    [153]X. J. Zheng, and L. Sun, A one-dimension coupled hysteresis model for giant magnetostrictive materials. J. Magn. Magn. Mater,2007,309:263-271.
    [154]J. Genzer, and J. Groenewold, Soft matter with hard skin:From skin wrinkles to templating and material characterization. Soft. Matter,2006,2:310-323.
    [155]W. Hong, X. H. Zhao, and Z. G. Suo, Formation of creases on the surfaces of elastomers and gels. Appl. Phy. Lett,2009,95:111901.
    [156]M. A. Biot, Mechanics of Incremental Deformation (John Wiley&Son Inc, New York, 1965).
    [157]V. Trujillo, J, Kim, and R. C. Hayward, Creasing instability of surface-attached hydrogels. Soft. Matter,2008,4:564-569.
    [158]X. Chen, and J. W. Hutchinson, Herringbone buckling patterns of compressed thin films on compliant substrates. ASME J. Appl. Mech,2004,71:597-603.
    [159]Z. Y. Huang, W. Hong, and Z. Suo, Nonlinear analyses of wrinkles in a flim bonded to a compliant substrate. J. Mech. Phys. Solids,2005,53:2101-2118.
    [160]E. A. Kearsley, Asymmetric stretching of a symmetrically loaded elastic sheet. Int. J. Solids. Struct,1986,22:111-119.
    [161]R. Pelrine, R. Kornbluh, J. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuations. Sens. Actu. A,1998,64:77-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700