不同运动模式下永磁轨道上方高温超导体悬浮性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导磁悬浮技术利用块状高温超导体的磁通钉扎原理,在外部磁激励条件下,实现无需主动控制的静态稳定悬浮,这种优良的被动悬浮技术,不仅具备普通磁悬浮系统的技术优势,而且结构简单,应用便利,可靠性高,在磁悬浮交通领域受到越来越多的关注。目前,世界各研究小组研究方向主要集中在高温超导体在永磁体及永磁轨道上做垂直方向、侧向、纵向单个自由度运动时高温超导体的电磁特性,以及高温超导体在永磁体及永磁轨道上做垂直方向与侧向两个自由度复合运动时高温超导体的电磁特性。而针对高温超导磁悬浮车在实际运行中可能出现的不同运动模式,例如从直道进入弯道时在水平面上所产生的圆弧曲线运动,侧向扰动下在水平面上可能出现的车体水平偏移运动即折线形运动以及加减速时车头在垂直面上可能产生的斜线往返运动轨迹,所引起高温超导磁悬浮车悬浮性能变化的研究,尚未见相关报导。为使高温超导磁悬浮实验车早日走出实验室,本论文对折线形运动、斜线往返运动以及圆弧曲线运动三种不同运动模式下永磁轨道上方高温超导块材YBCO(YBa2Cu30x+1)的悬浮性能进行了基础的实验与理论研究。
     本论文在改造SCML-01高温超导磁悬浮测试系统基础上,搭建了可实现上述三种运动模式的高温超导磁悬浮实验平台,在垂直面上通过纵向与垂直两个自由度的复合运动,研究了场冷情况下块材组合、反应急缓加减速特点的斜线往返运动角度及运动次数对悬浮力的影响;在水平面上通过纵向与侧向两个自由度的复合运动,研究了场冷情况下折线形运动的侧向位移、角度与力矩的关系以及场冷情况下圆弧曲线运动的弧形大小、轨道倾斜角度与力矩的关系。本论文针对上述不同的运动模式,引入不同的运动控制方程,结合洛仑兹力公式和能量公式,建立高温超导磁悬浮不同运动模式下多物理场耦合暂态非线性模型;在学习相关电磁场理论与超导理论的基础上,利用高温超导电磁场的超导本构关系,即磁通流动与蠕动的E-J本构关系模型,求解高温超导体内部的电流密度J;通过改变块材的临界电流密度、不同的运动速度、不同运动模式下运动路径的大小以及改变轨道倾斜度等因素,采用comsol软件完成悬浮力与导向力的三维数值计算,进一步深入研究高温超导体的内在因素与外部条件对其悬浮性能的影响。
     上述实验与理论研究结果表明,通过提高高温超导体的临界电流密度和适当地改变外部条件可以提高高温超导体在上述不同运动模式下的悬浮性能。论文的研究结果将为高温超导磁悬浮车的工程应用提供具有一定参考价值的测试数据和设计依据。
By using the flux pinning principle of high temperature superconductor bulk, high temperature superconducting (HTS) maglev technology can realize static stable suspension without active control in the appropriate external magnetic excitating condition. And this kind of excellent passive suspension technology, not only has the technical advantages of common magnetic levitation system, but also has such characters as simple structure, convenient application and high reliability. So this technology acquires more and more attention in the traffic field. Now, every HTS research group of the world maily focuses on HTS electromagnetic properties, occurring in the HTS specimens over permanent magnet (PM) or the permanent magnet guideway (PMG) moving along single direction of longitudinal, vertical or lateral direction respectively, or both vertical and lateral direction simultaneously. But in the actual operation conditions, HTS maglev train may experience different movement modes, such as arc curve movement in the horizontal plane when the HTS train enters into the curve from the straight guideway, train body lateral excursion movement (namely broken line movement) in the horizontal plane caused by lateral disturbances, and possible slant-line type movement in the vertical plane of the train tip edges when accelerating or decelerating. And the related reports of research on above different movement modes have not appeared yet. For the purpose of HTS maglev train practical application early, this dissertation does some basic experiment and theoretical research of the HTS bulk YBCO (YBa2Cu3Ox+1) maglev characters when bulks operate broken line type movement, slant-line movement and arc curve movement respectively above the PMG.
     Based on improving the high-temperature superconducting maglev measuremeant system (SCML-01) of Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), this dissertation constructs the HTS experiment platform of above three movement modes. With the composite movement of longitudinal and vertical axises, this dissertation studies the influence on levitation force with different bulk combination, slant-line angle representing the feature of slow and softly or suddenly increasing or decreasing the speed, and the movement times on field-cooling (FC) position; With the composite movement of longitudinal and lateral axises, this dissertation discusses the relationship of torque and both different lateral displacement and broken line type angle on FC position, and researches the relationship of torque and both the size of arc movent and slant angle of the PMG on FC position. Meanwhile, by introducing different movement control equation according to different movement modes and combing with Lorenz force formula and energy formula, this dissertation establishes the transient nonlinear model with multi-physical field coupling. And through studying the related theory of electromagnetic fields and superconductivity theory, this dissertation solutes the current density J within HTS bulk, by using the superconducting constitutive relation of HTS electromagnetic fields, namely the E-J constitutive relation model of flux flow and creep. By changing such parameters of HTS bulk as critical current density, moving speed, the size of moving path and PMG slanting angle, the dissertation completes the three dimensional numerical calculation of levitation force and guiding force with the comsol software, and further studies that the HTS internal factors and external conditions influence on maglev performance.
     The experimental and theoretical research results show that by improving HTS critical current density and external conditions, the HTS maglev performance can be improved in the case of above different movement modes. In addition, this dissertation research results will provide the test data and design consideration for engineering application of HTS maglev train.
引文
[1]H. K. Onnes. On the sudden change in the rate at which the resistance of mercury disappears. Commun. Phys. Lab. Univ. Leiden,1911,120b:122b
    [2]WMeissner and R.oehsenfeld. Naturwiss.1933,21:787
    [3]G. Crabbes, F. Fuchs. High Temperature Superconductor Bulk Materials. Wiley-VCH (2006)
    [4]F. Hellman, et al. Levitation of a magnet over flat type Ⅱ superconductors. J. Appl. Phys.1988,63: 447
    [5]E. Brandt. Friction in levitated superonductors. Appl. Phys. Lett.198853:1554
    [6]F. Moon, M. Yanoviak and R. Ware. Hysteretic levitation forces in superconducting ceramics. J. Appl. Phys.1988,52 (18):1534
    [7]Y. Shapira, C. Huang, et al. Magnetization and magnetic suspension of YBa2Cu3Ox-AgO ceramic superconductors. J. Magn. Magn. Mater.1989,78:19-30
    [8]Z. Yang, T. Johansen, H. Bratsberg, et al. Potential and force between a magnet and a bulk YBa2Cu3O7-5 superconductor studied by a mechanical pendulum. Supercond. Sci. Technol.1990, 3(12):591-597
    [9]W. Yang, Z. Wen, Y. Duan, et al. Construction and Performance of HTS Maglev Launch Assist Test Vehicle. IEEE Trans. Appl. Supercond.2006,16 (2):1108-1111
    [10]J. Wang, S. Wang, C. Deng, et al. Laboratory-scale high temperature superconducting maglev launch system. IEEE Trans. Appl. Supercond.2007,17(2):2091-2094.
    I11] Q. Shu, G. Cheng, T. Joseph, et al. Magnetic levitation technology and its applications in exploration projects. Cryogenics.2006,46:105-110
    [12]Q. Shu, G. Cheng, J. Susta et al. A Six-Meter Long Prototype of the Mag-Lev Cryogen Transfer Line. IEEE Trans. Appl. Supercond.2005,15(2):2297-2230
    [13]T. Coombs, A. Campbell, R. Storey, et al. Superconducting Magnetic Bearings for Energy Storage Flywheels. IEEE Trans. APPL Supercond.1999,9(2):968-971
    [14]F. Werfel, et al. A Compact HTS 5 kWh/250 kW Flywheel Energy Storage System. IEEE Trans. Appl. Supercond.2007,17:2138-2141
    [15]N. Koshizuka, F. Ishikawa, H. Nasu, et al, Progress of superconducting bearing technologies for flywheel energy storage system. Physica C.2003,386:444-450
    [16]F. Werfel, et al.250 kW Flywheel with HTS Magnetic Bearing for Industrial Use. IEEE Trans. Appl. Supercond.2008,17:2138
    [17]H. Walter, J. Bock, C. Frohne, et al. First Heavy Load Bearing for Industrial Application with Shaft Loads up to 10 kN. J. Phys. Conf. Ser.2006,43:995
    [18]B. Weinberger, L. Lynds, and J. Hull. Magnetic bearings using high-temperature superconductors: some practical considerations. Supercond. Sci. Technol.1990,3:381-388
    [19]K. Ma, Q. Chen, E. Postrekhin, et al. High temperature superconductor levitation bearing for space application. Physica C,2000,341-348:2517-2520
    [20]J. Hull. Superconducting Bearings. Supercond. Sci. Technol.2000,13:R1-R15
    [21]F. Moon. Superconducting levitation. John Wiley & Sons, Inc.1994
    [22]王家素,王素玉.超导技术应用.成都科技大学出版社,1995
    [23]G. Ovidio, F. Crisi and G. Lanzara. A "V" shaped superconducting levitation module for lift and guidance of a magnetic transportation system. Physica C.2008,468:1036-1040
    [24]H. Fujimoto, H. Kamijo, et al. Preliminary study of a superconducting bulk magnet for the Maglev train. IEEE Trans. Appl. Supercond.1999,9 (2):301-304
    [25]J. Wang, S. Wang, Y. Zeng, et al. The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C.2002,378-381:809-814
    [26]F. Koyama, S. Akiyama and M. Murakami. Developments of superconducting mixers for medical applications. Supercond. Sci. Technol.2006,19:S572-S574
    [27]R. M. Stephan, R. Nicolsky, et al. A superconducting levitation vehicle prototype, Physica C.2004, 408-^10:932-934.
    [28]R. J. Cruise, K. Vandenbroucke, C. F. Landy, G. J. Barnes and M. D. McCulloch. Design and Evaluation of a High Temperature Superconducting Maglev System. Physica C.2000,341-348: 2627-2628
    [29]M. Tsuda, T. Kawasaki, et al. Improvement of Levitation Force Characteristics in Magnetic Levitation Type Seismic Isolation Device Composed of HTS Bulk and Permanent Magnet. J. Phys. Conf. Ser.2008,97:012104.
    [30]H. Kumakura. Evolution of pratical superconducting materials. Superconductivity Centennial Conference EUCAS.2011, Sept.18-24
    [31]宋宏海.对称与非对称场外中高温超导体YBCO电磁特性研究.西南交通大学硕士学位论文,2004
    [32]K. L. Kovalev, S. M.-A. Koneev, V. N. Poltavec, et al. Magnetically levitated high-speed carriages on the basis of bulk HTS elements. In Proc.8th Intern. Symp. Magnetic Suspension Technology (ISMST'8), Dresden,2005, pp.51.
    [33]L. Schultz, O. De Haas, P. Verges, C. Beyer, et al. Superconductively levitated transport system--the SupraTrans project. IEEE Trans. Appl. Supercond.2005,15:2301-2305
    [34]R. Stephan, R. Nicolsky, M. Neves, et al. A superconducting levitation vehicle prototype. Physica C. 2004,408-410:932-934
    [35]R. Stephan, E. David, et al. A Full-Scale Module of the Maglev-Cobra HTS-Superconducting Vehicle.2008 Proc.20th Int. Conf. on Magnetically Levitated Systems and Linear Drives (MAGLEV) (San Diego, Dec.):paper 27
    [36]C. Navau and A. Sanchez. Magnetic properties of finite superconducting cylinders. II. Nonuniform applied field and levitation force. Phys. Rev. B.2001,64(21):214507
    [37]W. Yang, L. Zhou, Y. Feng, et al. Identification of the effect of grain size on levitation force of well-textured YBCO bulk superconductors. Cryogenics.2002,42:589-592
    [38]朱敏,任仲友等YBCO超导块的厚度和形状对其悬浮力的影响.低温物理学报.2002,24(3):213-217
    [39]E. Brandt. Flux line lattice in high-Tc superconductors:anisotropy, elasticity, fluctuation, thermal depinning, A. C. penetration and susceptibility (review). Physica C.1992,195:1-27
    [40]H. Ohsaki, et al., Numerical analysis of electromagnetic phenomena in bulk superconductors under the influence of an applied traveling field. Adv. Supercond.1997, IX 2:1373-1376.
    [41]N. Valle, A. Sanchez, et al. Optimizing levitation force and stability in superconducting levitation with translational symmetry. Appl. Phys. Lett.2007,90:042503
    [42]M. Muraldihar, et al. New Type of Pinning Structure Effective at Very High Magnetic Fields. Phys. Rev. Lett.2002,89:237001-1-4.
    [43]A. Sanchez and C. Navau. Levitation force between a superconductor and a permanent magnet with cylindrical symmetry. Physica C.2001,364-365:360-362
    [44]H. Fukai, M. Tomita, et al. The effect of geometry on the trapped magnetic field in bulk superconductors. Supercond. Sci. Technol.2002,15:1054-1057
    [45]H. Jiang, J. Wang, S. Wang, et al. The magnetic levitation performance of YBCO bulk at different temperature. Physica C.2002,378-381:869-872
    [46]A. Sanchez and C. Navau. Influence of Demagnetizing Effects in Superconducting Cylinders. IEEE Trans. Appl. Supercond.1999,9(2):2195-2198
    [47]S. Nariki, M. Fujikura, et al. Field trapping and magnetic levitation performances of large single-grain Gd-Ba-Cu-O at different temperatures. Physica C.2005,426-431:654-659
    [48]S. Br(?)ck, D. Shantsev, et al. Superconducting trapped-field magnets:Temperature and field distributions during pulsed-field activation. J. Appl. Phys.2002,92(10):6235-6240
    [49]Y. Itoh, Y. Yanagi and U. Mizutani. Flux motion during pulsed field magnetization in Y-Ba-Cu-O superconducting bulk magnet. J. Appl. Phys.1997,82 (11):5600-5611
    [50]W.M. Yang, L. Zhou, et al. The effect of different field cooling processes on the levitation force and attractive force of single-domain YBa2Cu3O7-x bulk. Supercond. Sci.Technol.2002,15 (10): 1410-1414
    [51]Xiao-jing Zheng, Yong Yang. Transition Cooling Height of High-Temperature Superconductor Levitation System. IEEE Trans. Appl. Supercond.2007,17:4
    [52]M. Qin, G. Li, H. K. Liu, X. Dou and E. H. Brandt, Calculation of the hysteretic force between a superconductor and a magnet. Phys. Rev. B.2002,66:024516
    [53]A. N. Terentiev, H. J. Lee, C.-J. Kim et al. Identification of magnet and superconductor contributions to the ac loss in a magnet-superconductor levitation system. Physica C,1997,290:291-296
    [54]A. N. Terentiev, J. R. Hull, and L. E. De Long. Flux line depinning in magnet-superconductor levitation system. Physica C,2000,341-348:1289-1290
    [55]Z. J. Yang, J. R. Hull, T. M. Mulcahy, et al.. Amplitude and frequency depenence of magnetic hysteresis loss in a magnet-superconductor levitation system. J. Appl. Phys.,1995,78(3):2097-2100
    [56]Wang Jiasu, Wang Suyu, et al. A Scheme of Maglev Vehicle Using High Tc Bulk Superconductors. IEEE Transactions on Applied superconduetivity.1999,9(2):904-907
    [57]Wang Suyu, Wang Jiasu, Lian Jisan. Some considerations using high Tc bulk superconductors for Mag-Lev transportation systems. In:Lin Liangzhen, Shen Guoliao, Yan Luguang, ed. Proceeding of the Fifteenth International Conference on Magnet Technology Beijing,1998. Science Press, Part one, PP.767-769
    [58]任仲友.永磁导轨上高温超导磁悬浮的实验研究与数值计算.西南交通大学博士学位论文,2004
    [59]H. Weh, H. Pahl, et al. HTc superconductors calculation model and possible MAGLEV applications. Proceedings of 14th International Conference on Magnetically Levitated Systems,1995:217 - 222
    [60]张永,徐善纲.高温超导磁悬浮模型车.低温与超导.1998 26(4):35-39
    [61]J. R. Wang, M. Z. Wu, et al. High-Tc Superconductive Vehicle for Maglev Model. Rare Metal Materials and Engineering.1998,27(4):240 - 243
    [62]ZhangYong, Xu Shangang. Research of high temperature superconductor Maglev vehicle. Proceedings of the Symposium on Maglev Train Application in China (SMLTA'97), Hangzhou, China 1997. pp.53- 58
    [63]Y. Zhang and S.G. Xu. Measurement and analysis of a HTSC Maglev model vehicle. In:L. Z. Lin, G. L. Shen, L.G. Yang, editors. Proceeding of the Fifteenth International Conference on Magnet Technology, Beijing,1998. Science Press, Part one, pp.763 - 766.
    [64]Donglu Shi, D. Qu, et al. Domain-orientation dependence of levitation force in seeded melt grown single-domain YBa2Cu30x. Appl. Phys. Lett.1997,70 (26):3606 - 3608
    [65]J. Ryohei Maruo, Atsushi Inoue, Makoto Okano, and Mochimitsu Komori. Study on Magnetically Levitated Conveying System Using Hybrid-Magnetized High Superconductors. IEEE Trans. Appl. Supercond., Vol.18, No.2, June 2008
    [66]G.D'Ovidio, F. Crisi, A. Navarra, G Lanzara. Lift and guidance forces by using iron - magnetic track with side rims interacting with passive HTc superconducting Plate:Experimental analyses. J. Mater. Process. Technol.2007,181 (1-3):18-24
    [67]G. Lanzara. G. D'Ovidio, C. Masciovecehio, M. Villani. Superconducting sheets fort rain support and traction:finite element analysis. In Proceedings of the Second International Syposium on Linear Drives for Industry Applications(LDIA), Tokyo Japan, April 8-10,1998.
    [68]Y. Sanagawa, H. Ueda. et al. Characteristics of lift and restoring force in HTS bulk-Application to two-dimensional maglev transporter. IEEE Trans. Appl. Supercond 2001,11(1):1797-1800
    [69]冈野真,玉田纪治.超导磁悬浮运输系统.中国专利:CN 1287961,2001-03-21.
    [70]M. Okano, T. Iwamoto, M. Senokuchi, et al. Magnetic rail construction for a low loss superconducting magnetic levitation linear guide. IEEE Trans. Appl. Supercond 2004,14 (2): 944-947
    [71]M. Okano, T. Iwamoto, M. Furuse, et al. Running Performance of a Pinning-Type Superconducting Magnetic Levitation Guide. Journal of Physics:Conference Series.2006,43:999-1002
    [72]杨文将、刘宇、杨博.航天发射用磁悬浮助推发射系统概念研究.2005年1月第31卷第1期.北京航空航天大学学报
    [73]C. Beyer, O. de-Haas, L. Kuehn, L. Schultz. A turnout switch for a superconductively levitated linear transport system. IEEE Trans. Appl. Supercond.,2007,17(2):2129-2132
    [74]王家素,王素玉等.高温超导磁悬浮测试系统.高技术通讯,2000,10(8):55-58
    [75]Suyu wang, Jiasu Wang, Changyan Deng, et al. An update High-Temperature Superconducting Maglev Measurement System. IEEE Trans. Appl. Supercond.2007,17 (2):2067-2070
    [76]Jiasu Wang, Suyu wang, Changyan Deng, et al. A High-Temperature Superconducting Maglev Dynamic Measurement System. IEEE Trans. Appl. Supercond.2008,18 (2):791-794
    [77]Jia-Su Wang and Su-Yu Wang. High Temperature Superconductive Maglev Vehicle.2013,(年版 中)
    [78]X. Wang, H. H. Song, Z. Y. Ren, et al. Levitation force and guidance force of YBCO bulk in applied field. Physica C.2003,386:536-539
    [79]Ren Zhongyou, Wang Jiasu, Wang Suyu, et al. A hybrid maglev vehicle using Permanent magnets and high temperature superconductor bulks. Physica C.2002,378-381(Part 1):873-876
    [80]任仲友,王家素,王素玉,朱敏,江河,王晓融,沈旭明,宋宏海.NdFeB永磁导轨上YBaCuO 块材悬浮力与磁场和磁场梯度关系的研究.低温物理学报.2002,24(4):293-2973.
    [81]Zhongyou Ren, Jiasu Wang. Suyu Wang, He Jiang, Min Zhu, Xiaorong Wang, Honghai Song. Influence of shape and thickness on the levitation force of YBaCuO bulk HTS over a NdFeB guideway.PhysicaC.2003,384(1-2):159-162
    [82]任仲友,王家素,王素玉,王晓融,宋宏海,王兴志,郑裙.提高YBCO块材在外磁场中悬浮力.低温物理学报.2003,25(3):2025-2086.
    [83]H.H. Song, J.S.Wang, S.Y Wang, O. De Haas, Z.Y.Ren, X.R.Wang, J.Zheng, X.Z. Wang. The Relationship between levitation force and levitation stiffness in both symmetrical and unsymmetrical applied field. Supercond. Sci. Technol.2004,18:S1-S4.
    [84]H.H. Song, O. De Haas, Z.Y.Ren, X.R.Wang, J.Zheng, X.Z. Wang, S.Y Wang, J.S.Wang, Y. Zhao. Magnetic interaction between multiple seeded YBCO bulks and the permanent magnet guideway. Physica C.2004,407:82-87.
    [85]J. Zheng, Z. Deng, et al. Stability of the Maglev vehicle model using bulk high-Tc superconductors at low speed. IEEE Trans. Appl. Supercond.2007,17 (2):2103-2106
    [86]J. Zheng, Z. Deng, et al. Vibration property dependence on the trapped flux of a bulk high-temperature superconductor. Physica C.2007,463-465:1356-1360
    [87]Z. Deng, J. Zheng, H. Song, et al. Free vibration of the high temperature superconducting maglev vehicle model. IEEE Trans.Appl.Supercond.2007,17(2):2071-2074
    [88]Qingyong He, Jiasu Wang, Longcai Zhang, Suyu Wang, Siting Pan. Influence of the ramp angle on levitation characteristics of HTS maglev. Physica C.2008,468 (1):12-16
    [89]Qingyong He, Jiasu Wang, Suyu Wang, Jiansi Wang, Hao Dong, Yuxin Wang, Senhao Shao. Levitation force relaxation caused by reloading in HTS maglev. Physica C.2009,469:91-94
    [90]Qingyong He, Jiasu Wang, Suyu Wang. Levitation force relaxation of HTS YBCO bulk under load. Journal of Superconductivity and Novel Magnetism.2005,22:409-415
    [91]邓自刚.运动外磁场下高温超导YBCO块材的动态悬浮特性实验研究.西南交通大学博士论文.2009
    [92]L. Liu, J. Wang, S. Wang, J. Li, J. Zheng, G. Ma, F. Yen. Levitation Force Transition of High-Tc Superconducting Bulks Within a Maglev Vehicle System Under Different Dynamic Operation. IEEE Transactions on Applied Superconductivity,2011,21 (3):1547-1550
    [93]Lu Liu, Jiasu Wang, Zigang Deng, Jing Li, Jun Zheng, Guangtong Ma, Suyu Wang. Levitation Force Transition of High-Tc Superconducting Bulks in Varying External Magnetic Field. IEEE Transactions on Applied Superconductivity,2010,20(3):920-923
    [94]L. Liu, J.S. Wang, Z.G. Deng, S.Y. Wang, J. Zheng, J. Li. Dynamic Simulation of High Temperature Superconductors above a Spinning Circular Permanent Magnetic Guideway. Journal of Superconductivity and Novel Magnetism,2010,23(5):597-599.
    [95]Z. Hong, A.M. Campbell, T.A.Coombs. Numerical solution of eritic State in superconductivity by finite element software. Supercond. Sci. Technol.2006,19,1246-1252
    [96]Nuria Del Valle, Alvaro Sanchez, EnriePardo, Du-XingChen. Optimizing Levitation force and stability in superconducting levitation with translational sytmmetry. Applied Physics letters.2007, 90,042503
    [97]Alvaro Sanehez, Nuria Del Valle, Enrie Pardo, Du-xingChen. Magnetic levitation of superconducting bars. Journal of applied Physics.2006,99,113904
    [98]Nuria Del-Valle, Alvaro Sanehez, Carles Navau and Du-Xing Chen. A Theoretical study of the influence of superconductor and magnet dimensions on the levitation force and stability of maglev systems. Supercond. Sci. Technol.2008,21125008(7PP).
    [99]Okano, M., T. Iwamoto, et al. Feasibility of a goods transportation system with a superconducting magnetic levitation guide-load characteristics of a magnetic levitation guide using a bulk high-Tc superconductor. Physica C.2003,386:500-505
    [100]Marcelo Azevedo Neves, Giancarlo Cordeiro da Costa, et al. Mean Field Jc Estimation for Levitation Device Simulations in the Bean Model Using Permanent Magnets and YBCO Superconducting Blocks. Braz. J. Phys.2002, Vol.32, No.3
    [101]Zheng Wen, Yu Liu, Wenjiang Yang and Ming Qiu. Experimental and numerical analysis of vibration stability for a high-Tc superconducting evitation system. Superconductor Science and Technology. 2007,20(1):100-104
    [102]X.R. Wang, J.S. Wang, et al. The relationship of guidance force between single and multiple cylindrical Y-Ba-Cu-O superconductors. Physica C.2003,90:113
    [103]X.R. Wang, H.H. Song, et al. Levitation force and guidance force of YBaCuO bulk in applied field. Physica C.2003,386:536
    [104]Xiaorong Wang and Zhongyou Ren. Experimental study of relationship between levitation force on YBCO superconductors and gradient of applied magnetic field. In Proeeedings of Beijing Inernational Conferenee on Cryogenies.2000, Beijing, P.R. China, Page 177
    [105]Honghai Song, Zhongyou Ren, Jun Zheng, Xingzhi Wang, Suyu Wang, Jiasu Wang. Exponential Model for Levitation Force of YBaCuo bulks in Applied Fields. Internatzonal Journal of Modern Physics B (IJMPB).2005,19(1-3):395-397
    [106]宋宏海,王晓融,上素玉,王家素,赵勇.高温超导体在对称和非对称外磁场中的悬浮力计算.低温与超导.2004,32(2):47-50
    [107]任仲友,王家素.基于有限元的永磁导轨磁场数值计算.电工理论与新技术.2003,22(4): 36-397
    [108]Yiyun Lu, Jiasu Wang, Suyu Wang, JunZheng.3D-modeling numerical solutions of electromagnetic behavior of HTSC bulk above Permanent magnetic guideway. J supercond Nov Magn.2008,21:467-472
    [109]Guang-Tong Ma, Hui-Fen Liu, Jia-Su Wang, Su-yu Wang, and Xi-Chuan Li.3D modeling permanent magnet guideway for high temperature superconducting maglev vdhicle application. J. Supercond. Nov. Magn.2009,22:841-847
    [110]Guang-Tong Ma, Hui-Fen Liu, Jia-Su Wang, Su-Yu Wang, and Xi-Chuan Li.3D modeling permanent magnet guideway for high temperature superconducting maglev vehicle application. J. Supercond. Nov. Magn.2009,22:841-847
    [111]周又和,郑晓静.电磁固体结构力学.北京:科学出版社,1999
    [112]杨儒贵,刘运林.电磁场与波简明教程[M].科学出版社,2006:120-124
    [113]周希朗.电磁场[M].电子工业出版社.2008
    [114]苟晓凡.高温超导悬浮体的静、动力特性分析[D].兰州大学博士论文,2004:
    [115]C. P. Bean. Magnetization of hard superconductors. Phys. Rev. Lett.,1962,8:250-253;
    [116]C. P. Bean. Magnetization of high-field superconductors. Rev. Mod. Phys.,1964,36:31-39;
    [117]C. P. Bean. Surface barrier in type-Ⅱ superconductors. Phys. Rev. Lett.,1964,12:14-16
    [118]Y. B. Kim, C. F. Hempstead, and A. R. strand. Critical persistent currents in hard superconductors. Phys. Rev Lett.,1962,9(7):306-309;
    [119]Y. B. Kim, C. F. Hempstead, and A. R. strand. Resistive states of hard superconductors. Rev. Modern Phys.,1964,36:43-49
    [120]J. Paasi and M. Lahtinen. AC losses in high-temperature superconductors:revisting the fundamentals of the loss modelling. Physica C,1998,310:57-61
    [121]T. Sugiura, M. Tasayuki, Y. Uematsu, et al.. Mechanical stability of a high-Tc superconducting levitation system. IEEE Trans. Appl. Supercond,1997,7(2):386-389
    [122]T. Sugiura and H. Fujimori. Mechanical resonance characteristics of a high-Tc superconducting levitation system. IEEE Trans. Magn.,1996,32(3):1066-1069
    [123]Y. B. Kim, C. F. Hempstead, and A. R. strand. Critical persistent currents in hard superconductors. Phys. Rev Lett.,1962,9(7):306-309;
    [124]Y. B. Kim, C. F. Hempstead, and A. R. strand. Resistive states of hard superconductors. Rev. Modern Phys.,1964,36:43-49
    [125]Ming Xu, Donglu Shi and Ronald F. Fox. Generalized critical state model for superconductors. Phys. Rev. B.,1990,42(16):10773-10776
    [126]P. W. Anderson and Y. B. Kim. Hard superconductivity:theory of the motion of abrikosov flux lines. Rev. Mod. Phys.,1964,36:39-45
    [127]马光同.高温超导磁悬浮三维理论模型及其数值计算研究.西南交通大学博士论文.2009
    [128]X. Gou, Y. Yang and X. Zheng. An Analytic Expression of Magnetic Field Distribution of Rectangular Permanent Magnets. Applied Mathematics and Mechanics.2004,25(3):297-306
    [129]J. Jackson. Classical Electrodynamics.3rd ed. Wiley, New York,2001:241
    [130]H. Hashizume, T. Sugiura, K. Miya, et al. Numerical analysis of a. c. losses in superconductors. Cryogenics.1991,31:601-606
    [131]K. Miya and H. Hashizume. Application of T-method to A.C. problem based on boundary element method. IEEE Trans. Magn.1988,24(1):134-137
    [132]K. Demachia, R. Numataa, R. Shimizua, et al. AC loss of HTSC bulks for magnetic levitation. Journal of Materials Processing Technology.2001,108:141-144
    [133]A. Badia-Majosa. Understanding stable levitation of superconductors from intermediate electromagnetics. Am. J. Phys.2006,74(12):1136-1142
    [134]张兴义.高温超导磁悬浮系统在不同条件下的电磁力实验研究.兰州大学博士论文,2008
    [135]李开泰,黄艾香,黄庆怀.有限元方法及其应用.第一版.科学出版社,2006
    [136]王勖成,邵敏.有限单元法基本原理和数值方法[M].第二版.清华大学出版社,1997
    [137]丁科,陈月顺.有限单元法[M].北京大学出版社,2006
    [138]杜群贵.三维实体的四面体有限元网格自动生成.计算机学报[J].1997.第20卷
    [139]马慧,王刚.COMSOL Multiphysics基本操作指南和常见问题解答[M].人民交通出版社,2009:9-12
    [140]W. Liu, J. Wang, H. Jing, et al. Levitation performance of high-Tc superconductor in sinusoidal guideway magnetic field. Physica C.2008,468(23):2345-2350
    [141]荆华.不同温度下高温超导磁悬浮系统悬浮性能实验研究.西南交通大学博士学位论文,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700