宽频带感应式磁传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应式磁传感器是基于法拉第电磁感应定律研制的测磁仪器,其具有应用频带宽(目前最高可做到8个量级),灵敏度高、探测深度范围大(从地下几米到数千米)、体积小、重量轻、操作简单、生产成本低廉的特点,因此,感应式磁传感器在大地电磁测深中应用最广泛。然而,国内传感器由于补偿方法的限制,导致传感器向高频扩展受到限制;而且在低频(如0.01Hz)范围放大电路的1/f噪声较大,使传感器向低频段扩展也受到限制;随着大地电磁测深对测量仪器要求的不断提高,研制高灵敏度、宽频带、低噪声的磁传感器成为国内传感器研究机构的主要目的。
     针对感应式磁传感器设计中的技术问题,本文从大地电磁测深理论与感应式磁传感器的测磁原理出发,介绍影响传感器灵敏度、频带宽度的参数。设计带有磁通收集器的叠片磁芯,提高磁芯的有效面积以及有效导磁率,进而提高了传感器的灵敏度;建立级联式的线圈等效模型并总结出线圈参数(直流电阻、电感、分布电容)的计算公式,为设计高性能传感器提供基础;利用斩波放大原理,设计分立元件搭建的斩波放大电路,有效地降低了电路的1/f噪声的转折频率(<0.001Hz),实现了传感器向低频段扩展的目的。采用磁反馈补偿方法,解决了感应线圈在谐振点处的相位突变问题,降低了传感器的动态范围,传感器频率范围可向高于谐振频率的频段扩展;在非零磁空间,利用相关系数法测量传感器的噪声,取得可靠结果;开展了野外实验,与德国MFS06传感器的对比结果证明,本文设计的传感器具有灵敏度高(0.92V/nT@1kHz)、频带宽、噪声低、稳定性好的特点,能够较好地满足大地电磁测深的要求。
     本文是在国家自然科学基金《磁反馈式宽频带磁传感器技术研究》项目以及吉林省科技发展计划工业类重点项目“大深度范围地下资源电磁法探测仪器的研制”的资助下进行的,完成了高灵敏度、宽频带、低噪声的感应式磁传感器的研制,为我国电磁测深仪器的发展提供研究基础和技术储备。
The inductive magnetic sensor is used widely as magnetic field receiver in FEM methodof MT,and it has some superiorities such as wide bandwidth、wide range of detection depth、small size、light weight、simple operation、low cost and so on.The inductive magnetic sensorswere researched in the end of the1970s in China by some research institutions and made greatprogress in the the early21st century.However, there is large distance compared with similarforeign instruments.High performance magnetic sensors are imported from Europe and theUnited States for a long time with expensive price of one hundred thousand yuan.There aresome disadvantages such as long cycle of repair, impediment to development domesticinstruments,high price of the instrument in a monopoly position.The magnetic sensors havebecome an important factor to restrict the development of the electromagnetic instrument.Weanalysis and optimize the schemes which affect the performance of inductive magneticsensor.Finally we achieved a product with wide band width,high sensitivity,low noise.Thefrequency range of the sensors is0.001Hz-10kHz,and the sensitivity is0.3V/(nT*Hz)@0.01Hz,0.92V/nT@1kHz.The result of the tests in field shows that the noise of sensors is0.1nT@0.001Hz,1*10-6nT@1kHz.The stability and other parameters of the sensor are closeto the foreign product.And lay the foundation for electromagnetic instrument.This research issupported by the research of the wide band magnetic sensors based on magnetic feedback ofthe National Natural Science Foundation and it is also funded by the development of theelectromagnetic instrument detection of large depth of underground resources of industrialtechnology projects Jilin Province.The main contents and results are as follows:
     (1) The research of the principle measuring magnetic. According to Faraday's law, weobtain SBL=2π*f*N*μa*S*G at low frequency, SBLis the dynamic sensitivity of thesensor.We analysis the parameters affecting the sensitivity of the sensor including the number of turns of the coil, effective area of the core, apparent permeability and magnification of thecircuit. And we propose the key topics which can improve the performance of the inductivemagnatic sensor.
     (2) The methods of increasing the effective permeability and the effective area isresearched. The permalloy is used as core of the sensor according to the magnetic relativepermeability, conductivity, temperature stability,frequency stability and the productionprocess.We advance the method of measuring the apparent permeability and simulating thedistributing with finite element software. We determine that the apparent permeabilitydecreasing from the center of the core to the sides. The core is added magnetic fluxconcentrators on both sides of it, the apparent permeability is twice when the diameter are7cm,and the thick4cm.The magnetic metal sheets(30layers) increases the effective area to17times and reduces the eddy current loss to3%.
     (3) According to Basic model of the coil,we propose the tandem model which canexplain amplitude-frequency characteristics of the coil and summe up the formula by whichcan calculate parameters of the coil accurately.By using different methods to test theamplitude-frequency characteristic and phase-frequency characteristics indicate that thetraditional model of the coil can not explain its ture features.We obtainthe DC resistance,dwis the diameter d0icucu Rcuis internaldiameter of the skeleton. We obtain the formula of distributed capacitance,the error is lowerthan7%the error of the formula of inductance is lower than6%.Finally we can estimate theresonant frequency of the coil and provide a basis for the design of sensor.
     (4) We designed the chopper circuit which has lower1/f noise applicating at the lowfrequency10-3Hz~30Hz and high precison amplifier which applicating at high frequency30Hz~10kHz. The noise of the amplifier circuit has1/f noise at the low frequency. Theinduced voltage is small and easily drowned by1/f noise departuring from the principle ofmodulation and demodulation the chopper amplifier circuit is design by discretecomponents. The circuit structure is optimized. The chopper amplifier circuit is design bydiscrete components.The circuit structure is optimized. The chopping frequency is determined.The results show that the sensor noise power is below2*10-5V/Hz1/2. The corner frequency of1/f noise is lower than0.001Hz.The induced voltage is high at high frequency,we selecthigh-performance and low-noise amplifier to design high-frequency circuit. The amplitude ofthe noise is below4*10-5V according to the results of experiment in field.
     (5) The method of magnetic flux feedback is proposed.Because that the electriccompensation can not solve the mutation of the phase at the resonance frequency of the coil.The flux feedback method is brought forward. The principle of magnetic flux feedback is enlarging the induction coil’s output voltage signal and transforming it to the current throughthe feedback resistance. Then forms the feedback magnetic field through the feedback coilwhich is twist on the introduction coil, so the feedback magnetic field’s direction is oppositeto the measured magnetic field. And the feedback magnetic field is formed to the negativefeedback way.We calculate the transfer function of the flux feedback system by using theprinciple of mutual inductance. Analyzing the influence of the number of coil turns N1,theinductance Lp,the capacitance C,the apparent permeability μapp,, length of core l,magnification, feedback resistor Rfb,turn of the feedback coil N2to sensor bandwidth andpassband gain and optimizing the sensor. The sensitivity curve is flat at100Hz-2kHz andphase-frequency characteristics is linear approximately at resonant frequency(750Hz).
     (6) The calibration device is maked for calibrating the sensor in the laboratory. The noiseof the sensor has been tested with correlation coefficient method in the field environment.Because the inductive magnetic sensor is sensitive magnetic instrument, it is necessary tocalibrate in no interference environment. The electrical magnetic shielding cylinder in theelectrical shield room could reduce the interference effectively, the result shows that thesensitivity of sensorⅡ is0.3V/(nT*Hz)@0.01Hz,0.92V/nT@1kHz.Three sensors Ⅱ areburied underground with4m apart, what made them measure the same magnetic fieldcomponent and interference. The method also avoids the trouble of impact. Using the samechannel in the acquisition system to sample the data. Because there are both useful signal andinterference signal in the sampled data, a acquisition-related processing solution had beendone in order to get the power spectrum of the noise. The results showe that the sensor noiseis0.1nT/Hz1/2@0.001Hz,1*10-6nT/Hz1/2which can meet the expected target.
     (7) The contrast experiments of sensor Ⅰin field are carried out. In the CSAMT,homemade sensor and Germany MFS06sensor are placed in parallel with4m apart and thenthe magnetic field value in the same direction will be measured for many times in the samefrequency. Through the comparison of the results, homemade sensor and MFS06almost hasthe same stability. Besides, the spectrum amplitude in other frequencies shows that the outputamplitude of the two sensors is consistent with the calibrated sensitivity and the noise index isalmost same. Earth resistivity measured by the two sensors is similar besides the relative largedifference at8kHz.
     The frequency band of sensor is0.001Hz~10kHz; the sensitivity is0.3V/(nT*Hz)@0.01Hz,0.92V/nT@1kHz; the noise level is0.1nT/Hz1/2@0.001Hz,1*10-6nT/Hz1/2@1kHz.The frequency band is narrower slightly,higher sensitivity,lower noise compared toMFS06.The sensor Ⅱcan meet requirement in MT and CSAMT.
     This paper innovation points:
     (1) The tandem model and a new calculation formula are put forward. Because the coilamplitude frequency characteristics and phase frequency characteristics appear many peaksand phase point mutations by different measuring methods.The tandem model is put forwardaccording to the conventional equivalent model.It is can be seen that the tandem model can beused to explain coil properties. The tandem model also can show that its frequency of thesecond peak point decreases with the decreasing of the resonance of the frequency, because inpeak point, the phase of the coil still jumps and all compensation methods cannot solve thisproblem. The frequency of the second peak point is10.1kHz. The sensor’s frequency bandextended.A new calculation formula is put forward by modifying the constant in thetraditional inductance coil calculation formula, its Error is lower than6%according to finiteelement method and the experiment test method. The actual test results of coil in magneticcore show that the traditional magnetic core inductance coil calculation formula has largererror, and the parameters (such as the effective permeability) and coil parameters in theformula of magnetic core is correct. The calculation error is caused by the constant type.Getting the fit formula of the traditional formula through the measured value of multiplemagnetic core inductance coils. And then correct the constant in formula to get a newcalculation formula.
     (2) The core is designed with flux collectors which can greatly improve the apparentpermeability. The geometry of the core is changed by flux collectors, which can gathermagnetic. The apparent permeability of the core is significantly improved compared with byincreasing length according simulating by finite element software. The apparent permeabilityis twice when the diameter is7cm,and the thick4cm. The outside diameter of induction coil is7cm. So the flux collectors don't increase the volume of the sensor.
     (3) The scheme of frequency compensation is proposed that the the chopper amplifier isapplied at low-frequency and magnetic flux feedback is used at high-frequency. The inducedvoltage is small and easily drowned by1/f noise at low-frequency. The amplifier is built bydiscrete components. It reduces the1/f noise (lower0.001Hz) and the temperature drifteffectively compared to integrated chopper amplifier. The results show that the sensor’s noisepower is below2*10-5V/Hz1/2. Because that the electric compensation can not solve themutation of the phase at the resonance frequency of the coil, the flux feedback method isbrought forward. It can solve the mutation of the phase at the resonance frequency andreduce the dynamic range of the coil according the Experimental and Simulative results. Thesensitivity curve is flat at a wide frequency range. The frequency range is0.001Hz~10kHz. Itmeets the design requirements.
     (4) The correlation coefficient method is proposed to test the noise of the sensor.Thetesting of the noise should be in space without any magnetic interference,otherwise it isimpossible to distinguish the interference signal or noise in output signal.There is only a zero-magnetism space laboratory in our country so that to test noise is very difficult. Based onthe correlation between the interference and noise we test the noise of three sensors in theenvironment with interference. We extract the noise from time signal acquired withcorrelation coefficient method.Experimental results show that the noise is0.1nT/Hz1/2@0.001Hz,1*10-4nT/Hz1/2@1Hz,1*10-6nT/Hz1/2@1kHz,which is lower thannatural field signal.It can Meet the requirements of design
引文
[1]赵洁心,冯波,谭俊等,我国矿产资源开发利用现状与可持续发展探讨[J].黄金,2006,5(26).1-4.
    [2]陈新燕,我国矿产资源现状研究及保护对策[J].矿产保护与利用,2005(1):6-8.
    [3]杨沈生,我国矿产资源现状与应对措施[J].科技创新导报,2010(12).
    [4]李金发,矿产资源战略评价体系研究[D],2004,中国地质大学.
    [5]谢海燕,樊燕.矿产资源可持续性发展思路探究[J].人民长江,2008(3):96-98.
    [6]刘宝珺,廖声萍.我国的固体矿产与资源安全的分析[J].山东科技大学学报(自然科学版),2006(3):1-5.
    [7]张立公,新一轮金属矿的勘查与开发[J].资源调查与环境,2002,23(3):196-199.
    [8]滕吉文等,第二深度空间金属矿产探查与东北战略后备基地的建立和可持续发展[J].吉林大学学报(地球科学版),2007(4):633-651.
    [9]严加永,滕吉文,吕庆田.深部金属矿产资源地球物理勘查与应用[J].地球物理学进展,2008(3):871-891.
    [10]滕吉文.强化开展地壳内部第二深度空间金属矿产资源地球物理找矿、勘探和开发[J].地质通报,2006,25(7):767-771.
    [11]孙权.我国淡水资源的现状与开发利用探析[J].黑龙江科技信息,2010(7):209.
    [12]姜秀云,贾理珍,韩明.浅谈解决淡水资源危机的有效途径[J].科技情报开发与经济,2004(10):98-100.
    [13]王业蘧,我国淡水资源的生态平衡[J].生态学杂志,1986(4):33-36.
    [14]连进元,赵彦红.对我国淡水资源可持续利用的探讨[J].河北师范大学学报,2004(3):316-319.
    [15]苗硕.中国淡水资源现状与保护措施探讨[J].现代商贸工业,2010(17):19-21.
    [16]张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境,2009(02):116-120.
    [17]尚新磊. TEM-MRS联用地下水探测关键技术研究[D].2010,吉林大学.
    [18]郭孟卓,赵辉.世界地下水资源利用与管理现状[J].中国水利,2005(03):59-62.
    [19]丁二峰,刘颖.利用浅层地下水缓解淡水资源短缺的探讨[J].地下水,2009(01):70-71.
    [20]李琼,罗志才.地下水探测中的地球物理方法探讨[J].测绘信息与工程,2009(2):42-44.
    [21]于爱军等. EH-4电磁系统用于金矿找矿的效果——以山东山后和甘肃阳山矿区为例[J].黄金地质,2002(1):51-55.
    [22] А·С·希罗柯夫, В·И·费丘克与台水.物探方法在金属矿床勘探工作阶段的应用[J].地球物理勘探,1960(6):10-13.
    [23]陈文华.音频大地电磁法和可控源音频大地电磁法[J].国外地质勘探技术,1985(4):8-11.
    [24]兰险,王卫江.电磁法在新疆干旱区找水中的应用及效果[J].新疆地质,2004(3):271-274.
    [25]徐新学.大地电磁测深法在深部矿产资源调查中的应用[J].物探与化探,2011(1):17-19.
    [26]方前发,张宏兵.电法勘探方法在水文和工程地质中的应用[J].大众科技,2006(04):29-31.
    [27]罗毅翔.井地电磁垂直长导线源层状大地的电磁响应特征研究[D].2011,成都理工大学.
    [28]李朝林,裴忠,金秀芹等.大地电磁测深应用于地热勘探[J].中国煤炭地质,2008(09):68-71.
    [29]林品荣,郑采君,石福升等.电磁法综合探测系统研究[J].地质学报,2006(10):1539-1548.
    [30]叶沼宗.磁法和电磁法在隧洞钢拱架检测中的应用[J].工程勘察,2005(01):70-71.
    [31]佟铁钢. E-Hz广域电磁方法研究[D],2010,中南大学.
    [32]刘国栋.频率域电磁法仪的最新进展[J].第8届中国国际地球电磁学讨论会.2007.中国湖北荆州.70-71.
    [33]程德福,王君,李秀平等.混场源电磁法仪器研制进展[J].地球物理学进展,2004(04):778-781.
    [34]王卫平.频率域航空电磁法发展研究现状与应用研究[J].中国地球物理学会第二十七届年会.2011.中国湖南长沙.675-6761.
    [35]裴建新,张维冈,贺懿等.探测地下管线接口的频率域电磁法研究[J].中国石油大学学报(自然科学版),2007(03):54-58.
    [36]夏训银,王身龙,王洪生等. CSAMT方法在铁路隧道勘探中的应用[J].勘察科学技术,2006(04):61-64.
    [37]高勇浩,刘建利,高阳等. CSAMT法在深部找矿中的应用[J].西北地质,2010(02):135-142.
    [38]杨瑞西,马振波,司法祯等. CSAMT法在铝土矿勘查中的应用[J].工程地球物理学报,2008(04):400-407.
    [39]何静.宽带低噪声磁通门传感器[D]2007,西北工业大学.
    [40]杜斌,安明智,林洋等.磁通门磁力仪在野外安装的实施方案[J].地震地磁观测与研究,2008(6):154-160.
    [41]马波.迟滞时间差型磁通门传感器及磁测装置的设计[D].2010,吉林大学.
    [42].杨建中,尤政,刘刚等.微型磁通门式磁敏感器(MEMSMag)[J].功能材料与器件学报,2008(02):313-318.
    [43]刘诗斌,段哲民,严家明等.电流输出型磁通门传感器的灵敏度[J].仪表技术与传感器,2002(09):4-6.
    [44]杨志强,吴江妙,宣仲义等.基于MEMS技术的磁通门传感器制备研究[J].机械制造,2008(04):43-46.
    [45]姚振宁,刘胜道,杨明明等.基于ARM的三端式磁通门传感器[J].仪表技术与传感器,2011(03):3-5.
    [46]倪小静,杨超云.超导量子干涉器(SQUID)原理及应用[J].物理与工程,2007(6):28-30.
    [47]钟青,乔蔚川.超导量子干涉器及应用[J].现代计量测试,1998(3):3-7.
    [48]赵静,刘光达,安战锋等.提高高温超导磁力仪动态范围的补偿方法[J].吉林大学学报(工学版),2011(05):1342-1347.
    [49]张昌达,董浩斌.量子磁力仪评说[J].工程地球物理学报,2004(06):499-507.
    [50]赵静.高温超导磁梯度仪关键技术研究[D]2011,吉林大学.
    [51]任胜男.高温超导磁力仪测控装置研制[D]2010,吉林大学.
    [52]鲁光宇.高温超导磁力仪[J].国外地质勘探技术,1992(05):41.
    [53]波斯坦道弗.大地电磁勘探原理[M].北京:地质出版社.1980.7-10.
    [54]沈幼文,陈文华,李锡银. YDC—1型音频大地电磁仪的设计和研制[J].河北地质学院学报,1982:1-16.
    [55]耿胜利. CGY-1A型磁感应传感器的研制[J].地震地磁观测与研究,1986(1):25-31.
    [56]耿胜利,赵庆安. MC-01超低铁芯磁探头的研制[J].传感器世界,2002(04):13-15.
    [57]高金梁.感应式磁传感器及其补偿电路的设计[D],2006,吉林大学.
    [58]王言章,程德福,王君等.基于纳米晶合金的宽频差分式磁场传感器的研究[J].传感技术学报,2007(09):1967-1970.
    [59]张秀成,大地电磁测深测量及仪器[M].北京:地质出版社,1989.
    [60]詹艳,汤吉,刘国栋等GMS-06电磁测深系统及应用[J].中国地球物理学会第十七届年会.2001.中国云南昆明.
    [61]吴多,混场源电磁法仪器数据处理软件的研制[D].2004,吉林大学.
    [62]陈文华,吴明奇.音频大地电磁仪中磁传感器的设计和研究[J].河北地质学院学报,1982(Z1):14-26.
    [63]陈重,崔正勤.电磁场理论基础[M].北京:北京理工大学出版社,2003.
    [64]饶克谨,谢处方.电磁场与电磁波[M].北京:高等教育出版社,1985.
    [65]王言章.混场源电磁探测关键技术研究[D].2010,吉林大学.
    [66]王言章,程德福,万云霞等.混场源电磁接收与标定系统的设计[J].仪器仪表学报,2008(02):304-308.
    [67]张玉华,罗飞路,白奉天.交变磁场测量系统中磁传感器的设计[J].传感器世界,2003(12):6-8.
    [68]凌振宝,王君,张瑞鹏.基于非晶态合金感应式传感器补偿电路的设计[J].传感技术学报,2003(02):207-209.
    [69]林继鹏,王君,凌振宝等.基于非晶态合金的感应式磁敏传感器的研究[J].仪器仪表学报,2004(02):195-197.
    [70]张海霞,赵英俊,杨叔子.一种新型非晶态合金磁场传感器的设计与优化[J].传感技术学报,1998(02):7-12.
    [71]洪泽宏,何乃明,王占辉等,关于磁传感器设计中的技术问题[J].海军工程大学学报,2005(05):76-81.
    [72]田永炜,耿胜利.宽带超低频磁传感器的研制[J].传感器世界,2008(08):31-34.
    [73] RC奥汉德利,现代磁性材料原理和应用[M].北京:化学工业出版社,2002.
    [74]内山晋,应用磁学[M].天津:天津科学技术出版社,1983.
    [75]马昌贵,磁性材料及其应用的新进展[J].磁性材料及器件,1993(02):31-35.
    [76]郝利军,王永安,周军师等. MnZn铁氧体功率损耗特性研究[J].磁性材料及器件,2011(4):43-44.
    [77]赵雨,王锦辉,刘公强等,锰锌铁氧体的磁损耗研究[J].上海交通大学学报,2005(12):2102-2104.
    [78]胡双锋,黄尚宇,周玲等,磁学的发展与重要磁性材料的应用[J].稀有金属材料与工程,2007(S3):417-419.
    [79]牛永吉,桑灿,李振瑞等. FeNi系坡莫合金的研究开发新进展[J].金属功能材料,2007(05):38-42.
    [80]季勇,周丽萍,季红等.磁致伸缩对超坡莫合金软磁性能的影响[J].首都师范大学学报(自然科学版),2004(03):29-31.
    [81]施永明,金永明,张庆等.坡莫合金真空热处理工艺简讯[J].低压电器技术情报,1978(03):37-39.
    [82]陈国钧.非晶态软磁材料的发展现状[J].仪表材料,1980(05):53-54.
    [83]杨国斌,王双全,俞静等.非晶软磁的损耗分析[J].仪表材料,1980(5):51-52.
    [84]李智勇,陈孝文,张德芬.非晶纳米晶软磁材料的发展及应用[J].金属功能材料,2007(4):28-31.
    [85]刘献明,吉保明.纳米结构铁氧体磁性材料的制备和应用[J].应用化工,2008(6):685-687.
    [86]崔昆,杨君友,张同俊等.纳米晶软磁材料的发展、磁特性及展望[J].材料科学与工艺,1996(1):118-123.
    [87]沈保根,卢志超,鲜于泽.铁基纳米晶合金的热膨胀研究[J].物理学报,1994(05):799-802.
    [88]王言章,程德福,王君等.基于纳米晶合金的宽频差分式磁场传感器的研究[J].传感技术学报,2007(09):1967-1970.
    [89]李太山.纳米晶制备、表征、荧光和共振瑞利散射光谱特性研究.2008,西南大学.
    [90]张爱.关于铁心中涡流损耗的讨论[J].固原师专学报,2004(6):60-62.
    [91]臧永丽,王新民.铁磁材料涡流损耗的定量分析[J].山东理工大学学报(自然科学版),2003(3):82-85.
    [92] Papernoa, E., A. Groszb. A miniature and ultralow power search coil optimized for a20mHz to2kHz frequency range[J]. Joural of applied physics,2009(105): p.1-3.
    [93]耿胜利. GCI—1A型磁感应传感器的铁芯工艺研究[J].仪表技术与传感器,1988(5):21-25.
    [94]张宗权,电感值的快速测量法[J].电测与仪表,1989(5):34-35.
    [95]王昕,王宗欣,袁晓军.圆形螺旋线圈自感和分布电容的计算[J].固体电子学研究与进展,2000,20(4):424-432.
    [96]黄子平,秦玲,张良等.含磁芯线圈动态电感计算[J].强激光与粒子束,2009(1):50-51.
    [97]李成武,刘成颖.永磁同步直线电动机电感测试方法[J].现代制造工程,2009(6):78-81.
    [98]高季荪.关于电感值的工程变通计算和测试法[J].中国照明电器,2001(10):15-17.
    [99] Q, Y., T.W. Holmes. Stray Capacitance Modeling of Inductors by Using the FiniteElement Method[J], Electromagnetic Compatibility,1999IEEE International.1999. p.305-310.
    [100] Grandi, G., M.K. Kazimierczuk. Stray Capacitances of Single-Layer Solenoid Air-CoreInductors[J], IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS.1999. p.1162-1168.
    [101] Massarini, A., M.K. Kazimierczuk. Self-Capacitance of Inductors[J]. IEEETRANSACTIONS ON POWER ELECTRONICS.1997. p.671-676.
    [102]袁义生,电感器分布电容的建模[J].华东交通大学学报,2006,23(05):90-94.
    [103]丁斌,杨宁,王志萍.电感线圈分布电容和谐振频率的仿真与测量[J].变压器,2010,47(9):41-44.
    [104]王明娟,曾繁政,曲艺.电容电感测试仪的设计[J].电子科技,2010,23(11):35-37.
    [105] Séran, H.C., P. Fergeaua. An optimized low-frequency three-axis search coilmagnetometer for space research[J]. Review of Scientific Instruments,2005(76): p.1-10.
    [106]邵英秋,王言章,程德福等.基于磁反馈的宽频带磁传感器的研制.仪器仪表学报,2010.31(11):2461-2466.
    [107]邵英秋,程德福,王言章等.高灵敏度感应式磁传感器的研究.仪器仪表学报,2012.33(2):349-355.
    [108]康华光.电子技术基础(模拟部分).北京:高等教育出版社[M].1999.
    [109]高晋占.微弱信号检测[M].北京:清华大学出版社.2004.
    [110] Sanduleanu, M.A.T.V. A low noise, low residual offset, chopped amplifier for mixedlevel applications[J], Electronics, Circuits and Systems,1998IEEE InternationalConference on.1998. p.333-336.
    [111] Witte, J.F., K.A.A. Makinwa, J.H. Huijsing. A CMOS Chopper Offset-StabilizedOpamp[J]. Solid-State Circuits,2007.7(42): p.1529-1535.
    [112] Wu, R., K.A.A. Makinwa. A Chopper Current-Feedback Instrumentation AmplifierWith a1mHz Noise Corner and an AC-Coupled Ripple Reduction Loop[J], IeeeJournal of Solid-State Circuits.2009. p.3232-3243.
    [113] Yin, T.,. Noise Analysis and Simulation of Chopper Amplifier, in Circuits andSystems[J],2006. APCCAS2006. IEEE Asia.2006. p.167-170.
    [114] Farina, M. Ultra-low-noise CMOS current preamplifier from DC to1MHz[J].Electronics Letters,2009.45(25): p.1278-1280.
    [115]张寅孩,祝苇.安培环路定律在磁场屏蔽中的应用[J].电气电子教学学报,2009(4):47-49.
    [116]康宏向,段宝平,潘磊.用安培环路定理求载流无限长螺线管磁场[J].工科物理,2000(2):26-27.
    [117]苏安,顾国锋.对求解通电螺线管磁场两种方法的讨论[J].广西物理,2008(1):51-54.
    [118]龚建民.安培环路定理在有限长载流导线时的修正项分析[J].南昌工程学院学报,2004(4):43-45.
    [119]蔡旭红,李邵辉.有限长通电螺线管内部空间磁场的模拟[J].汕头大学学报(自然科学版),2004(2):28-31.
    [120]惠小强,陈文学.有限长通电螺线管空间的磁场分布[J].物理与工程,2004(2):22-23.
    [121]李春生,杨中海,黄桃.有限长通电螺线管空间磁场分析[J].现代电子技术,2009(11):28-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700