高温超导Tl_2Ba_2CaCu_2O_y双面薄膜的制备和超导性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自高温超导材料发现以来,许多研究小组致力于高温超导的机理和应用的研究。由于高温超导薄膜的微波表面电阻明显低于常规导体的微波表面电阻,因此,微波器件(如谐振器、天线、滤波器和延迟线等)是高温超导薄膜最有应用前途的领域之一。大量的研究结果表明高温超导微波器件具有很大的优势,如:低插入损耗、低功耗、体积小、宽频带、高灵敏度、低噪声和高可靠性等。目前其商业产品已开始进入军事和民用移动通讯。
     微波器件的制备需要大面积的双面超导薄膜,最常用的高温超导薄膜材料是钇钡铜氧(YBa_2Cu_3Oy)薄膜,其次就是Tl_2Ba_2CaCu_2O_x)。而Tl_2Ba_2CaCu_2O_x(Tl-2212)薄膜在几个方面较之YBa_2Cu_3Oy薄膜有明显的优点,如Tl-2212薄膜具有较高的超导转变温度、良好的结构稳定性,微波表面电阻低于YBa_2Cu_3Oy薄膜,特别是对潮湿环境的抵抗力较强,性能一般不易退化,利用这种高温超导薄膜制备的微带滤波器可以在82K下运行。因此,许多研究小组对Tl-2212薄膜的制备进行了大量的研究。
     本论文的目的就是开展适合微波器件应用的铊系大面积、双面超导薄膜的研制。采用两步法制备铊系超导薄膜。首先,利用脉冲激光沉积(PLD)或磁控溅射等工艺在(001)LaAlO_3基片上制备不含Tl的非晶的Ba_2CaCu_2O_x先驱体薄膜;第二步,是铊化处理。这一步是制备Tl-2212薄膜的关键工序,目的是使非晶的先驱体薄膜晶化为Tl-2212。由于铊易挥发且有毒性,期望能把铊蒸气限制在一个
    
    中文摘要
     密闭的容器内。我们分别在密封的钢容器内和半密封的增锅内对先驱膜进行
    佗化处理,两种密封程度不同的容器都可以制备出适宜于薄膜器件应用的高质量
    的T12BaZCaCu20y高温超导薄膜,最高超导临界转变温度为108.8K,达的国际同
    类薄膜的水平。佗系薄膜的制备大都是用氧化铝增锅或佗增锅进行佗化,至今没
    有用密封钢容器制备Tl一2212薄膜的报道,由于高温钢能耐高温(1 200oC),且韧
    性好于氧化铝柑锅,可以加压密封,密封程度也明显好于氧化铝柑锅,而且高温
    钢成本低、容易加工成各种形状和大小的容器,因此用高温钢容器作铭化装置,
    操作更安全、更经济。
     探索出一条低温长时间的稳定佗化结晶工艺,制备出高质量的双面Tl一2212
    超导薄膜。零电阻超导转变温度分别为108.6K和106.7K,超导临界电流密度分
    别为1.17x10‘’A/efn:和1.0x106A/em,,(0012)峰摇摆曲线宽度分别为0.91“和
    1.21“。SEM图象表明表面呈现典型的层状和盘状结构,可见清晰的螺旋生长和
    层状生长条纹,甲扫描曲线表明薄膜结构均匀,沿C轴方向定向生长,而且各晶
    粒面内a、b向相互平行。薄膜生长机理为螺旋生长和层状生长的共同控制
    TI一22 12超导薄膜的生长。
     设计和组装了三套用于不同条件下对先驱体薄膜进行铭化处理的后退火装
    置(包括半封闭的管式炉铭化退火装置两套和封闭的马弗炉佗化退火装置一套),
    并对实验室的防污染系统进行了改造。
Superconducting mechanism and application of high-temperature superconducting (HTS) materials have been widely studied since the discovery of it. The low microwave resistance makes superconductor films very promising for application in microwave devices such as resonators, antennae, filters, delay lines and so on. Extensive work has shown that microwave devices made of HTS films have many excellent microwave properties, for example: low insertion loss, , low power loss wide frequency, small size, high sensibility, low noise and high reliability etc. and commercial products are starting to penetrate into military and domestic mobile communicative market.
    Large area and double-sided films are needed for the microwave applications. The most commonly used HTS material is YBCO. Besides it, Tl2Ba2CaCu2Oy superconductor has also been used. The Tl-2212 has many advantages to YBCO. Because of its high TC0 value, low microwave surface resistance and chemical stability, especially against moisture, many groups in the world have been widely studied on fabrication of Tl-2212 thin films.
    This thesis presents an extensive study on preparation of Tl-2212 films using two-step technique. First, amorphous Ba5iCaCu2Ox precursor is deposited on (001) LaALOj substrate; by PLD or other methods. Then, thalliation is performed to form the crystalline superconducting material, which is more important than the first step. Due to the toxicky of Tl, it is desired to confine the Tl inside a closed space. In this paper, the thalliation is carried out in a completely closed steel-container or in a
    VI
    
    
    ABSTRACT
    semi-closed container, respectively. The high-quality T\l-2212 thin films, whose zero-resistance temperature is 108.8K, were obtained in both the containers. Usually, Tl-2212 film is performed in AbQj or Tl-2212 crucibles. So far as, there is no report about Tl-2212 thin films prepared in a steel-container. Due to its high-temperature (about 1200) resistance and other properties, the steel-container can be completely closed and easily shaped. So the steel-container is more safe and more economical than AlaOa crucible.
    A two-step method with long-time annealing was used to fabricate double-sided Tl-2212 thin films. The as-prepared films are composed of almost pure Tl-2212 phase and epitaxially grown with C-axis perpendicular to the substrate surface. Typical results obtained on a 15mmxl5mm double-sided film show an FWHM of 0.92and 1.21?for each side, respectively. The zero-resistance transition temperature is 108.8K and 106.7K for each side, respectively. The critical current density is about 106A/cm"2 for both sides. Scanning electron microscopy (SEM) shows that a plate-textured surface exists with a few bright particles dotted in the film's surface and the surface of the crystal grain is smooth. The growth mechanism of spirality and layer by layer is first discoveried.
引文
[1] 章立源,《超导理论》,北京:科学出版社,2003:
    [2] 黄昆,韩汝琦,《固体物理学》,高等教育出版社,1988
    [3] 章立源,张金龙,崔广霁.超导物理学.北京:电子工业出版社,1995:1-16
    [4] F. London, and H. London. Proc Roy Soc. A149, 71, (1935), Physica, 2:341(1935)
    [5] J. Bardeen, L. N. Cooper, J. R. Schrieffer. Phys Rev, 137A, 1745(1965)
    [6] B. D. Josephson. Phys. Lett. 1,251(1962)
    [7] M. Tinkham. Introduction to Superconductity. McGraw-Hill, Inc.
    [8] A. P. Bramley, J. D. O'Connor, Supercond Sci. Technol. 12, R57-R74(1999)
    [9] H. C. Ku, M. F. Tai, J.B. Shi, et al. Jpn J Appl Phys, 28, L923(1989)
    [10] T. Manako, Y. Shimakawa, Y. Kubo, et al. Physica, C158,143(1989)
    [11] D. S. Ginley, B. Morosin, R. J. Baughman, et al. J Cryst Growth, 91,456(1988)
    [12] S. S. P. Parkin, V. Y Lee., A. I. Nazzal, et al. Phys Tev Lett, 61,750(1988)
    [13] S. Nakajima, M. Kikuchi, Y. Syono, et al. Physica, C158, 471(1989)
    [14] C. C. Torardi, M. A. Subramabian, et al.Phys Rev, B38,225 (1988),
    [15] M. A. Subramabian, J. C. CaLabrese, C. C. Torardi, et al. Nature, 332, 420(1988)
    [16] C. C. Torardi, M. A. Subramabian, J. C. CaLabrese, Science, 240, 631(1988)
    [17] 梁敬魁,中国科学,A32,32(1989)
    [18] Z. Y. Chen, Z. Z. Sheng, Y. F. Li, Mod. Phys. Lett. B7, 1141(1993)
    [19] R. S. Liu and P. P. Edwards J. SolidState Chem. 91,407(1991)
    [20] A, K, Ganguli and M, A, Subramanian J. Solid State Chem. 93, 250(1991)
    [21] J. S. Kim, J. S. Swinnea and H. Steinfink J. Less-Common. Met. 156, 347(1989)
    [22] T. Doi, K. Usami and T. Kamo, Japan. J. Appl. Phys. 29, L57(1990)
    [23] F. Izumi, T. Kondo, Y. Shimakawa, T. Manako, Physica, 615, C185-189 (1991)
    [24] S. S. P. Parkin, V. Y. Lee, A. I. Nazzal, Beyers R, Phys, Rev. B38, 6531 (1988)
    [25] M. K. Ahbum, J. R. C. T. Toring J. R.,et al., Phys. Rev. Lett., 58, 908-910(1987)
    [26] H. Maeda, Y. Takano, M. Fukutomi, Jpn. J. Appl. Phys. 27,L209-L210(1988)
    [27] Z. Z. Sheng, A. M Herman, Nature, 332,138-139(1988)
    [28] A. Schilling, M. Cautoni, J.C. Guo, H.R. Ott, Nature, 363:56-58(1993)
    
    
    [29] H. Piel,, G. Muller, IEEE. Trans. Magn., 27,854-862(1991)
    [30] W. L. Holstein, L. A. Parisi, C. Wilker, Appl. Phys. Lett., 60, 2014.-2016.(1992)
    [31] E.K.Holllmann, O.G.Venkik, A.G.Zaitsev, Supercond.Sci.Technol, 7,609(1994)
    [32] R. Sugise, M. Hirabayashi, N.Terada, Physica, C157, 131(1989)
    [33] R. Sugise, M. Hirabayashi, N. Terada, Japan. J. Appl. Phys. 27, L2310(1988)
    [34] E. Ruckenstein and C. T. Cheung J. Mater. Res. 4, 1116(1989)
    [35] S. L. Yan, L. Fang, M. S. Si, H. L. Cao, Supercond. Sci.Technol. 7, 681(1994)
    [36] Yan S L, Fang L, Song Q X, Appl. Phys. Lett. 63, 1845(1993)
    [37] J. Betz, A. Piehler, E. V. Pechen and K. E Renk. In situ preparation of high-T_c TIBaCaCuO thin film by a combination of laser ablation and thermal evaporatin, J.Appl.Phys., V71, 2478-2479(1992)
    [38] A. Piehler, R. L(?)w, J. Betz, R. Sch(?)nberger, and K. F. Renk, Preparation of TlBa_2Ca_2Cu_3O_(9±δ) high T_c thin films by laser ablation in combination with thermal evaporation of thallium oxide, J.Appl.Phys.,V74, 6437-64.40(1993)
    [39] D.W. Face, J.P. Nestlerode, In situ growth and properties of epitaxial TlBa_2CaCu_2O_7 and TlBa_2(Ca_(1-x)Y_x)Cu_2O_7 thin films, IEEE Trans. Appl. Supercond., V3, 1516-1519(1993)
    [40] G. Malandrino, G. G. Condorelli, In situ growth and properties of epitaxial TlBa_2CaCu_2O_7 and TlBa_2(Ca_(1-x)Y_x)Cu2O_7 thin films, Supercond.Sci.Technol., V9,570-577(1996)
    [41] E. L. Holstein and L. A. Parisi. J. Mater. Res., V11, 1349-1352(1996)
    [42] N. Reschauer, U. Sspreitzer, W. Brozio, A. Piehler and K. F. Renk, In situ preparation of epitaxial TlBa_2Ca_2Cu_3O_9 high-T_c thin films, Appl. Phys. Lett., V68,1000-1002(1996)
    [43] K. E. Myers and L. Bao, Full wafer in situ deposition of thallium lead superconductors. J. Supercond., 1998, V11:129-132
    [44] W. Y. Lee, V. Y. Lee, J. Salem, T. C. Huang, R. Savoy, D. C. Bullock and S. S. P. Parkin, Superconducting Tl-Ba-Ca-Cu-O thin films with zero resistance at temperature of up to 120K. Appl. phys. lett., 53:329-331(1988)
    [45] W. Y. Lee, S. M. Garrison, M. Kawasaki, E. L. Venturini, B. T. Ahn, R. Beyers, J. Salem, R. Savoy and J. Vazquez, Low-temperature formation of epitaxial Tl_2Ba_2Ca_2Cu_3O_(10) thin films in reduced O_2 pressure. Appl. Phys. Lett., 60,772-774(1992)
    [46] S. Huber, M. Manzel, H. Bruchlos, S. Hensen and G. Muller., Thallium-based
    
    high-T_c films with very low surface impedance. Physica C, 244, 337-340(1995)
    [47] D. S. Ginley, J. F. Kwak, R. E Hellmer, R. J. Baughman, E. L. Venturini, M. A.Mit chell and B. Morosin, Superconducting thin films of Tl_2Ba_2Ca_2Cu_3O_y and Tl_2Ba_2Ca_1Cu_2O_y., Physica C, 156,592-598(1988)
    [48] W. L. Holstein, L. A. Parisi, D. J. Kouniz, C. Wilker, A. L. Matthews, P. N. Arendt and R. C. Taber., Preparation and characterization of Tl_2Ba_2Ca_1Cu_2O_8 films on (001) LaAlO_3., IEEE Trans. on Magnetics., 27,1568-1572 (1991)
    [49] W. L. Holstein, L. A. Parisi, C. Wilker and R. B. Flippen., Tl_2Ba_2Ca_1CU_2O_8 films with very low microwave surface resistance up to 95K. Appl. Phys. Lett., 60,2014-2016(1992)
    [50] J. A. DeLuea, M. F. Garbauskas, R. B. Bolon, J. G. McMullen, W. E. Balz and P. L. Karas, J. Mater. Res., 6,1415-1423(1991)
    [51] M. P. Siegal, N. Missert, E. L. Venturini, P. P. Newcomer, F. Dominguez and R. Dunn, Growth of TlBa_2Ca_2Cu_2O_7 thin films using a controlled Tl-oxide source during processing., IEEE Trans. on Appl. Supercond., 5,1343-1346(1995)
    [52] M. P. Siegal, E. L. Venturini, P. P. Newcomer, D. L. Overmyer, F. Dominguez and R. Dunn, Importance of controlling the Tl-oxide partial pressure throughout the processing, TlBa_2CaCu_2O_7 thin film, J.Appl.Phys., 78,7186-7191(1995)
    [53] E. K. Hollmann, O. G. Venkik, A. G. Zaitsev, et al., Substrates for high-T_c superconductor microwave integrated circuits, Supereond. Sci. Teehnol., 7,609-622(1994)
    [54] D. H. A. Blank, P. R. J. Ijsselsteijn, P. G. Out, et. al. High Tc thin films prepared by laser ablation: material distribution and droplet problem. Mat. Sci. Eng. B., 13, 67-74(1992)
    [55] S. Otsubo, T. Minamikawa, Y. Yonezawa, et. al., Thermal analysis of target surface in the Ba-Y-Cu-O film preparation by laser ablation method. Jpn. J. Appl. Phys., 29,L73-L76
    [56] R. K. Singh, D. Bhattacharya, J. Narayan, Surface heating effects during pulsed laser evaporation of materials, Appl. Phys. Lett., 57, 2022-2024(1990)
    [57] N. H. Cheuag, Q. Y. Ying, J. P. Zheng, et. al. Time-resolved resonant absorption study of 532nm laser-generated plumes over YBa_2Cu_3O_7 targets, J. Appl. Phys., 69, 6349-6354(1991)
    [58] P. E. Dyer, R. D. Greenough, A. Issa, et. al., Spectronscopic and ion probe measurements of KrF laser ablated Ba-Y-Cu-O bulk samples, Appl. Phys. Lett., 53,
    
    72-74(1988,)
    [59] T. Venkatesan, X. D. Wu, A. Inam, et. al., Nature of the pulsed laser process for the deposition of high Tc superconducting films. Appl. Phys. Lett., 53,1431-11433(1988)
    [60] Q. Y. Ying, D. T. Shaw, H. S. Kwok, Spectroscopic study of the plasma-assisted deposition of Y-Ba-Cu-O, Appl. Phys. Lett., 53,1762-1764(1988)
    [61] O. Eryu, K. Masuda, K. Shihoyama, et. al., Strong wavelength dependence of laser ablation fragments of superconductor YBa_2Cu_3O_7, Jpn. J. Appl. Pkys.,31,L86-L88(1992)
    [62] H. Izumi, K. Ohata, T. Sawada, et. al., Direct observation of ions in laser plume onto the substrate. Appl. Phys. Lett., 59,597-599(1991)
    [63] C. H. Becker, J. B. Pallix., Laser ablation of bulk YBa_2Cu_3O_7 and cluster emission. J. Appel. Phys., 64,5152-5156(1988)
    [64] H. S. Kwok, Formation of atomic beams and dynamics of in situ superconducting film growth by pulsed-laser deposition, Thin Solid Films, 218, 277-290(1992)
    [65] R. K. Singh, J. Narayan, Pulsed-laser evaporation technique for deposition of thin films, Physics and theoretical model, Phys.Rev.B., 41,8843-8859(1990)
    [66] R. E. Muenchausen, K. M. Hubbard, S. Foltyn, R. C. Estler, N. S. Nogar, and C. Jenkins, Effects of beam parameters in excimer laser deposition of YBa_2Cu_3O_(7-x), Appl.Phys.Lett., 56, 573-580(1990)
    [67] G. Adrian, W.Wilken, C.Stolzel, G.Grabe, and V.Windte. Growth and surface morphology of laser ablated YBa_2Cu_3O_(7-x) films analysed by SEM, IEEE Trans Appl. Supercond., 3,1061-1064(1993)
    [68] S. C. Tidow, W. D. Wilber, and M.Z.Tzidrow, Laser ablation of YBa_2Cu_3O_(7-x):Utilizing ~(18)O to investigate the incorporation of oxygen into thelaser pluame, IEEE Trans Appl. Supercond., 3,1078-1081(1993)
    [69] T. Venkatesan, X. D. Wu, A. Inam, and J. B. Wachtman, Observation of two distinct components during pulsed laser deposition of high Tc superconducting films, Appl. Phy. Lett. , 52,1193-1195(1988)
    [70] M. C. Foote, B .B. Jones, B. D. Hunt, J. B. Bamer, R. P. Vasquez, and L. J. Bajuk. Composition variations in pulsed-laser-deposited Y-Ba-Cu-O thin films as a function of deposition parameters, Physica C., 201,176-182(1992)
    [71] G. Koren, A. Gupta, and R. J. Baseman, Role of atomic oxygen in the low-temperature growth of YBa_2Cu_3O_(7-x) thin films by laser ablation deposition.
    
    Appl.Phys.Lett., 54,1920-1922(1989)
    [72] A. Gupta, and B. W.Hussey, Laser deposition of YBa_2Cu_3O_(7-x) film using a pulsed oxygen source, Appl.Phys.Lett., 58, 1211-1213(1991)
    [73] G. E Dionne, D. E. Oates and D. H. Temme, IEEE MTT-S Intl.Microwave Symp.Di gest.,, 101-103(1994)
    [74] G. Koren, A. Gupta, J.Baseman, M. I. Lutwyche, and R. B. Laibowitz, Laser wavelength dependent properties of YBa_2Cu_3O_(7-x) thin films deposited by laser ablation, Appl.Phys.Lett., 55,2450-2452(1989)
    [75] R. Ramesh, A. Inam, W. K. Chan, B. Wilkens, K. Myers, K. Remschnig, D. L. Hart, J. M. Tarascon. Science, 252, 944-951(1991)
    [76] R. K. Singh, D. Bhattacharya, and J. Narayan. Control of surface particle density in pulsed laser deposition of superconducting YBa_2Cu_3O_(7-x) and diamondlike carbon thin films, Appl.Phys.Lett., 61:483-485(1992)
    [77] H. B. Peng, X. X. Zhang, Z. Xie, et.al., Exchange biasing and low-field magnetoresistance in La_(0.67)Ca_(0.33)MnO_3/ La_(0.5)Ca_(0.5)MnO_3 bilayers. PHYSICAL REVIEW B., 61,2000-2009(2000)
    [78] B. Holzapfel, B. Roas, L. Schultz, P. Bauer, et.al., Off-axis laser deposition of YBa_2Cu_3O_(7-x) thin films, Appl.Phys.Lett., 61,3178-3180(1992)
    [79] M. D. Strikovsky, E. B. Klyuenkov, S. V. Gapinov, J. Schubert, et.al. Crossed fluxes teclmique for pulsed laser deposition of smooth YBa_2Cu_3O_(7-x) films and multilayers. Appl.Phys.Lett., 63,1146-1148(1993)
    [80] T. C. Pluyrn, R. E. Muenchausen, P. N. Arendt, X. D. Wu, F. M. Mueller, O. H. Campbell, et. Al., Superconducting Tl_2Ba_2Ca_1Cu_2O_8 thin films prepared by post-annealing in a flow-through multiple-zone furnace, IEEE.Trans. on Appl.Supercond, 5,1339-1342(1995)
    [81] O. Xiong, S. Afonso, K. Y. Chen et al. Enhancemaent of critical current density in Tl_2Ba_2Ca_1Cu_2O_y superconducting thin film on polycrystalline Al_2O_3 substrates using textured YSZ buffer layers, Physica C, 282-287:641-642(1997)
    [82] A. P. Bramley, B. J. Glassey, C. R. M. Grovenor et al., Tl-Ba-Ca-Cu-O thin films on buffered substrates for microwave device applications. IEEE Transaction on Aapplied Superconductivity, Vol.7, No.2, 1249-1252(1997)
    [83] M. Zeisberger, M. Manzel, H. Bruchlos et al. Tl_2Ba_2Ca_1Cu_2O_y thin films for microstrip filters, IEEE Transaction on Aapplied Superconductivity, Vol.9, No. 2:3897-3900(1999)
    
    
    [84] J. Y. Lao, J. H. Wang, D. Z. Wang et al., Synthesis and characterization of thallium-based 1212 films with high critical. Supercond. Sci. Technol., 13:173-177(2000)
    [85] L. P. Guo, Z. F. Ren, J. Y. Lao et al. Epitaxial superconducting thin films T_(0.78)Bi_(0.22)Sr_(1.6)Ba_(0.4)Ca_2Cu_3O_(9-x) on (001)YSZ synthesized by laser ablation and post-annealing in pure argon, Physica C, 277,13-18(1997)
    [86] K. E. Myers and L. Bao, Full wafer in situ deposition of thallium lead superconductors, J. Supercond., V11, 129-132(1998)
    [87] W. Y. Lee, V. Y. Lee, J. Salem, T. C. Huang, R. Savoy, D. C. Bullock and S. S. P. Parkin, Superconducting Tl-Ba-Ca-Cu-O thin films with zero resistance at temperature of up to 120K, Appl.phys.lett., 53, 329-331(1988)
    [88] F. Foong, B. Bedard, Q. L. Xu and S. H. Liou, Appl. Phys. Lett. 65,. 1153(1996)
    [89] H. Schneidewind, M. Manzel, G. Bruchlos, and K. Kitsch, TlBaCaCuO-(2212) thin films on lanthanum aluminate and sapphire substrates for microwave filters, Supercond. Sci. Technol. 14(4), 200-212(2001)
    [90] J. Chrzanowski, X. M. Burany, A. E. Curzon et al., A study of the opfimizafion of sputtering and sintering parameters for the growth of Tl_2Ba_2Ca_2Cu_3O_(10+x) superconducting films, Physica C, 207,25-36(1993)
    [91] Anjano Asthana and O. N. Srivastava, Observation of curious spiral growth features in Tl doped Hg bearing high temperature superconducting tapes, Bull. Mater. Sci., Vol 24 No. 6, 595-601(2001)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700