大庆抗240℃高温水基钻井液体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着深井钻井技术的不断发展,钻井方案的制定需要考虑更深更热的储层,而深井钻井液的抗高温性能是保持钻井液其它性能的基础。高温可以导致粘土及各种处理剂发生变化,引起各组分间发生化学及物理化学作用,直接破坏钻井液的性能,影响钻井工程的安全进行。因此,研制新型抗高温钻井液势在必行。
     本文针对大庆油田庆深气田深部储层特点,研究了抗高温钻井液作用机理,通过处理剂优选实验,确定了新型抗高温钻井液主要处理剂,确定了抗高温钻井液的初始配方,并考虑以抗高温钻井液体系高温流变稳定性和滤失量控制为重点,通过实验对钻井液初始配方进行优化调整,最终优选出一套抗高温240℃的有机硅抗高温钻井液体系。对体系老化前后的性能进行对比评价,实验结果表明:体系具有良好的高温流变稳定性、失水造壁性、抑制性以及较好的抗污染能力。
     由于深井钻井中温度、压力对钻井液密度的影响已经不能忽略,因此钻井液密度也不再是一个常数。在确定有机硅体系配方之后,本文针对高温高压对有机硅钻井液密度的影响展开研究,建立了高温高压钻井液密度、流变参数以及当量循环密度预测模型。该模型为压力管理钻井技术提供了理论依据,对于合理控制井下压力,预防复杂事故的发生具有指导意义。
For now, deeper and hotter reservoirs are considered in well drilling design with the continuous development of deep well drilling technology. High temperature stability of deep well drilling fluid is an important basis for the other performances of the drilling fluid. Due to high temperature, the changes of clay and treating chemicals take place,which lead to physical and chemical changes between the components of drilling fluid. It destructs properties of drilling fluid and impacts on the safty of drilling work. Consequently, it is necessary to conduct a new study on high-temperature drilling fluid.
     Based on the characters of deep reservoirs in Qingshen gas field, this paper studied on the Mechanisms of high-temperature drilling fluids.By optimized experiments, main treating chemicals and initial formula of new high-temperature drilling fluid were obtained.By experiments, focusing on HPHT rheological stability and filter loss performance, initial formula was perfected and adjusted.Finally, a new set of drilling fluid system which can resist high tempreture (240℃) was determined. Properties of new drilling fluid system before and after thermal aging were tested. The experimental results show that the new products can resist high temperature, alcium and salt, and they also have good rheological properties and the HTHP filter loss performance.
     It can not ignored that high temperature and pressure deeply affected the mud density.which made the mud density no long a constant.After new high-temperature drilling fluid were determined, the paper conducted a study on the effects of high temperature and pressure on mud density. Prediction Model of quiescent density, rheological parameter and equivalent circulating density of the new drilling fluid system.The models provided theoretic foundation of pressure management technology and have directive significance for downhole pressure control and complicated accident prevention.
引文
[1]李克向.保护油气层钻井完井技术[M],石油工业出版社,1993,10.
    [2]徐同台,陈乐亮,罗平业.深井泥浆.北京:石油工业出版社,1994,12:177.
    [3]吴晓花.塔参-1井钻井液高温流变性研究与应用[J].钻采工艺,2003,26(3):89-90.
    [4]徐同台等.国内外钻井液技术新进展及对21世纪的展望(I)[J],钻井液与完井液,2000,17(6).
    [5]黄汉仁,杨坤鹏,罗平业.泥浆工艺原理[M].北京:石油工业出版社,1981: 88-110.
    [6]刘克飞.超高温水基钻井液技术研究与应用.北京:中国石油大学,2009.
    [7]丁云杰,崔继明,吴世立,等.计算窄间隙环空循环压耗的新模型[J].钻采工艺,27(5):9-12.
    [8] Bailey T J . Low Toxicity Oil Muds : A Knowledge ofDownhole Rheological Behavior Assists SuccessfulField Application[R] . S P E ,1986.
    [9]汪海阁,刘岩生,杨立平.高温高压井中温度和压力对钻井液密度的影响[J].石油钻采工艺,2000,23(1):56-60.
    [10]鄢捷年,李元.预测高温高压下泥浆密度的数学模型[J ] .石油钻采工艺,1990 (5) : 27-34.
    [11]阎铁,刘春天等.人工神经网络在大庆深井钻头优选中的应用[J].石油学报2002,4(23):102-107.
    [12]张书瑞.人庆长垣东部地区中深井钻头系列的评选[J].石油钻探技术,1995, 23( 1) : 8- 11.
    [13]王效祥编.钻井液工艺原理.石油工业出版社,1991.
    [14]常连玉,肖超,赵素丽.新型钻井液处理剂磺化烷基糖若的室内研究.钻井液与完井液,2007,24(2): 5-7.
    [15]蓝强,邱正松.硅酸盐钻井液实验研究[J].钻井液与完井液.,2007, 24(1): 20-22.
    [16]王力.高温深井水基钻井液研究[D].北京:中国石油大学,2007.
    [17]黄进军,蒲晓林,李建波.抗220℃高温的水基钻井液用降粘剂研究[J].油田化学,2003,20(3):197-199.
    [18]万绪新,刘绍元,土树强.耐温耐盐深井钻井液技术.钻井液与完井液[J],2002, 19 (6):59-61.
    [19]孙金声,杨泽星.超高温240℃水基钻井液体系研究[J].钻井液与完井液,2006, 23(1):15-18.
    [20]夏俭英编.钻井液有机处理剂.油大学出版社,1991.
    [21]徐同台,赵忠举,袁春.国外钻井液和完井液技术的新进展[J].钻井液与完井液,2004. 21(2): 1-10.
    [22]赵忠举,徐同台,卢淑芹. 2004年国外钻井液技术新进展[J].钻井液与完井液,2005, 22(5): 60-67.
    [23] C.J.Thaemlitz著.新的环保型高温水基钻井液体系[J].党俊芳译.石油勘探开发,2001, 4 (2):34-36 .
    [24] J.W. Dobson, J.C. Harrison, A.H. Hale, et al. Laboratory Developmentand Field Application of a Novel Water-Based Drill-in Fluid forGeopressured Horizontal We11s.SPE36428,1998.
    [25] Aston M. S.,Elliott G . P.,Mechanisms Model[J}. SPE 28818,Water-Based Glycol Drilling Muds: Shale Inhibition.Oct. 1994.
    [26]夏俭英.泥浆高分子化学[M].东营:石油大学出版社,1994: 24-29.
    [27]鄢捷年.钻井液工艺学[M].东营:石油大学出版社,2001:18-24.
    [28]刘江华.高密度水基钻井液抗高温作用机理及流变性研究[D].北京,中国石油大学.
    [29] Bielewicz Detc.,New Water-Soluble Polymer for Drilling Fluids.SPE50790,1999.
    [30] P.LReid, Bernadette Dolan and Stephen Cliffs.Mechanism Fluids of Shale Inhibition by Polyols in Water Based Drilling. SPE 29860,1995: 155-168.
    [31]蒋官澄,鄢捷年,王富华,钻井液处理剂溶液的高温高压流变性特性[J].钻井液与完井液,1996,13 (4):18-23.
    [32]王松,胡二清,秦绍印等.高温高密度钻井液完井液体系室内研究.河南石油,2003,17(2):46-48.
    [33] Enright D. P.,Dye B. M.,Smith F. M.,New Fluid System Substitutes for Oil-Muds[J],World Oil,March 1991.
    [34]樊世忠,等.钻井夜完井液及保护油气层技术[M],石油大学出版社1996.4.
    [35]黄进军,蒲晓林,李建波,等.抗220℃高温的水基钻井液用降粘剂研究.油田化学,2003, 20 ( 3 ) : 197-207 .
    [36]许娟.新型抗高温高密度水基钻井液体系研究[D],西南石油学院,成都:2004.
    [37]刘四海,蔡利山.深井超深井钻探工艺技术[J].钻井液与完井液,2002, 19 (6): 116-121.
    [38]王书琪,张彬,吕志强.英深1井钻井液技术.钻井液与完井液,2006, 23 ( 6): 24-28.
    [39]张振华,韩洪升.高温高压对两性离子聚合物钻井液体系流变性的影响.钻井液与完井液[J],1998,15(2):31-35.
    [40]蒲晓林,黄林基等.深井高密度水基钻井液流变性、造壁性控制原理.天燃气工业,2001;21(6):48-51.
    [41] Cook J.M.,Goldsmith G.,Geehan T.M.,et al. Mud/Shale Interaction: Modle Wellbore Studies Using X-Ray Tomography Model[J}. SPE/IADC 25729, Feb. 1993.
    [42]何育荣,土瑞和,邱正松等.高渗透水泥浆高温高压流变性研究[J].石油大学学报(自然科学版),2005, 29(3): 57-60.
    [43]张高波,史沛谦,何国军等.高温抗盐降滤失剂spx树脂[J].钻井液与完井液,2001,18(2):1-5.
    [44]许树谦,邓建民,戎克生.深井钻井液高温高压流变性研究[J].石油钻井工程,1996,3(4):1-9
    [45]宗铁,诸林等.油气田工作液技术[M].北京:石油工业出版社,2003 : 28-37.
    [46]张绍华,罗兴树.现代泥浆实验技术.山东东营,石油大学出版社.1999: 28-30.
    [47]胡德云.超高密度(ρ≥3.0 g/cm3)钻井液的研究与应用[J].钻井液与完井液,2001,18(1):6-11.
    [48]曾春元.宾汉流体水力参数优化程序设计方法[J].石油钻探技术,1994, 22 (1): 48-50.
    [49]曾春元,邹枫.幂律流体环空及钻头水力参数的计算方法[J].断块油气田,1998,5(2):48-50.
    [50]丁云杰,崔继明,吴世立,等.计算窄间隙环空循环压耗的新模型[[J].钻采工艺,27(5):9-12.
    [51]宋询成,王根成,管志川,等.小井眼环空循环压耗预测系统方法[J].石油钻探技术,2004,32(6):11-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700