高温高压金刚石生长机理的价电子理论及热力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人造金刚石单晶不仅具有硬度高、抗腐蚀、高耐磨等优异性能,还具有优良的光学、声学、热学和电学性质,不断表现出其在现代科学技术和发展中的重要作用。目前,最具有工业生产规模与广泛应用价值的金刚石单晶合成方法仍然是高温高压触媒法。高温高压金刚石的生长机理对于指导工业生产金刚石无疑具有重要意义,但由于高温高压下在线检测的困难性,理论研究的难度仍然过大,造成目前学术观点尚未统一,尤其是对金刚石生长的碳源这一关键问题仍存在较大争议,近年来金刚石生长机理方面的研究投入也较少,对机理的研究依然是一个重大的探索性课题。
     课题组前期对合成金刚石后的触媒及包覆着金刚石单晶的金属包膜的组织、结构、成分等进行了系统的实验表征,根据前期的实验结果,本文利用余氏理论和程氏理论计算分析了高温高压触媒法金刚石生长中各物相的价电子结构及界面的电子密度,从电子结构角度研究了金刚石生长的碳源问题及触媒的催化作用,探讨了高温高压金刚石生长机理;同时结合热力学理论,解释触媒在其中的变化过程,从热力学角度进一步分析了金刚石生长的碳源问题。从而为金刚石的机理研究开辟了一条新途径,并提出了触媒成分设计的新思路。
     本文首先根据材料的热膨胀本质和广义虎克定律,利用晶体的线膨胀系数和弹性常数,建立了晶格常数与温度和压力之间的关系。运用该方法计算六方石墨在不同温度和压力下的晶格常数,所得结果与前人的实验结果非常接近,验证了本文计算方法的可行性。进而计算了金刚石合成过程中各物相(金刚石、石墨、Fe_3C、γ-(Fe,Ni)等)的晶格常数随温度和压力的变化,为高温高压条件下晶体的的价电子结构分析提供了计算基础。
     根据价电子理论,异相界面的电子密度应连续,则在金刚石晶体生长中,碳源相与金刚石界面的电子密度应保持连续,这是金刚石生长要满足的边界条件。本文对金刚石和石墨的价电子结构分析表明:常温常压下,金刚石和两种石墨各主要晶面之间的最小电子密度差在80%左右,而1600 K、5.5 GPa时最小电子密度差在60%左右,虽然由于温度和压力的作用,金刚石和石墨之间的电子密度有所接近,但仍要要远远大于10%,即在一级近似下是不连续的,不能满足金刚石生长的边界条件。因此从电子结构角度看,触媒法金刚石晶体生长的直接碳源不是来自石墨。另外,石墨结构中共价键的键能随温度和压力变化并不明显,最强键上的键能约为240 kJ/mol,平面网层之间的共价键能非常小,靠范德华力结合。在金刚石合成过程中,部分石墨需以C原子形式溶入似熔态触媒,与触媒合金形成碳化物或间隙固溶体。
     已有研究证实选择铁基触媒合成金刚石具有较好的应用前景及较高的学术研究价值,课题组前期对合成后的Fe-Ni触媒及包膜进行了系统的研究,发现在包膜/金刚石界面存在着大量的Fe_3C和γ-(Fe,Ni),并推测Fe_3C为金刚石晶体生长的碳源相,γ-(Fe,Ni)为催化相。因此,本文以Fe-Ni-C系金刚石晶体生长为例探讨金刚石的生长机理,对合成后包膜中主要物相的价电子结构及界面的电子密度进行了计算分析。对Fe_3C的价电子结构及Fe_3C/金刚石界面电子密度的分析表明:高温高压状态下,Fe_3C/金刚石界面的电子密度在一级近似下是连续的,能够满足金刚石生长的边界条件。因而,高温高压触媒法合成金刚石,并不是由石墨结构直接转变为金刚石结构,而是C原子集团不断从Fe_3C中脱落,转移到与之电子密度相近的金刚石界面上,进而完成金刚石晶体的生长。另外,Fe_3C的两个主要晶面同金刚石(111)晶面的电子密度连续,可以解释金刚石包裹体中薄片状Fe_3C同金刚石(111)面存在着平行的位向关系这一现象。对γ-(Fe,Ni)的价电子结构及γ-(Fe,Ni)/Fe_3C界面电子密度的分析则发现:γ-(Fe,Ni)/Fe_3C界面的电子密度在一级近似下是连续的,这表明在金刚石生长过程中γ-(Fe,Ni)起着促使Fe_3C分解的作用即催化作用。可见,价电子理论分析结果与前期实验表征结果是相吻合的。
     为了分析不同触媒的催化作用,进而尝试从电子理论上指导触媒的成分设计,本文对采用过渡族金属(Fe、Ni、Mn、Co)及其合金为触媒合成金刚石过程中可能形成的各种Me_3C型碳化物与金刚石界面以及不同成分配比的γ-Me固溶体与相应Me_3C界面的电子密度分别进行了分析,结果表明:各Me_3C型碳化物与金刚石界面的电子密度以及各γ-Me固溶体与相应Me_3C界面的电子密度在一级近似下均连续,从而可以认为金刚石生长的碳源相和催化相分别为Me_3C和γ-Me固溶体。不同碳化物与金刚石界面的电子密度连续性不同,与金刚石界面保持电子密度连续性越好,结构转化所需要越过的化学势垒越低,也就越容易转变为金刚石结构,在相同的合成条件下,合成的金刚石品质更好。Fe、Ni、Mn、Co合金碳化物与金刚石界面的电子密度连续性基本上都分别好于其单金属碳化物;所有碳化物中,Mn和Co基碳化物与金刚石的电子密度连续性最好;Fe基碳化物与金刚石界面的电子密度连续性好于Ni基碳化物,其中(Fe,Ni)_3C/金刚石界面的电子密度连续性最好。不同元素组成及不同成分配比的γ-Me固溶体与相应Me_3C界面的电子密度连续性也不同,连续性越好,越易促使Me_3C分解,则金刚石的生长速度越快。其中,γ-(Fe,Ni)随着Ni含量的增加,与Fe_3C界面的电子密度连续性基本上呈逐渐变差的趋势。体现实际合成工艺中为,随着Fe-Ni触媒中Ni含量的增加,金刚石的生长速度逐渐变慢,这与金刚石合成实验相吻合。从电子结构的角度提出了良好的触媒剂所应具备的三个条件:高温高压下能与石墨形成Me_3C型碳化物;Me_3C型碳化物与金刚石生长界面有较高的电子密度连续性;γ-Me固溶体与Me_3C型碳化物界面的电子密度连续性适中。
     根据价电子理论分析的结果,本文对高温高压触媒法金刚石的生长进行了热力学分析,在计算中考虑了体积随温度和压力的变化,结果表明:在金刚石形成之前就有大量Fe_3C形成,而在触媒法合成金刚石的温度和压力范围内,Fe_3C(?)C(金刚石)+3γ-Fe反应的自由能变化和石墨(?)金刚石相变的自由能均为负值,但前者比后者更负,即前者更容易发生。因此,从热力学角度来看,Fe_3C的形成降低了石墨转变为金刚石所要越过的势垒,使用铁基触媒合成金刚石晶体的生长来源于Fe_3C的分解而不是石墨的直接转变。同时,得出了在1200K以上石墨一金刚石的平衡曲线P-T关系:P_(eq)(GPa)=1.036+0.00236T(K),这一结果与Bundy计算的平衡线比较接近,从而验证了本文热力学计算方法的可行性。
     本文基于价电子理论和热力学理论的计算分析,均支持了“高温高压触媒法合成金刚石单晶的生长来自于Me_3C型碳化物的分解,而非石墨结构的直接转变”这一论述。对高温高压触媒法金刚石的生长过程可以总结以下:
Man-made diamond single crystals not only have the excellent performances of high rigidity, corrosion resistance and high wearing resistance but also the fine properties of optics, acoustics, thermotics and electricity, which make them play important roles in the development of morden science and technology. Undoubtedly, diamond growth mechanism is significant to instructing the commercial production of diamond. However, due to the difficulty of on-line observation at high temperature and high pressure (HPHT) the difficulty of theoretical study is so hard that the academic viewpoints about the growth mechanism especially the key problem about carbon source are still not consistent, and few efforts have been put into the mechanism research in these years. The study on diamond growth mechanism is still a crucial groping subject.
     Our team has investigated the pattern, composition and structure of catalyst and metal film surrounding as-grown diamond systematically with many kinds of experimental methods in earlier stage. In this paper, according to the former experimental results gained by our team the valence electron structure(VES) of phases existent during the course of diamond growth and the electron density of interfaces were calculated and analyzed with EET and TFDC theory, and the carbon source problem and effect of catalyst were analyzed. Thereby, the diamond crystal growth was investigated in the viewpoint of electron structure. At the meantime, the carbon source problem was analyzed further combined with thermodynamic theory. Accordingly, a new theoretical path was explored to fulfill the study of diamond synthesis mechanism, and a new thought to design the composition of catalyst was put forward.
     According to the essence of thermal expansion and generalized Hooke's law, the relation between lattice constant of crystal and temperature and pressure were established based on the linear thermal expansion coefficient and elastic constant of crystal. The errors between the lattice constants of graphite at different temperature and pressure calculated with this method and the experimental data are small, which validate the feasibility of the calculational method in this paper. Then the changes of the lattice constants of phases existent during the course of diamond growth with temperature and pressure were calculated to supply a basis for the calculation of VES of crystal at HPHT.
     According to the valence electron theory, the electron density of carbon source phase/diamond must be continuous, which is the boundary condition for diamond crystal growth. The VES analysis of diamond and graphite shows that the minimum electron density differences between the common planes of diamond and graphite are about 80% at normal temperature and pressure, while they are about 60% at 1600 K and 5.5Gpa. Although their electron densities are approaching with the increace of temperature and pressure, the difference is extraordinarily bigger than 10%, that is, they are not continuous at the first approximation. This discontinuity can't satisfy the boundary condition of diamond crystal growth. Therefore from the viewpoint of electron structure, the cabon source for diamond growth with the method of catalyst at HPHT does not come from graphite directly. The bonds' energy of graphite changes unconspicuously with the change of temperature and pressure. The energy of the strongest bond is about 240 kJ/mol, while the bond energy among the parallel layer planes is very small and the planes are mainly bonded by Van der Waals force. During the diamond growth, parts of the graphite dissolve into the melting catalyst with the manner of C atoms, then form the carbides or solid solutions with metal or alloy catalyst.
     The former studies about metal catalyst have verified the excellent application prospect and academic value of diamond synthesis with Fe-based catalyst. Our team investigated systematically the Fe-Ni catalyst and metal film after diamond synthesis, and found that there were a lot of Fe_3C andγ-(Fe,Ni) phases on the interface of film/diamond, and considered Fe_3C andγ-(Fe,Ni) as carbon source phase and catalysis phase respectively. Accordingly, in this paper the diamond growth mechanism was investigated with the example of diamond growth from Fe-Ni-C by calculating and analyzing the VES of main phases in metal film and the electron density of interface. The analyses on the VES of Fe_3C and electron density of Fe_3C/diamond interface show that the electron density of the interface is continuous at the first approximation, which can satisfy the boundary condition of diamond growth. Therefore, the carbon source of diamond growth with catalyst at HPHT comes from the carbon atom groups separated from Fe_3C instead of the direct transformation of graphite structure. Moreover, the electron densities of two main crystal planes of Fe_3C are continuous with that of (111) plane of diamond, which can explain perfectly the parallel direction relationship between Fe_3C in the inclusion of diamond crystal and the (111) plane of diamond. The analyses on the VES ofγ-(Fe,Ni) and electron density of Fe_3C/γ-(Fe,Ni) interface show that the electron density of the interface is continuous at the first approximation, which illuminates thatγ-(Fe,Ni) plays a role of catalysis phase, that is,γ-(Fe,Ni) improves the decomposition of Fe_3C. Thus it can be seen that the results based on valence electron theory analysis meet with the former experimental results gained by our team.
     In order to analyze the effect of different kinds of catalyst and instruct designing catalyst composition with electron theory, the electron density of the diamond/carbide interfaces which are probably formed during the diamond growth with transition group metals (Fe, Ni, Mn, Co) and their alloys as catalyst and the interfaces formed ofγ-Me solid solutions with different mixture ratio and Me_3C corresponding. The results show that the electron densities across Me_3C/diamond and y-Me/Me_3C interfaces are all continuous at the first approximation, which indicates Me_3C andγ-Me can be considered as carbon source phase and catalysis phase respectively. The electron density continuities of carbide/diamond interfaces are different with carbide, moreover, the better the electron density continuity of interface, the lower the chemical potential getting over to fulfill structure transformation, and the easier the transformation to diamond structure, so the better the diamond quality in the same synthesis condition. The electron density continuity of Fe, Ni, Mn, Co alloying carbide/diamond interfaces are mostly better than that of monometallic carbide/ diamond interfaces; the electron density continuity of the Mn based and Co based carbide/diamond interfaces are better than other carbides; the electron density continuity of the (Fe,Ni)_3C/diamond is the best among Fe based and Ni based carbides. The electron density continuitiy ofγ-Me/Me_3C interfaces are different with the different compositon ofγ-Me. With the increasing of continuity, the growth rate of diamond crystal quickens. The electron density continuity ofγ-(Fe,Ni)/Fe3C interface ebbs with the adding of the Ni content. That is, the growth rate of diamond crystal becomes lower with the increase of the Ni content of Fe-Ni catalyst in the same synthesis condition. The VES analyses of the effect of catalyst mostly meet with the experimental results. Accordingly, a new thought about the design of catalyst composition can be put forward that the Me_3C type carbides must be formed by the effect of catalyst and graphite; the electron density continuity across Me_3C/diamond interface is high; and the electron density continuity acrossγ-Me/Me_3C is appropriate.
     According to the results of valence electron theory analysis, the diamond growth was also analyzed with thermodynamic theory, and the changes of volume with temperature and pressure were involved in the calculation. The results show that the Fe_3C phases have been formed before diamond nucleation; at the temperature and ressure range of the diamond synthesis method with catalyst, the Gibbs free energies of Fe_3C(?)C(diamond)+3γ-Fe and graphite(?)diamond are all negative, but the former is more little than the latter, which means the former will take place more easily.
     Therefore, form the viewpoint of thermodynamics the formation of Fe_3C reduces the potential energy of transformation from graphite to diamond, and the diamond crystal growth with Fe based catalyst comes from the decomposition of Fe_3C instead of the direct transformation from graphite structure to diamond structure. Moreover, the P-T (Pressure-Temperature) equilibrium of P_(eq)(GPa)=1.036+0.002367(K) is gained, which is closer to the equilibrium gained by Bundy. Thereby the feasibility of the thermodynamic calculational method in this paper is verified.
     The analyses based on the valence electron theory and thermodynamics both hold up the viewpoint that the carbon source of diamond crystal growth with the method of catalyst at HPHT comes from the decomposition of carbide instead of the direct transformation from graphite to diamond. Accordingly, the diamond growth with the method of catalyst at HPHT can be described as following.
引文
[1] Kalish R, Reznik A, Uzan S C, et al. Is sulfer a donor in diamond[J]. Appl. Phys. Lett., 2000,76(6): 757-759
    
    [2] Rezek B, Nebel C E. Kelvin force microscopy on diamond surfaces and devices[J]. Diam.Relat. Mater., 2005,14(3-7): 466-469
    
    [3] Saito T, Park K, Hirama K, et al. Fabrication of diamond MISFET with micron-sized gatelength on boron-doped(111) surface[J]. Diam. Relat. Mater., 2005,14(11-12): 2043-2046
    
    [4] Novikov N V, Shulzhenko A A. New superhard materials and their industrial application[J].Sverk. Mate., 1987, (9): 8-14
    
    [5] Yoder M N. Diamond in the USA[J]. Diam. Relat. Mater., 1993, (2): 59-64
    
    [6] Caveney R J. Diamond research: past, present and future [J]. J. Hard Mater, 1994, V5: 23-29
    
    [7]朱永伟,王柏春,陈立舫,等.纳米金刚石的应用现状及发展前景[J].材料导报,2002, 16(12):27-30
    
    [8] Klugmann E, Polowczyk M. Semiconducting diamond as material for high temperaturethermistors[J]. Mat. Res. Innovat, 2000, (4): 45-48
    
    [9] Nakahara T, Fujimori N. Innovation in diamond[J]. Mat. Res. Innovat, 1997, (1): 38-43
    
    [10]谈耀麟.单晶金刚石在高端技术领域的应用[J].超硬材料工程,2006,18(5):30-33
    
    [11]王光祖,刘庆选.国外人造金刚石工业的建立与发展[J].超硬材料与工程,1999,(1):1-6
    
    [12]刘广志.人造金刚石工业在我国迅猛崛起[J].中国工程科学,2000,(2):31-33
    
    [13] Davies G. Diamond[M]. Adams Hilgor, Bristol, UK, 1984:1-50
    
    [14] Novikov N V, Shulzhenko A A. New superhard materials and their industrial application[J]. Sverk. Mate., 1987, (9): 8-14
    
    [15]中国机械工业年鉴编辑委员会.中国磨料磨削工业年鉴[M].北京:机械工业出版社, 1999:23-28
    
    [16]秦杰明.Fe_(100-X)Ni_X粉末触媒合成工业金刚石的研究[D].长春:吉林大学,2006
    
    [17] Bundy F P, Hall H T, Strong H M, et al. Man-made diamonds[J]. Nature, 1955, 176: 51-55
    
    [18] Satoh S, Sumiya H. The Review of High Pressure Science and Technology, 1993,2:315-319
    
    [19] Sumiya H, Satoh S. High-pressure synthesis of high-purity diamond crystal[J]. Diam. Relat.Mater., 1996,5:1359-1365
    
    [20] Sumiya H, Toda N. High-quality large diamond crystals[J]. New Diam. Front. Carbon Tech.,2000,10 (5): 233-251
    
    [21] Sumiya H, Toda N. Development of high-quality large-size synthetic diamond crystals[J]. SEITech. Rev., 2005,60: 10-16
    
    [22]贾特,李嫂,张弘弢,等.基于灰色理论的我国人造金刚石产量的预测[J].工具技术,??2007,41(5):33-35
    
    [23]杨光繁.超硬材料的发展及前景[J].新材料产业,2005,(9):60-64
    
    [24]方啸虎,郑日升,彭国强,等.超硬材料行业当前形势与对策[J].超硬材料工程,2006, 18(1):25-30
    
    [25]王光祖,人造金刚石合成技术开拓创新的50年[J].金刚石与磨料磨具工程,2004,(6): 73-77
    
    [26]方啸虎,郑日升,洪涛.当前国际国内超硬材料动态分析[J].超硬材料工程,2005,(1): 46-50
    
    [27]陈乾旺,娄正松,王强,等.人工合成金刚石研究进展[J].物理,2005,34(3):199-204
    
    [28] Matsumoto S, Sato Y, Kamo M, et al. Growth of diamond particles from methane-hydrogengas[J]. J. Mater. Sci.,1982, 17:3106-3112
    
    [29] Teraji T, Ito T. Homoepitaxial diamond growth by high-power microwave-plasma chemicalvapor deposition[J]. J. Crys. Grow., 2004, 271: 409-419
    
    [30] Cojocaru C S, Larijani M, Misra D S, etc. A new polarized hot filament chemical vapordeposition process for homogeneous diamond nucleation on Si(100)[J]. Diam. Relat. Mater.,2004,13:270-276
    
    [31] Donnet J B, Oulanti H, Huu T L. Synthesis of large single crystal diamond usingcombustion-flame method[J]. Carbon, 2006,44: 374-380
    
    [32] Li Y D, Qian Y T, Liao H W, et al. A reduction-pyrolysis-catalysis synthesis of diamond[J].Science, 1998,281:246-247
    
    [33] Lou Z S, Chen Q W, Zhang Y F, et al. Diamond formation by reduction of carbon dioxide atlow temperatures[J]. J. Am. Chem. Soc, 2003, 125: 9302-9303
    
    [34] Lou Z S, Chen Q W, Zhang Y F, et al. Synthesis of large-size diamonds by reduction of densecarbon dioxide with alkali metals (K, Li)[J]. J. Phys. Chem., 2004,108: 4239-4241
    
    [35]谈耀麟.国际工业金刚石行业发展形势与动态[J].超硬材料工程,2005(2):35-39
    
    [36] Bundy F P. Direct conversion of graphite to diamond in static pressure apparatus[J]. J. Chem.Phys., 1962,38(3): 631-643
    
    [37] Shen Z T, Wang L J, Sun G X, et al. The formation mechanism of synthetic diamond at highpressure[J]. Physica. 1986,139: 642-644
    
    [38]孙江,李君峰,耿大全.人造金刚石触媒材料的研究现状[J].金属功能材料,1996,2:41-46
    
    [39] Varfolomeeva T D, Ivanov L A, Tsvyashchenko A V, et al. Role of the electron structure of metals in the process of transfer of graphite into diamond[J]. Sverk. Mater.,1986, 4: 6-8
    
    [40] Kanda H, Akaishi M, Yamaoka S. New catalysts for diamond growth under high pressure and high temperature[J]. Appl. Phys. Lett., 1994, 6:784-786
    
    [41]谭新,张沪,彭大暑.人造金刚石用触媒材料回顾与展望[J].矿冶工程,1995,3:65-70
    
    [42]王秦生.超硬材料制造[M].北京:中国标准出版社,2002:32-104
    
    [43]山东大学粉末冶金铁基金刚石催化剂课题组.鉴定材料之三:技术报告.济南:山东大学, 2000
    
    [44]郝兆印.石墨、催化剂合金的选择[J].工业金刚石,1996,(1):6-9
    
    [45]方啸虎.超硬材料科学与技术[M].北京:中国建材工业出版社,1998:50-295
    
    [46] Akaishi M. New non-metallic catalysts for the synthesis of high pressure, high temperaturediamond[J]. Diam. Relat. Materi., 1993,2:183-189
    
    [47] Akaishi M, Kanda H, Yamaoka S. Phosphorus - An elemental catalyst for diamond synthesisand growth[J]. Science, 1993, 259:1592-1593
    
    [48] Sato K, Katsura T. Sulfur: a new solvent-catalyst for diamond synthesis under high-pressureand high-temperature conditions[J]. J. Crys. Grow., 2001,223:189-194
    
    [49] Saito S, Fujimori N, Fukunaga O, et al. Classification of the catalysts for diamond growth[J].Adv. New Diam. Sci. Tech., 1994: 507-512
    
    [50] Strong H M, Chrenko R M. Further study on diamond growth rates and physical properties oflaboratory-made diamond[J]. J. Phys. Chem., 1971, 75(12): 1838-1843
    
    [51] Bovenkerk H P, Bundy F P, Hall H T, et al. Preparation of diamond[J]. Nature, 1959, 184(10):1094-1098
    
    [52] Strong H M, Hanneman R E. Crystallization of diamond and graphite[J]. J. phys. Chem., 1967,46: 3668-3676
    
    [53]苟清泉.高温高压下石墨变金刚石的结构转化机理[J].吉林大学学报,1974,(2):52-63
    
    [54]张治军,李正南,陈坚.静压法合成人造金刚石晶体生长机理的研究进展[J].超硬材料工 程,2006,18(3):40-43
    
    [55]沈主同.人造金刚石晶体生长机制的研讨[J].物理,1977,6(4):243-250
    
    [56] Suresh V, Mingyoung L, Robert C D. Progress of large diamond growth technology and futureprospects[J]. J. Hard. Mater., 1990, (4): 233-245
    
    [57] Perry J, Nelson S, Hosomi S. Dianmond formation in solid metal[J]. Mater. Res. Bull., 1990,25:749-756
    
    [58]何煦初,周劭弼,俞航,等.人造金刚石的遗传学说[J].湖南冶金,1997,(7):16-19
    
    [59]沈主同.超高压高温下金刚石的合成机制[J].工业金刚石,2000,5:1-11
    
    [60]王光祖.我国人造金刚石晶体生长机理研究综述[J].金刚石与磨料磨具工程,2000,(2): 45-48
    
    [61]陈启武,熊相军,陈犁.金刚石合成机制的研究[J].超硬材料工程,2005,17(1):26-30
    
    [62]李达明,刘光照.关于人造金刚石生长机理的研究[J].磨料磨具与磨削,1984,(5):7-13
    
    [63] Vladimir L S, Vladimir Z T, Oleksandr O K. Kinetics of diamond crystallization from the melt of the Fe-Ni-C system[J]. J. Phys. Chem. B, 2002,106: 6634-6637
    
    [64] Shen Z T. Important progress in study on synthesizing mechanism of synthetic diamond withflux-catalyst method at superhigh pressure[J]. J. Synt. Crys., 2005,34(6): 1035-1049
    
    [65] Giardini A A, Tydings J E. Diamond synthesis: observations on the mechanism of formation[J].Ame. Mineral., 1962.47:1393-1421
    
    [66] Lansdale K, Milledge H J, Naave E. Mineral Magazine, 1959, 32:185-189
    
    [67] Pat B B. The diamond surface: atomic and electronic structure[J]. Surf. Sci., 1986, 65:3448-1456
    
    [68] Sung C. Mechanism of the solvent-assisted graphite to diamond transition under high pressure:implications for the selection of catalyst[J]. High Temp. High Pres., 1995,27: 41-46
    
    [69] Giardini A A, Kohn J A, Eckart D W. Am. Mineral., 1961, 46: 976-983
    
    [70] Wentorf R H. Some studies of diamond growth rates[J].J.Phys.Chem, 1971,12: 1833-1837
    
    [71] Yan X, Kanda H, Ohsawa T, et al. Behaviour of graphite-diamond conversion using Ni-Cu andNi-Zn alloys as catalyst-solvent[J]. Mater. Sci. Eng., 1990,25: 1585-1589
    
    [72] Serguei M, Vladimir P P. Analysis of diamond crystal growth stability from graphite through afilm of the metal solvent[J]. Diam. Relat. Mater.,1998,7:309-312
    
    [73]许斌.金属包膜的微观结构及其在高温高压合成金刚石中的作用[D].济南:山东大学, 2003
    
    [74] Pavel E, Baluta G, Barb D, Lazar D P. The nature of the metallic inclusions in syntheticdiamond crystals synthesized at 5.5Gpa in Fe-C system[J]. Solid State Commun., 1990, 76:531-533
    
    [75] Sterenberg L E, Slesarev V N, Korsunskaya I A, et al. The experimental study of the interactionbetween the melt, carbides, and diamond in the iron-carbon system at high pressure[J]. HighTemp. High Press., 1975, (7): 517-522
    
    [76] Hong S M, Li W, Jia X P, et al. Diamond formation from a system of SiC and metal[J]. Diam.Relat. Mater, 1993,2:508-511
    
    [77] Naka S, Tsuzuki A, Hirano S I. Diamond formation and behaviour of carbides in several3d-transition metal-graphite systems[J]. J. Mater. Sci, 1984, 19: 259-262
    
    [78] R. H. Wentorf. Adv. Chem. Phys. 1965, 9a: 356-361
    
    [79]冯楚德.合成金刚石时形成的金属-碳薄膜的显微观察[J].硅酸盐学报,1983,11(1):105-111
    
    [80]林清英,孙江.人造金刚石金属包膜的显微观察[J].金刚石与磨料磨具工程,1997(6):10-13
    
    [81]林清英,朱衍勇,张燕征,等.金属包膜的显微分析[J].钢铁研究学报,1999,11(2):51-54
    
    [82]林清英,孙江.人造金刚石包膜的进一步显微观察[J].超硬材料与工程.1997,4:16-19
    
    [83] Putyatin A A, Makarova O V, Semenenko K N. Interaction in the Fe-C System at High Pressures and Temperature [J]. Sverk. Mater, 1989,11: 1-7
    
    [84]郝兆印.FeNi合金做催化剂高温高压生长金刚石的金属膜[J].工业金刚石,1999,(4):12-14
    
    [85] Xu B, Yin L W and Li M S. AFM study on interface of HTHP as-grown diamond single crystal and metallic film[J]. Mater. Sci. Tech., 2003,16(2): 113-116
    
    [86]亓永新,李木森,宫建红,等.金刚石的金属包覆膜的FESEM研究[J].金刚石与磨料磨具 工程,2006,(3):8-10
    
    [87]李劲风,郑铁铮,严戊衡.包覆膜对金刚石生长的作用[J].矿冶工程,1998,18(1):67-69.
    
    [88]张建安,刘树桢.金刚石合成中某些现象的分析与研究[J].中国有色金属学报,1996,6(1): 136-139
    
    [89]易建宏.人造金刚石合成的亚稳定间隙固溶体体制.粉末冶金材料科学与工程,1999,4(3): 175-178
    
    [90]许斌,李木森,李士同,等.铁基触媒合成金刚石形成的金属包膜成分的研究[J].硅酸盐 学报,2004,32(8):936-941
    
    [91] Xu B, Cui J J, Li M S. Carbide identification in different regions of a thin metal film covering on an HPHT as-grown diamond single crystal from Ni-Mn-C system[J]. Chin. Phys. Lett, 2005, 2(2): 478-481
    
    [92]许斌,李木森,尹龙卫,等.铁基触媒合成金刚石形成的金属包膜的组织结构[J].硅酸盐 学报,2003,31(5):470-475
    
    [93] Yin L W, Li M S, Gong Z G. A relation between a metallic film covering on diamond formed during growth and nanosized inclusions in HPHT as-grown diamond single crystals[J]. Appl. Phys. A, 2003,76:1031-1065
    
    [94]郝兆印,高春晓,罗薇,等.高温高压金刚石单晶生长界面的研究[J].高压物理学报, 1997,11(3):169-174
    
    [95]李颖,郝兆印.金刚石单晶生长界面Auger电子能谱分析[J].金刚石与磨料磨具工程, 2005,149(5):55-57
    
    [96]许斌,崔建军,王淑华,等.人造金刚石单晶铁基金属包膜的精细结构[J].金属学报, 2005,41(4):444-448
    
    [97]许斌,李木森,宫建红,等.Fe基金属包膜的Mossbauer参量及其在金刚石合成中的催化作 用[J].金属学报,2004,40(80):810-814
    
    [98]尹龙卫.高温高压下Fe-Ni-C系中金刚石的形核长大机制及晶体缺陷分析[D].济南:山东 大学,2001
    
    [99]王秦生.金刚石触媒的电子结构和晶格结构与催化活性的关系.郑州国际超硬材料及制 品研讨会,郑州:郑州三磨所,1998
    
    [100]周东晨,赵国权.金刚石合成工艺[M].北京:机械工业出版社,1998:7-220
    
    [101] Leshchuk A A, Novikov N V, Levitas V I. Thermomechanical model of the graphite-diamondphase transformation[J]. J. Super. Mater., 2002, 24(1): 44-52
    
    [102] Berman R, Simon F. Diamond Graphite Equilibrium Line in Their Phase Diagram[J]. Z??Electrochem, 1955,59:333
    
    [103] Bundy F P, Bovenkerk H P, Strong H M, et al. Diamond-graphite equilibrium line from growthand graphitization of diamond[J]. J. Chem. Phys., 1961,35(2): 383-391
    
    [104] Bundy F P. Direct Conversion of Graphite to Diamond in Static Pressure Apparatus[J]. Science,1962,137:1057-1058
    
    [105] Bundy F P. Pressure-temperature phase diagram of elemental carbon[J]. Phys A, 1989, 156:169-178
    
    [106] Bundy F P, Bassett W A, Weathers M S, et al. The pressure-temperature phase andtransformation diagram for carbon; updated through 1994[J]. Carbon, 1996, 34(2): 141-153
    
    [107] Kennedy C S, Kennedy G C. The equilibrium boundary between graphite and diamond[J]. J.Geoph. Res., 1976,61(14): 2467-2469
    
    [108] Bundy F P. The P, T Phase and Reaction diagram for elemental Carbon[J]. J. Geophys. Res.,1980, 85 (12): 6930-6935
    
    [109] Cangus J, Wang Y, Sunkara M. Metastable Growth of Diamond and Diamond-Like Phases[J].Annu. Rev. Mater. Sci., 1991, 20(8): 221-248
    
    [110]占兆田.高品级金刚石的合成-合成工艺参数的设计[J].32业金刚石,1995,(5):1-4
    
    [111]王光祖.金刚石的V型生长区[J].工业金刚石,2000,(2):1-5
    
    [112]方啸虎.超硬材料科学与技术(下)[M].北京:中国建材工业出版社,1998,9:78
    
    [113]姚裕成.人造金刚石与超高压高温技术[M].北京:化学工业出版社,1996:50
    
    [114]王德新,王福泉,刘光海等.对触媒熔剂法金刚石生长的再认识(Ⅰ)[J].人工晶体学报, 2001,30(4):404-412
    
    [115]王春生,曾永泉,吴京.成核过程的热力学分析[J].人工晶体学报,1994,23(1):50-55
    
    [116]杜铭西,李英华.粗粒金刚石的生长及热力学条件的确定[J].高压物理学报,1994,8(1):36-42
    
    [117]姚增连.晶体生长基础[M].合肥:中国科学技术大学出版社.1995:279
    
    [118]李迅.TFD-C理论在高温高压合成金刚石中的应用[D].辽宁:吉林大学,2000
    
    [119]程开甲.评介《界面电子结构与界面性能》[J].自然科学进展,2002,12(11):1231-1232
    
    [120] Pauling L. The Nature of the Chemical Bond[M]. Ithaca: Cornell University Press, 1960: 393-448
    
    [121]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,23(4):217-225
    
    [122]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993
    
    [123] Yin Y S, Wang W X, Shi Z L. Analysis of valence electron structures of intermetallic Fe_3Alcompounds[J]. Mater. Chem. Phys., 1995, 39: 243-247
    
    [124] Wang J Q, Qian C F. Valence electron structure analysis of the cubic silicide intermetallics inrapidly solidified Al-Fe-V-Si alloy[J]. Scrip. Mater., 1996, 34: 1509-1515
    
    [125] Guo Y Q, Yu R H, Zhang R L. Calculation of magnetic properties and analysis of valence??electronic structures of LaT1_(3-x)Al_x(T=Fe,Co) compounds[J]. J. Phys. Chem. B,1998,102:9-16
    
    [126] Min X G. Analysis of valence electron structures of intermetallic compounds containingcalcium in Mg-Al-based alloys[J]. Mater. Chem. Phys., 2002,78(1):88-93
    
    [127] Zhang J M, Xu K W. Valence electron structure analysis of crystalline orientation inplasma-sprayed TiO_2 coatings[J]. Appl. Surf. Sci., 2004,221:1-3
    
    [128] Li Z L, Xu H B, Gong S K. Texture formation mechanism of vapor-deposited fcc thin film onpolycrystal or amorphous substrate[J]. J. Phys. Chem. B, 2004,108:15165-15171
    
    [129] Shi M, Liu N, Xu Y D, etc. A valence electron structure criterion of ionic conductivity of Sr-and Mg-doped LaGaO_3 ceramics[J]. J. Mater. Sci. Tech. 2006,22(2): 215-219
    
    [130] Li Z L, Liu W, Wu Y Q. Influence of yttrium on the interface valence electron density ofthermal barrier coatings[J]. Mater. Chem. Phys., 2007,105: 278-285.
    
    [131] Li X B, Xie Y Q, Nie Y Z, et al. Energy and shape method for determining the valence andbond structures of crystals [J]. Phys. B, 2007, 391: 249-255
    
    [132]刘志林.合金价电子结构与成分设计[M].长春:吉林科学技术出版社,2002
    
    [133]刘志林,李志林,刘伟东.界面电子结构与界面性能IN].北京:科学出版社,2002
    
    [134]谢佑卿.金属材料系统科学框架[J].材料导报,2001,15(4):12-15
    
    [135]谢佑卿.金属材料系统科学[M].长沙:中南工业大学出版社,1998.
    
    [136] Cheng K J. Application of the TFD model and Yu's theory to material design[J]. Prog. Natu.Sci.,1993, 3(3): 221-225
    
    [137] Cheng S Y, Cheng K J. Computation on heat of formation and EOS of alloy by a refined TFDmodel[J]. Acta. Phys. Sinica (Overseas Edition), 1993,2(6): 43-47
    
    [138] Cheng K J, Cheng S Y. Theoretical foundations of condensed materials[J]. Prog. Natu. Sci.,1996,6(1):1-6
    
    [139] Liu Z L, Sun Z G, Li Z L. Application of Yu's theory and Cheng's theory in alloy research[J].Prog. Natu. Sci.,1998,8(2): 134-140
    
    [140] Liu Z L, Z. G. Sun. Electron density of austenite/martensite biphase interface[J]. Chin. Sci.Bull., 1996,41(5): 367-372
    
    [141]张建民.晶体中原子间成键能力的计算及Fe,Co,Ni触媒作用分析[J].陕西师范大学学报, 1999,9(3):38-40
    
    [142]张建民.γ-Fe(111),Co(0001,3,Ni(111),C(0001)晶面电子密度计算及触媒作用优劣的价电 子结构分析[J].陕西师范大学学报,1999,12(4):37-40
    
    [143] Liu Z L, Li Z L, Sun Z G. Catalysis mechanism and catalyst design of diamond growth[J].Meta. Mater. Trans., 1999, 30(11): 2757-2766.
    
    [144] Zhang X J, Zhang J M, Xu KW. Valence electron structure analysis of epitaxial growth ofdiamond (100) film on Si and c-BN substrate[J]. J. Crys. Grow., 2006, 90: 229-234
    
    [145]张克从.晶体生长[M].北京:科学出版社,1981:77
    
    [146]李颖,郝兆印.高温高压条件下金刚石单晶生长界面Auger电子能谱研究[J].超硬材料 工程,2005,17(64):17-20
    
    [147] Liu Z L, Li Z L, Sun Z G. Catalysis mechanism and catalyst design of diamond growth[J].Meta. Mater. Trans., 1999,30(11): 2757-2766.
    
    [148] Li Z L. Phase structure factor and interface conjunction factor of cast iron and its compositiondesign[J].Acta.Meta. Sinca., 1999,12(4):401-407.
    
    [149]孙振国,李志林,刘志林.合金异相界面电子密度的计算[J].科学通报,1995,40(24): 2219-2223
    
    [150]周如松.金属物理(上册)[M].北京:高等教育出版社,1992
    
    [151]徐京娟,邓志煜,张同俊[M].金属物理性能分析.上海:上海科学技术出版社,1998:94
    
    [152]宋月鹏,刘国权,李志林,等.经验电子理论中与温度相关的价电子结构计算模型[J].材 料热处理学报,2005,26(4):125-128
    
    [153]师瑞霞,杨瑞成,周春华,等.余氏理论中晶格常数与温度的关系[J].山东大学学报(工学 版):2004,34(5):5-8
    
    [154] Li X B, Xie Y Q, Nie Y Z,et al. Temperature-dependent valence bond structure study oftantalum[J]. Physica B, 2007,393:119-124
    
    [155] Reeber R R, Wang K. Thermal expansion, molar volume and specific heat of diamond from 0to 3000K[J]. J. Elect. Mater., 1996,25(1): 63-67
    
    [156] Reeber R R, Wang K. Thermal expansion and lattice parameters of group Ⅳ semiconductors[J].Mater. Chem. Phys., 1996,46:259-264
    
    [157] Tsang D K L, Marsden B J, Fok S L, Hall G. Graphite thermal expansion relationship fordifferent temperature ranges[J]. Carbon, 2005 (43): 2902-2906
    
    [158] Morgan W C. Thermal expansion coefficients of graphite crystals [J]. Carbon, 1972,10:73-79
    
    [159] Gachon J C, Schmitt B. Determination by X-ray of the coefficients of thermal expansion ofcementite in the [100], [010] and [001] directions [J]. C. R. Acad. Sci. Paris, 1971, 272(1):428-431
    
    [160] Okamoto H. The C-Fe (carbon-iron) system [J]. J. Phase Equilibria, 1992, 13(5): 543-565
    
    [161] Acer M, Zahrs H, Wassermann EF. High-temperature moment-volume instability andanti-Invar of r-Fe[J]. Phys. Rev. B, 1994, 49(9): 6012-6017
    
    [162] Kojima R, Susa M. Second moment approximation of tight-binding potential for γFeapplicable up to 1700 K[J]. Sci. Tech. Adv. Mater., 2004, 5: 497-502
    
    [163]冯瑞.金属物理学第一卷,结构与缺陷[M].北京:中国科学出版社,2000:108.
    
    [164] F. C. Nix, D. Macnair. The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron[J]. Phys. Rev., 1941, 60: 597-605
    
    [165]周益春.材料固体力学[M].北京:科学出版社,2005:79-84
    
    [166]胡增强.固体力学基础[M].江苏:东南大学出版社,1990:120-125
    
    [167]王俊奎,丁立祚.弹性固体力学[M].北京:中国铁道出版社,1990:67-74
    
    [168] Mounet N, Marzari N. High-accuracy first-principles determination of the structural,vibrational and thermodynamical properties of diamond, graphite, and derivatives [J]. Phys.Rev. B, 2006:1-17
    
    [169] Lynch R W, Drickamer H G. Effect of high pressure on lattice parameters of diamond, graphite,and hexagonal boron nitride[J]. J Chem. Phys., 1966,44(1): 181 -184
    
    [170] Jiang C, Srinivasan S G, Caro A, et al. Structural, elastic and electronic properties of Fe_3Cfrom first-principles[J]. Condensed matter., 2007,11
    
    [171] Li J, Mao H K, Fei Y, et al. Compression of Fe_3C to 30GPa at room temperature [J]. Phys.Chem. Mineral, 2000, 29:166-169
    
    [172] Zarestky J, Stassis C. Lattice dynamics of γFe[J]. Phys. Rev. B ,1987,35:4500-4502
    
    [173] Shirakawa Y, Tanji Y, Moriya H,et al. The elastic constants of Ni and Ni-Fe(fcc) alloys[J].Mech. Prop., 1969,31:187-200.
    
    [174] Lowitzer S, Winkler B, Tucker M. Thermoelastic behavior of graphite from in situhigh-pressure high-temperature neutron diffraction[J]. Phys. Rev. B,2006,73: 214115
    
    [175]方啸虎.中国超硬材料新技术与进展[M].北京:中国科学技术大学出版社,2003:130
    
    [176]王茂章,贺福.碳纤维的制造、性质及其应用[M].北京:科学出版社,1984:254-259
    
    [177] Sung C M, Tai M F. Reactivates of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure[J]. J Ref. Metal. Hard Mater., 1997(15):237-256
    
    [178] Fahy S, Steven G, Louie G. Theoretical total-energy study of the transformation of graphiteinto hexagonal diamond[J]. Phys. Rev. B, 1987, 35(14) :7623-7626
    
    [179] Sung J. Graphite → diamond transition under high pressure: A kinetics approach[J]. J. Mater.Sci.,2000, 35: 6041-6054
    
    [180]王光祖.触媒参与下金刚石晶体生长机理的探讨[J].金刚石与磨料磨具工程,1979,(3):1-6
    
    [181]王光祖.超硬材料[M].郑州:河南科学技术出版社,1996:63
    
    [182] Li Z L, Liu Z L, Liu W D. Valence electron structure of cementite phase and its interface and the tempering phenomenon [J]. Science in China (Series E), 2002,45(3): 282-290
    
    [183]孙振国,李志林,刘志林.Fe_3C(001)晶面共价电子密度的计算[J].科学通报,1997,42(2): 214-216
    
    [184]李金平,孟松鹤,韩杰才,et al.HfC_(1-x)N_x固溶体的价电子结构与性能[J].稀有金属材料与 工程,2007,36(4):569-572
    
    [185]郑伟涛.γ-Fe-Ni固溶体的价电子结构与a~x,a~T曲线[J].吉林大学自然科学学报,1990,(2):??39-42
    
    [186]邢胜娣.Fe-C和Fe-Ni-C马氏体相变的价电子分析[J].浙江大学学报,1989,3(23):349-355
    
    [187] Yin L W, Wang N W, Zou Z D, et al. Formation and crystal structure of metallic inclusions in a HPHT as-grow diamond single crystal[J]. Appl. Phys. A, 2000, 71:473-476
    
    [188]蒙宇飞,苑执中.金刚石中过渡族金属的研究现状[J].矿物岩石地球化学通报,2002, 21(3):202-205
    
    [189]邓小清,唐敬友,孟川民,等.在石墨—Ni_(70)Mn_(25)Co_5体系中金刚石生长的活化能与表面 能的确定[J].人工晶体学报,2004,33(1):118-122
    
    [190]叶大伦,胡建华等.实用无机物热力学数据手册[M].北京:冶金工业出版社.2002
    
    [191] Mounet N, Marzari N.High-accuracy first-principles determination of the structural,vibrational and thermodynamical properties of diamond, graphite, and derivatives[J]. Phys.Rev. B, 2006: 1-17
    
    [192] Wood I G, Lidunka V, Knight K S, et al. Thermal expansion and crystal structure of cementite,Fe_3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction[J]. J.Appl. Crys., 2004, 37: 82-90
    
    [193] Scott H P, Williams Q, Knittle E. Stability and equation of state of Fe_3C to 73 GPa:Implications of carbon in the Earth's core[J]. Geop. Res. Lett., 2001,28(9): 1875-1878
    
    [194]中国金属学会,中国有色金属学会.金属物理性能及测试方法[M].北京:冶金工业出版 社,1987:249
    
    [195] Michal M, Paul E, Karsten A. Analytic bond-order potential for bcc and fcc iron-comparison with established embedded-atom method potentials[J]. J. Phys.: Condens. Matter, 2007, 19: 326220-326242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700