高炉冶炼过程的分形特征辨识及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以河北邯钢7号高炉、山东莱钢1号高炉和山西新临钢6号高炉在线采集的铁水含硅量[Si]序列为样本,对高炉炉温波动的内在非线性单分形特征、多重分形特征进行了细致的辨识研究,并将辨识信息用于对铁水[Si]序列的拟合、预报和控制,有一定的理论价值和应用价值。
     论文首先对高炉冶炼技术发展、高炉专家系统以及炉温预测模型发展的历史和现状做了概述。然后给出了研究复杂非线性系统内在分形特征的相关分形基础理论和方法。
     论文第4章对铁水含硅量[Si]时间序列进行无方向的D检验,有方向的偏度、峰度检验,检验计算结果表明铁水[Si]不满足正态分布。通过Q检验证明高炉[Si]序列存在较强的线性自相关,通过AR模型“过滤”线性自相关后得到的残差序列并非无关,BDS检验证明残差序列存在较强的非线性相关,这说明铁水硅[Si]序列是一组复杂的“混合信号”。
     为了进一步研究铁水[Si]序列的非线性关系,对3座不同容积的高炉数据进行了稳健的Hurst指数计算,得到邯钢7#、莱钢1#、新临钢6#高炉的Hurst指数分别为H=0.121、0.257、0.224。首次从理论上证明高炉是一类反持续性的系统,也常被称为“均值回复”,同时也说明铁水[Si]是一类长程负相关的分形时间序列。随后进一步测定了[Si]序列的轨迹分形维数D,并且发现它和前面的Hurst指数H基本满足关系式:D=2—H,两者均反映出铁水[Si]序列是具有很强的反持续性的分形时间序列。说明以往把铁水[Si]序列看成满足正态(或近似正态)分布的相关模型存在“先天性”缺陷。
     论文第5章中引入Kantelhardt等人提出的MF-DFA方法来改进多重分形结构辨识方法,克服了原来方法对序列的诸多限制条件。随后分别计算了序列的广义Hurst指数、尺度函数、多重分形谱。三者的计算结果均表现出明显的时变特征,证明高炉炉温波动在不同时刻、不同幅度的波动部分具有明显多重分形结构特征。为什么高炉炉温的波动会表现出如此显著的分形特征?本章还对高炉炉温波动出现非线性分形特征的原因进行了深入探索,从冶炼过程能耗的非线性、碳元素的迭代反应形式与数学上的迭代函数系统的形式一致性、不同炉温调控手段到达时效的不一致性等多方面阐述了分形产生的原因。
     在对分形特征详细辨识的基础上,第六章将辨识获取的量化信息引入分形拟合、预报模型。通过改进迭代函数系统(IFS)以及局部分段迭代函数系统(LIFS)的构造方法、垂直定比因子等关键参数的确定算法,进行铁水[Si]序列的拟合。再以历史数据为分形元,利用外推IFS构造分形预报模型,对邯钢7#高炉和莱钢1#高炉各50炉数据进行了仿真计算,得出两座高炉的铁水含硅量[Si]的命中率在[Si]±0.1%的范围内分别为86%和82%,命中率较高且该预报方法不存在收敛速度问题,计算速度快,有较高的理论价值和一定的应用价值。
     在分析了高炉冶炼过程中状态变量:料速指数LS、透气指数FF以及控制变量:风量指数FQ、喷煤指数PM与高炉铁水含硅量[Si]的强相关性的基础上,论文第7章建立了基于混合动力学机理的混合控制偏微分方程并给出了混合控制方程的“粗糙求解”方法。半在线仿真研究取得了较好的控制效果,值得继续深入研究控制方程的更精确求解方法。第8章对全文的研究内容以及创新点做了归纳,并对本课题的后续研究做了展望。
With silicon content time series obtained from No.1 BF at Laiwu Steel, No.6 BF atLinfen Steel and No.7 BF at Hansteel as sample space, the single fractal andmulti-fractal characteristics of silicon content fluctuation are studied in detail. Theidentification information is used to fit, predict and control the silicon content series,and the simulation results are in good agreement with real data.
     To begin with-we provide a brief introduction to the development of iron-makingtechnique, BF expert system and predictive models of silicon content. This will befollowed by a description of theory and methods on research of fractal characteristicsin complex nonlinear systems.
     The next section gives some statistical tests on the silicon content series, includingD test without direction, skewness test and kurtosis test. The tests show that the [Si]series doesn't follow normal distribution. Further test like Q test has confirmed theexistence of strong linear correlation. Using an AR model to filter the linearcorrelation we get the residuals. A BDS test show there is strong nonlinear correlationin the residual series. Thus the silicon content series is proved to be a group ofcomplex "mixed signals".
     To further explore the nonlinear relation in the silicon content series, a robust Hurstindex computation is implemented for data from the above 3 blast furnaces. The Hurstindex for the 3 blast furnaces are 0.121 for No.7 BF at Hansteel, 0.257 for No.1 BF atLaiwu Steel and 0.224 for No.6 BF at Linfen Steel respectively. For the first time wehave proved that blast furnace is a kind of anti-continuous system, or a"mean-reverse'" system. It is also proved the silicon content series is a fractal serieswith negative long range correlation. Then the fractal dimension of silicon content Dis computed and it satisfies "D=2-H". This further confirms the existence of fractalcharacteristics in silicon content series. Thus we come to a conclusion that previousmodels based on the hypothesis of normal distribution have interior shortcomings.
     Section 5 introduces the MF-DFA method proposed by Kantelhardt to identify themulti-fractal structure of silicon content, so that the numerical constraints on timeseries of previous methods are discarded. The generalized Hurst index, scale functionand multi-fractal spectrum are then computed by MF-DFA. The results show blastfurnace silicon content is time variant and obvious multi-fractal characteristics existfor the fluctuation of silicon content at different time points and different range. Toexplain we study the blast furnace from the aspect of energy consumption and chemical reaction dynamics. The nonlinearity of energy consumption, the disunity ofiteration function for carbon reduction with its mathematical form and different timelags of control measures are among the reasons for the existence of fractalcharacteristics.
     On the basis of identification of fractal characteristics, section 6 proposes a fittingand predictive model. Techniques like improved iteration function system (IFS), localpiecewise iteration function system (LIFS) and vertical definite proportion factor areapplied to fitting the silicon content series. Take the historical data as fractal elementswe then expand the fitting model to construct the fractal predictive model. Simulationresults on data from NO. 7 blast furnace at Han Steel and No. 1 blast furnace at LaiwuSteel show the hit rates of silicon content are 86% and 82% on the range of[Si]±0.1%. The algorithm has fast convergence speed and it is valuable both fortheoretical research and practical application.
     Section 7 constructs the hybrid control partial differential function and give a"coarse solution" for the function after analysis of several main parameters in theprocess of iron-making like speed of materials LS, permeability FF, wind blasted FQand coal injected PM. It is proved that this method is worth further research. Section 8gives the conclusion and classifies the creative issues in this paper, also future workare discussed.
引文
[1] 中国计量学会.“十一五”规划节能降耗摘要[R].中国计量,2006(4):42.
    [2] 济南钢铁集团总公司科技处.以全精料为目标推动炼铁生产节能降耗[J].中国冶金,1999(3):27-30.
    [3] 常久柱,苍大强.日本节能高炉炼铁技术的最新进展[J].钢铁研究学报,2003(15),3:70-73.
    [4] 刘绍良,张群.宝钢炼铁节能与环保技术的成效与展望[J].炼铁,2005(24):22-26.
    [5] 周传典.高炉炼铁生产技术手册[M].北京:冶金工业出版社,2002.
    [6] 刘祥官,刘芳.高炉炼铁过程优化与智能控制系统[M].北京:冶金工业出版社,2003.
    [7] 国家自然科学基金委员会.自动化科学与技术—自然科学学科发展战略调研报告[M].北京:科学出版社,1995.
    [8] 刘祥官,刘芳,刘元和等.莱钢1号750m~3高炉智能控制专家系统[J].钢铁,2002(37),8:18-22.
    [9] 周传典,徐矩良,刘云彩等.高炉操作的第三代技术[J].炼铁,1999(18),5:53.
    [10] 国家科技部.《国家级科技成果重点推广计划》项目证书.项目编号:2005EC000166,证书编号:050166.
    [11] 郜传厚,刘祥官.高炉冶炼过程的混沌性辩识[J].金属学报,2004,40(4):347-350.
    [12] 郜传厚.高炉冶炼过程的混沌动力学研究[D].浙江大学博士毕业学位论文,2004.
    [13] Ricketts J A. A short history of ironmaking [J]. 2nd Intemational Congress on the Science and Technology of Ironmaking and 57th Ironmaking Conference. Canada, 1998: 3-40.
    [14] Liu X. G., Li Q. H. Intelligent Automation Models for BF Ironmaking Process [J]. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), v4, 2004, p3547-3551.
    [15] Ogata I., Sanui M. The latest trends and future aspects in Japanese ironmaking technology [J]. Stahl und Eisen, 2003(123) 9: 41-47.
    [16] 李启会.高炉冶炼过程的模糊辨识、预报及控制[D].浙江大学博士毕业学位论文,2005.
    [17] 周明,秦民生.高炉铁水含硅预报数学模型[J].钢铁,1986;21(5):7.
    [18] Van langen J M. Blast Furnace Technology[M]. New York, 1972.
    [19] Pandit S M, Clttrn J A, Wu S M. Modeling,prediction and control of blast furnace operation from observed data by multivariate time series [C]. Ironmaking Proceedings, Metallurgical Society of AIME, Iron and Steel Division, 1975; 34: 403.
    [20] 姬田冒孝,西尾通卓,西川洁等.统计制御理论高炉炉热制御适用[J].铁钢, 1980; S96.
    [21] Singh H, Sridhar N V, Deo B. Artificial neural nets for prediction of silicon content of blast furnace hot metal [J]. Steel Research, 1996; 67(12): 521.
    [22] Yao B, Yang T J, Ning X J. An improved artificial neural network model for predicting silicon content of blast furnace hot metal [J]. Journal of University of Science and Technology Beijing, 2000; 7(4): 269
    [23] 商小强,郑忠,黄庆周.高炉铁水含硅量和含硫量动力学预报研究[J].钢铁,1995;30(4):10.
    [24] Miyano T, Kimoto S, Shibuta H, et al. Time series analysis and prediction on complex dynamical behavior observed in a blast furnace [J]. Physica D, 2000; 135(3-4): 305.
    [25] 刘学艺.基于贝叶斯网络的高炉炉温[Si]预测控制模型研究[D].浙江大学硕士学位论文,2004.
    [26] Gao, C.H., Zhou, Z.M.: Modified Chaotic Adding Weight One-rank Local-region Forecasting for Silicon Content in Molten Iron of Blast Furnace [J]. Acta Phys. Sin., 53 (2004) 4092-4096.
    [27] Gao, C.H., Zhou, Z.M., Shao, Z.J.: Chaotic Local-region Linear Prediction of Silicon Content in Hot Metal of Blast Furnace [J]. Acta Metall. Sin. 41 (2005) 433-436.
    [28] Zhao M., Liu X. G, Luo S. H.. An Evolutionary Artificial Neural Networks Approach for BF Hot Metal Silicon Content Prediction Based on Chaotic Analysis [J]. LNCS (Lecture Notes in Computer Science), 2005(3610): 572-575.
    [29] Luo S.H., Liu X.G, Zhao M. Prediction for silicon content in molten iron using a combined fuzzy-associative-rules bank [J]. Lecture Notes in Artificial Intelligence, 2005(3614): 667-676, 2005.
    [30] Liu J K, Deng S Q, Xu X H. Design and implementation of expert system for judging blast furnace condition [J]. Journal of Iron and Steel Research International, 1996, 3(2): 11.
    [31] 岡部侠児,福武剛,高橘博保等.GO-STOP高炉安定操業[N].川崎裂铁技報,1979,11(1):34.
    [32] Pekka I, Antti K, Matti S. Computer systems for controlling blast furnace operations at Rautaruukki [J]. Iron and Steel Engineer, 1995, 72(8): 44.
    [33] Druckenthaner H. Blast furnace automation for maximizing economy [J]. Steel Times International, 1997, 21(1): 16.
    [34] 刘云彩,张宗民,庄玉茹等.首钢2号高炉冶炼专家系统的开发与应用[J].炼铁,1995,14(6):31.
    [35] 安云沛,车玉满,刘方等.鞍钢4号高炉热状态专家系统的开发与应用[J].鞍钢技术,1997(8):6.
    [36] 王荣贵.马钢2500m~3高炉自动化控制系统设计与调试要点[J].钢铁设计,1994(4):6.
    [37] 刘祥官.智能控制高炉冶炼的系统[P].中国专利,专利号:ZL02137569.0,2005(6).
    [38] 刘祥官.一种利用智能控制系统控制高炉冶炼的方法[P].中国专利,专利号:ZL02137568.2,2005(10).
    [1] Ricketts J A. A short history of ironmaking [J]. 2nd International Congress on the Science and Technology of Ironmaking and 57th Ironmaking Conference. Canada, 1998: 3-40.
    [2] 朱苗勇.现代冶金学[M].北京:冶金工业出版社,2005.
    [3] 刘祥官,刘芳.高炉炼铁过程优化与智能控制系统[M].北京:冶金工业出版社,2003.
    [4] 王莜留等.钢铁冶金学(炼铁部分)[M].北京:冶金工业出版社,2004.
    [5] 由文泉等.实用高炉炼铁技术[M].北京:冶金工业出版社,2002.
    [6] 贺由多等.传输理论和计算[M].北京:冶金工业出版社,1999.
    [7] 张先檩.冶金传输原理[M].北京:冶金工业出版社,2004.
    [8] 鞭岩,森山昭著作,蔡志鹏,谢裕生译.冶金反应工程学,北京:科学出版社,1981.
    [9] 国务院.中国国民经济和社会发展“十一五”规划纲要(第三篇推进工业结构优化升级[M]. 北京: http://www.gov.cn/ztzl/2006-03/16/content 228841.htm, 2006..
    [10] 张寿荣,银汉,毕学工.进人21世纪中国炼铁工业面临的挑战—结构重组与节能降耗(续)[J].中国冶金,2001(50),1:8-12.
    [11] 张寿荣.构建可持续发展的高炉炼铁技术是21世纪我国钢铁界的重要任务[J].钢铁,2004(39),9:7-13.
    [12] Prabhu T. R., Vizayakumar K. Technology choice using FHDM: a case of iron-making technology [J]. IEEE Transaction On Engineering Management, 2001(48), 2: 209-222.
    [13] 周传典.鞍钢炼铁技术的形成与发展[M].北京:冶金工业出版社,1999.
    [14] 肖兴国,谢蕴国.冶金反应工程学基础[M].北京:冶金工业出版社,1997.
    [15] 刘祥官,刘芳.高炉过程优化与智能控制模型.高校应用数学学报A辑[J].2001(16),4:462~470.
    [16] Packard N H, Grutchfield J P, Farmer J D, et al. Geometry from a time series [J]. Physical Review Letters, 1980 (45), 9: 712-715.
    [17] Takens E Detecting strange attractors in turbulence [C]. Lecture Notes in Mathematics, Berlin: Springer-Vedag, 1981,898: 366.
    [18] 王立新,许志宏,谢裕生等.洁净炼铁新技术的探讨[J].科技导报,1999(4):30-32.
    [19] 毕学工.生态钢铁冶金的发展[J]。河南冶金,2006(14),2:3-6.
    [20] 殷瑞钰.冶金流程工程学[M].北京:冶金工业出版社,2004.
    [1] 张济忠.分形[M].北京:清华大学出版社,1995.
    [2] Mandelbrot B B. The Fractal Geometry of Nature [M]. New York: W. H. Freeman and Co., 1982.
    [3] 文志英,井竹君.分形几何和分形维数简介[J].数学的实践与认识,1995(4):20-34.
    [4] 谢和平译.分形几何:数学基础及应用[M].北京:中国矿业出版社,1990.
    [5] 孙洪军,赵丽红.分形理论的产生及其应用[J].辽宁工学院学报,2005(25):113-117.
    [6] 李水根,吴纪桃.分形与小波[M].北京:科学出版社,2002.
    [7] T·帕帕斯,陈以鸿译.数学的奇妙[M].上海:上海科技教育出版社,1999.
    [8] Bamsley M. E. Fractal function and interpolation [J]. Constr Approx., 1986(2): 303-329.
    [9] Bamsley M. E, Elton J. H., Hardin D. E. Recurrent iterated function systems. Constr Approx., 1989(5): 3-31.
    [10] 李后强.分形研究若干问题[J].自然杂志,1995(17):103-105.
    [11] 姜志强.分形理论应用研究若干问题及现状与前景分析[J].吉林大学学报(信息科学版),2004,22(1):57-61.
    [12] Meakin P.Fractal, Scaling, and Growth far from Equilibrium [M]. Cambridge: Cambridge University Press, 2000.
    [1] 刘祥官,刘芳.高炉炼铁过程优化与智能控制系统[M].北京:冶金工业出版社,2003.
    [2] Biswas, A.K.. Principles of Blast Furnace Ironmaking [M]. SBA Publication, Calcutta 1984.
    [3] 全国统计方法应用标准化技术委员会.数据的统计处理和解释[M].杭州:浙江大学出版社,1990.
    [4] 吴群英,林亮.应用数理统计[M].天津:天津大学出版社,2004.
    [5] 李序颖岳丹,顾岚.我国交通货物运输量的时间序列分析[J].系统工程理论与实践,2005(1):49-55.
    [6] J. Theiler, S. Eubank, et al. Testing for Nordinerity in Time Series: the Method of Surrogate Data [J]. Physics D, 1992(58): 77-94.
    [7] D. Prichard. Generating surrogate data for time series with several simultaneously measured variables [J]. Physical Rev Lett.,1994, 73 (8): 951-954.
    [8] 莫馨,马军海.经济时间序列的非线性特性检验及其应用[J].河北工业大学学报,2004,33(6):13-18.
    [9] Dechert Brock W, Scheinkman. A Test for Independence Based on The Correlation Dimension [R]. University of Wisconsin. System Research Institute Working Paper, 1987.
    [10] 黄诒蓉.中国股市分形结构的理论研究与实证分析[D].厦门大学博士论文,2004.
    [11] 张兵,徐炜.中国股票市场分形特征的实证研究[J].经济管理2002(14):63-69.
    [12] I. Simonsen, A. Hansen. Determination of the Hurst exponent by use of wavelet transforms [J]. Phys. Rev. E 1998(58):2779-2787.
    [13] Lo. Long-term memory in stock market prices [J], Econometrica, 1991 (59): 1279-1313.
    [14] E. Peters. Fractal Market Analysis [M]. New York: John Wiley & Sons Inc, 1994.
    [15] J. Beran. Statistics methods for data with long-range dependence [J]. Statistical Science, 1992(7): 404-416.
    [16] 罗世华,刘祥官.高炉铁水含硅量的分形结构分析[J].物理学报,2006(55),7:3343-3348.
    [17] 文志英,范爱华,文志雄等.分形几何理论与应用[M].杭州:浙江科学技术出版社,1998.
    [18] K.J. Falconer. Fractal Geometry: Mathematical Foundations and Applications [M]. New York: John Wiley & Sons Inc, 1990.
    [19] F.Przytycki, M. Urbanski. On the Hausdorff dimension of some Fractal Sets [J]. Studia Math., 1989(93): 155-186.
    [20] 李水根.分形[M].北京:高等教育出版社,2005.
    [1] Grassberger P. Generalized dimensions of strange attractors [J]. Physics Lett. A, 1983(97): 227-230.
    [2] Halsey T.C., Jensen M.H. et al. Fractal measures and their singularities: the characterization of strange sets [J]. Phys Rev A, 1986(33): 1141-1151.
    [3] Bacry E, Delour J., Muzy J. E. Multifraetal random walks [J]. Phys Rev E, 2001(64): 026103-026106.
    [4] Kantelhardt J. W., Stephan A. Z., Eva K. B., et al. Multifraetal detrended fluctuation analysis of nonstationary time series [J]. Phys A, 2002(316): 87-114.
    [5] R. Benzi, G. Paladin, et. al. On the multifraetal nature of fully developed turbulence and chaotic systems [J]. J. Phys, 1984A(17): 3521-3531.
    [6] 文志英,范爱华,文志雄等.分形几何理论与应用[M].杭州:浙江科学技术出版社,1998.
    [7] Fisher A., Calvet L., Mandelbrot, B.B.. Multifactality of deuschmark/US dollar exchange rates [J]. Yale University: Working Paper, 1997.
    [8] Mandelbrot B.B., Fisher A., Calvet, L.. A multifiactal model of asset returns [J]. Yale University: Working Paper, 1997.
    [9] Calvet L., Fisher A., Mandelbrot B.B.. Large deviations and the distribution of price changes [J]. Yale University: Working Paper, 1997.
    [10] 卢方元.中国股市收益率的多重分形分析[J].系统工程理论与实践,2004(6):50-54.
    [11] 沈颐身,李保卫,吴懋林.冶金传输原理基础[M].北京:冶金工业出版社,2000.
    [12] 华罗庚.高等数学引论(第一卷第二分册)[M].北京:科学出版社,1979.
    [13] 归柯庭,汪军,王秋颖.工程流体力学[M].北京:科学出版社,2003.
    [14] 肖兴国.谢蕴国.冶金反应工程学基础[M].北京:冶金工业出版社,1997.
    [15] 周传典.高炉炼铁生产技术手册[M].北京:冶金工业出版社,2002.
    [16] 郜传厚,刘祥官.高炉冶炼过程的混沌性辨识[J].金属学报,2004,40(4):347-350.
    [17] 刘祥官,刘元和,罗登武等.莱钢750m~3高炉智能控制专家系统[J].钢铁,2002,37(8):18-22.
    [1] Barnsley M. F. Fractals Everywhere [M]. New York: Academic Press, 1993.
    [2] Barnsley M. F., Demko S.. Iterated function systems and the global construction of fractals [J]. Froc. Roy. Soc. London A, 1985(399): 243-275.
    [3] Wadstromer N., An automatization of Barnsley's algorithm for the inverse problem of iterated function systems [J]. IEEE transaction on image processing 2003, 12(11): 1388-1397.
    [4] 李水根.分形[M].北京:高等教育出版社,2005.
    [5] 沙震,阮火军.分形与拟合[M].杭州:浙江大学出版社,2005.
    [6] 王兴元.广义M-J集的分形机理[M].大连:大连理工大学出版社,2002.
    [7] 罗世华,刘祥官.高炉铁水含硅量的分形结构分析[J].物理学报,2006(55),7:3343-3348.
    [8] Mazel D.S., Sirgany W.N.. Synthesizing missing data points with iterated function systems [J]. Proceedings of the 35th Midwest symposium on Circuits and systems, 1996 (2): 712-715.
    [9] Luo S. H., Liu X. G., Zhao M.. Using Generalized Iterated Function Systems to Model BF Hot Metal Silicon Content Sequences [J]. The 6th World Congress on Intelligent Control and Automation, 2006 (6): 7766-7770.
    [10] Vera E., Kinsner W.. Piecewise self-affine fractal modelling of linear prediction excitations in speech compression [J]. Proceedings of Electrical and Computer Engineering, 1996 (2): 712-715.
    [11] Mazel D.S., Hayes M.H.. Using iterated function system to model discrete sequences. IEEE Trans. on Signal, 1992 (40), 7: 1724-1734,1992.
    [12] Sarafopoulos A.. Evolution of affme transformations and iterated fimction systems using hierarchical evolution strategy [J]. Lecture notes in computer science, 2001 (2038): 176-191.
    [13] Shozo T., Hiroshi M.. A forecasting method for time series with fractal geometry and its application [J]. Electronics and communications in Japan, 1999 (82), 3: 31-39.
    [14] Hua P.. Wavelet transform and fractal predict for image compression [J]. International conference on machine learning and cybernetics, 2002 (3): 1673-1675.
    [15]申福饶,王嘉松.股票价格的一种线形分形预测方法[J].南京大学学报(自然科学),1999,35(4):396-401.
    [16] 樊福梅,梁平.基于分形的社会总用电量及其构成预测[J].中国机电工程学报,2004 (24),11:91-95.
    [17] 韩冬炎.中国石油价格形成机理及调控机制的研究[D].哈尔滨工程大学博士论文,2004
    [1] 刘祥官,刘元和,等.莱钢750m~3高炉智能控制专家系统[J].钢铁,2002,37(8):18-22.
    [2] 刘祥官.大型复杂工业系统的建模与优化,中国科学技术前沿(中国工程院版)[M].北京:高等教育出版社,2002.
    [3] 刘云彩,杨天钧等.人工智能高炉冶炼专家系统的开发,钢铁工业自动化技术应用实践[M].北京:电子工业出版社,1995.
    [4] 姚斌,杨天钧等.铁水硅预报神经网络专家系统的遗传优化生成[J].钢铁,2000,35(4):13-16.
    [5] 刘祥官,罗世华等.高炉炼铁过程炉温的非线性混合控制[J].控制理论与应用,2006,3(23):391-396.
    [6] 郜传厚.高炉冶炼过程的混沌动力学研究[D].浙江大学博士毕业学位论文,2004.
    [7] 刘祥官,刘芳.高炉炼铁过程优化与智能控制系统[M].北京:冶金工业出版社,2003.
    [8] 成兰伯著.高炉炼铁工艺及计算[M].北京:冶金工业出版社,1995.
    [9] Lowing J.The diagnostic approach to overcoming blast furnace operation problems[C]. Ironmaking proceedings, Metallurgical Society of AIME, Iron and Steel Division, 1977, 36:212.
    [10] 由文泉,赵民革著.实用高炉炼铁技术[M].北京:冶金工业出版社,2002.
    [11] Liu X.G, Zeng J.S., Zhao M.. Mathematical Model and its Compound Dynamic Mechanism in Intelligent Control of Iron-making [J]. Journal of iron and steel research international, 2007, to appear.
    [12] 徐静波,徐望人.变论域分形控制研究[J].东华大学学报(自然科学版),2004,30(4):1-4.
    [13] Thompson J.M.T., Soliman M.S.. Fractal Control Boundaries of Driven Oscillators and their Relevance to Safe Engineering Design [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1990, 1874(428): 1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700