典型固液界面热力学与动力学性质的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究固液界面的性质对认识液体的润湿、晶体的生长与形核等都具有重要的意义。目前,采用计算模拟的方法对固液界面的性质进行研究已成为可能,而且大量有关固液界面性质的研究成果都来自于计算模拟。本文采用分子动力学方法,对典型体系固液界面的热力学与动力学性质进行分析与研究,主要研究内容可以概括为以下四个部分:
     一、对固体表面的纳米液滴进行分子动力学模拟,主要研究相互作用的细节对固液界面结构与润湿性质的影响。我们发现当相互作用较强,固液原子尺寸失配不是很大的情况下,固液界面附近的液体原子排列出现了长程有序结构。多体相互作用、固液相互作用的强度与距离,都会影响液滴在固体表面的润湿性质,并且随着固液相互作用强度的增大,液体原子与固体原子尺寸的失配对接触角的影响效果增强。
     二、对铁液滴在石墨烯表面和单壁碳纳米管中的润湿性质进行了模拟。模拟结果表明,对放在石墨烯表面的纳米铁液滴,接触角随液滴尺寸的增加而减小;但对包裹在碳管中的纳米铁液滴,接触角随管径的增加而减小;但接触角的大小与包裹液滴的长度无关。我们还根据修正后的杨氏方程估算了纳米铁液滴在石墨表面三相接触线的线张力的大小,得到了与理论研究相同的结果。通过对碳纳米管中的液体密度的分析,观察到液体的密度在垂直于管壁和平行于管壁的两个方向上都存在周期的波动,而且在碳管的轴向,密度波动的周期与碳管的周期一致。
     三、研究降温过程中,碳纳米管包裹的金属液滴的固化过程与固化结构。发现不同体系的降温过程中,能量随温度的变化规律不同,液体固化后的结构也不同。在碳纳米管管壁对内部液体影响较弱的体系中,随温度的降低,能量的变化规律与自由液体相似,且液体固化后形成晶体结构;反之,如果管壁对内部液体影响较强,能量随温度的变化关系复杂,降温过程中甚至观察到亚稳结构的出现,液体最终的固化结构通常为多层结构。
     四、采用自由固化方法,系统的研究了体系尺寸对固化过程中界面处温度梯度的影响。研究表明,体系在生长方向的长度对界面处温度梯度的影响很强。考虑到界面处温度梯度的存在,采用界面处的真实温度计算了金属铁与金属镁的动力学系数,并研究了铁和镁动力学系数的各向异性性质。采用界面处真实温度计算的结果约为采用热浴温度进行计算的两倍,但无论采用什么样的温度计算动力学系数,对相同的体系而言,其各向异性性质没有发生改变。
It is important to study properties of the solid-liquid interface for understanding the wetting ability of liquid or the nucleation and growth of crystal. With the develop-ment of the computer technology, A possible method is to research the properties of the solid-liquid interface by computer simulations. Up to date, the most understanding in atomic scale is obtained from computer simulations. In this thesis, we studied the ther-modynamic and kinetic properties of the solid-liquid interface by molecular dynamics simulations.
     Main results of the thesis are as following:
     (1) The wetting properties of nano droplets on a solid surface are studied system-atically and the liquid structure near the interface is analyzed. Our researches focus mainly on the problem that influence from the details of interaction to the solid-liquid structure and the wetting properties. The results show that adding of the many body parameters, increasing distance or intensity of interaction will lead to the decrease of the contact angle. With the increase of interaction strength, the mismatch between the liquid atom and the solid atom affects the contact angle more strongly. By analyzing the liquid near interface, we find that the second peak of the pair correlation function splited under the condition of strong interaction and slight mismatch between the solid and liquid atomic size.
     (2) The wetting properties of Fe liquid droplet filled in carbon nanotubes (CNTs) and on graphene sheet are researched. Our simulations show that the contact angle decreases with the increasing the droplet size for Fe liquid droplet on graphene sheet. The contact angle decreases with increasing the CNT diameter for droplet in the CNT. Furthermore, its value independent of the length of the filled liquid. In the simulation, we estimate the value of the three-phase line tension for the condition of liquid droplet on graphene sheet following the modified Young equation. According to the analysis, both the radial and the axial number density in the CNT fluctuates. Furthermore, the periodic length of density oscillation is the same as the periodic length of the CNT.
     (3) The solidified behavior of the metal nanodroplets filled in the CNTs during the cooling process. We find that the solidified structures are affected both by the diameter of the CNTs and by the interaction strength between metal and carbon atoms. When the interaction is strong, the solidified metal structure form a multishell structure because the influence of the CNT wall. When the interaction is week, the solidified metal has a crystal structure.
     (4) The interface temperature gradient is investigated during the process of so-lidification. It is found that the systematic length in the growth direction affects the temperature gradient near the interface strongly. Considering the temperature gradi-ent, we calculate the dynamic coefficients of the Mg and Fe using the real temperature, which are about twice as the values calculated by the thermostat one. The anisotropy properties are determinate as the same system is used no matter which temperature is used.
引文
[1]许并社.材料界面的物理与化学.化学工业出版社,2006.
    [2]潘金生,健民仝,田民波.材料科学基础.清华大学出版社,1998.
    [3]汪志诚.热力学·统计物理.高等教育出版社,2003.
    [4]高世桥,刘海鹏.毛细力学.科学出版社,2010.
    [5]徐鉴君.凝固过程动力学与交界面稳定性理论导引.科学出版社,2006.
    [6]M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi. Solidification microstructures and solid-state parallels:Recent developments, future directions. Acta Materialia,57(4):941-971,2009.
    [7]J. Q. Broughton, G. H. Gilmer, and K. A. Jackson. Crystallization rates of a Lennard-Jones liquid. Phys. Rev. Lett.,49(20):1496-1500,1982.
    [8]S. R. Coriella and D. Turnbull. Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts. Acta Metallurgica,30:2135-2139, December 1982.
    [9]C. A. MacDonald, A. M. Malvezzi, and F. Spaepen. Picosecond time-resolved measurements of crystallization in noble metals. Journal of Applied Physics,65(1):129-136,1989.
    [10]S. H. Oh, Y. Kauffmann, C. Scheu, W. D. Kaplan, and M. Riihle. Ordered liquid aluminum at the interface with sapphire. Science,310(5748):661,2005.
    [11]B. B. Laird and A. D. J. Haymet. The crystal/liquid interface:structure and properties from computer simulation. Chemical Reviews,92(8):1819-1837,1992.
    [12]W. D. Kaplan and Y. Kauffmann. Structural order in liquids induced by interfaces with crystals. Annu. Rev. Mater. Res.,36:1-48,2006.
    [13]R. L. Davidchack and B. B. Laird. Simulation of the hard-sphere crystal-melt interface. The Journal of Chemical Physics,108:9452,1998.
    [14]J. Q. Broughton, A. Bonissent, and F. F. Abraham. The fcc (111) and (100) crystal-melt inter-faces:A comparison by molecular dynamics simulation. The Journal of Chemical Physics, 74:4029,1981.
    [15]H. E. A. Huitema, M. J. Vlot, and J. P. Van der Eerden. Simulations of crystal growth from Lennard-Jones melt:Detailed measurements of the interface structure. The Journal of Chemical Physics,111:4714,1999.
    [16]E. T. Chen, R. N. Barnett, and Uzi Landman. Crystal-melt and melt-vapor interfaces of nickel. Phys. Rev. B,40(2):924-932, Jul 1989.
    [17]K. A. Wu, A. Karma, J. J. Hoyt, and M. Asta. Ginzburg-landau theory of crystalline anisotropy forbcc-liquid interfaces. Phys. Rev. B,73(9):094101, Mar 2006.
    [18]B. J. Jesson and P. A. Madden. Structure and dynamics at the aluminum solid-liquid inter-face:An ab initio simulation. The Journal of Chemical Physics,113:5935,2000.
    [19]D. Buta, M. Asta, and J. J. Hoyt. Atomistic simulation study of the structure and dynamics of a faceted crystal-melt interface. Phys. Rev. E,78(3):031605, Sep 2008.
    [20]D. Turnbull. Formation of crystal nuclei in liquid metals. Journal of Applied Physics, 21(10):1022-1028,1950.
    [21]W. A. Tiller. The science of crystallization:microscopic interfacial phenomena. Cambridge Univ Pr,1991.
    [22]D. P. Woodruff. The solid-liquid interface. Cambridge Univ Pr,1973.
    [23]J. M. Howe. Interfaces in materials. John Wiley & Sons,1997.
    [24]M. E. Glicksman and N. B. Singh. Effects of crystal-melt interfacial energy anisotropy on dendritic morphology and growth kinetics. Journal of Crystal Growth,98(3):277-284,1989.
    [25]M. Muschol, D. Liu, and H. Z. Cummins. Surface-tension-anisotropy measurements of suc-cinonitrile and pivalic acid:Comparison with microscopic solvability theory. Phys. Rev. A, 46(2):1038,1992.
    [26]J. Q. Broughton and G. H. Gilmer. Molecular dynamics of the crystal-fluid interface. v. structure and dynamics of crystal-melt systems. The Journal of Chemical Physics,84:5749, 1986.
    [27]R. L. Davidchack and B. B. Laird. Direct calculation of the hard-sphere crystal/melt inter-facial free energy. Phys. Rev. Lett.,85(22):4751-4754, Nov 2000.
    [28]R. L. Davidchack and B. B. Laird. Direct calculation of the crystal-melt interfacial free energies for continuous potentials:Application to the Lennard-Jones system. The Journal of Chemical Physics,118:7651,2003.
    [29]M. Asta J. J. Hoyt and A. Karma. Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys. Rev. Lett.,86(24):5530, June 2001.
    [30]J. J. Hoyt and Mark Asta. Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in au and ag. Phys. Rev. B,65:214106,2002.
    [31]J. R. Morris. Complete mapping of the anisotropic free energy of the crystal-melt interface in al. Phys. Rev. B,66(14):144104, Oct 2002.
    [32]M. Asta, J. J. Hoyt, and A. Karma. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys. Rev. B,66(10):100101, Sep 2002.
    [33]J. R. Morris and X. Song. The anisotropic free energy of the Lennard-Jones crystal-melt interface. The Journal of Chemical Physics,119:3920,2003.
    [34]K. Fei, C. P. Chiu, and C. W. Hong. Molecular dynamics prediction of nanofluidic contact angle offset by an AFM. Microfluidics and Nanofluidics,4(4):321-330,2008.
    [35]L. Jing, Z. Z. Jun, Y. J. Lin, and B. Y. Long. A Thin Liquid Film and Its Effects in an Atomic Force Microscopy Measurement. Chin. Phys. Lett.,26:086802,2009.
    [36]A. J. McDonald and S. Hanna. Computer simulations of wetting of solid surfaces by liquid crystals. Phys. Rev. E,75(4):041703,2007.
    [37]E. B. Webb III, G. S. Grest, and D. R. Heine. Precursor film controlled wetting of Pb on Cu. Phys. Rev. Lett.,91(23):236102,2003.
    [38]D. R. Heine, G. S. Grest, and E. B. Webb III. Surface wetting of liquid nanodroplets:Droplet-size effects. Phys. Rev. Lett.,95(10):107801,2005.
    [39]E. B. Webb, J. J. Hoyt, G. S. Grest, and D. R. Heine. Atomistic simulations of reactive wetting in metallic systems. Journal of Materials Science,40(9):2281-2286,2005.
    [40]A. Kuboy, T. Makino, D. Sugiyama, and S. I. Tanaka. Molecular dynamics analysis of the wetting front structure in metal/metal systems. Journal of Materials Science,40(9):2395-2400,2005.
    [41]J. Hautman and M. L. Klein. Microscopic wetting phenomena. Phys. Rev. Lett.,67(13):1763-1766,1991.
    [42]J. T. Hirvi and T. A. Pakkanen. Molecular dynamics simulations of water droplets on polymer surfaces. The Journal of Chemical Physics,125:144712,2006.
    [43]T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nan-otubes. The Journal of Physical Chemistry B,107(6):1345-1352,2003.
    [44]A. Milchev, A. Milchev, and K. Binder. Nanodroplets on a solid plane:wetting and spreading in a Monte Carlo simulation. Computer Physics Communications,146(1):38-53,2002.
    [45]M. J. P. Nijmeijer, C. Bruin, A. F. Bakker, and J. M. J. Van Leeuwen. A visual measurement of contact angles in a molecular-dynamics simulation. Physica A:Statistical and Theoretical Physics,160(2):166-180,1989.
    [46]M. J. P. Nijmeijer, C. Bruin, A. F. Bakker, and J. M. J. Van Leeuwen. Wetting and drying of an inert wall by a fluid in a molecular-dynamics simulation. Phys. Rev. A,42(10):6052, 1990.
    [47]H. K. Guo and H. P. Fang. Drop size dependence of the contact angle of nanodroplets. Chin. Phys. Lett.,22:787-790,2005.
    [48]B. Shi and V. K. Dhir. Molecular dynamics simulation of the contact angle of liquids on solid surfaces. The Journal of Chemical Physics,130:034705,2009.
    [49]G. H. Rodway and J. D. Hunt. Thermoelectric investigation of solidification of lead i. pure lead. Journal of Crystal Growth,112:554-562, June 1991.
    [50]M. E. Glicksman and R. J. Schaefer. Investigation of solid/liquid interface temperatures via isenthalpic solidification. Journal of Crystal Growth,1:297-310, December 1967.
    [51]J. J. Hoyt, B. Sadigh, M. Asta, and S. M. Foiles. Kinetic phase field parameters for the Cu-Ni system derived from atomistic computations. Acta materialia,47(11):3181-3187,1999.
    [52]F. Celestini and J. M. Debierre. Measuring kinetic coefficients by molecular dynamics sim-ulation of zone melting. Phys. Rev. E,65:041605,2002.
    [53]M. Asta D. Y. Sun and J. J. Hoyt. Kinetic coefficient of ni solid-liquid interfaces from molecular-dynamics simulations. Phys. Rev. B,69:024108,2004.
    [54]J. J. Hoyt M. I. Mendelev D. Y. Sun, M. Asta and D. J. Srolovitz. Crystal-melt interfacial free energies in metals:fcc versus bcc. Phys. Rev. B,69:020102(R),2004.
    [55]M. Asta Z. G. Xia, D. Y. Sun and J. J. Hoyt. Molecular dynamics calculations of the crystal-melt interfacial mobility for hexagonal close-packed mg. Phys. Rev. B,75:012103,2007.
    [56]M. I. Mendelev M. Asta J. J. Hoyt J. Monk, Y. Yang and D. Y. Sun. Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations. Modelling Simul. Mater. Sci. Eng.,18:015004,2010.
    [57]陈正隆,徐为人,汤立达.分子模拟的理论与实践.化学工业出版社,2007.
    [58]Frenkel & Smit著,汪文川译.分子模拟-从算法到应用.化学工业出版社,2002.
    [59]M. P. Allen and D. J. Tildesley. Computer Simulation of Liquid. Oxford University Press, 1987.
    [60]张骁骅.低维纳米材料力学及热学性质的分子动力学研究. PhD thesis,复旦大学,2006.
    [61]叶翔.纳米体系结构相变及物性的分子动力学模拟. PhD thesis,复旦大学,2007.
    [62]陈舜麟.计算材料科学.化学工业出版社,2005.
    [63]J. E. Lennard-Jones. Cohesion. Proceedings of the Physical Society,43:461,1931.
    [64]M. S. Daw and M. I. Baskes. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett.,50(17):1285-1288, Apr 1983.
    [65]M. S. Daw and M. I. Baskes. Embedded-atom method:Derivation and application to impu-rities, surfaces, and other defects in metals. Phys. Rev. B,29(12):6443-6453, Jun 1984.
    [66]M. S. Daw, S. M. Foiles, and M. I. Baskes. The embedded-atom method:a review of theory and applications. Materials Science Reports,9(7-8):251-310,1993.
    [67]B. L. Holian, A. F. Voter, N. J. Wagner, R. J. Ravelo, S. P. Chen, W. G. Hoover, C. G. Hoover, J. E. Hammerberg, and T. D. Dontje. Effects of pairwise versus many-body forces on high-stress plastic deformation. Phys. Rev. A,43(6):2655,1991.
    [68]M. I. Baskes. Many-body effects in FCC metals:a Lennard-Jones embedded-atom potential. Phys. Rev. Lett.,83(13):2592-2595,1999.
    [69]M. I. Baskes and M. Stan. An atomistic study of solid/liquid interfaces and phase equilibrium in binary systems. Metallurgical and Materials Transactions A,34(3):435-439,2003.
    [70]C. W. Pao and D. J. Srolovitz. Stress and morphology evolution during island growth. Phys. Rev. Lett.,96(18):186103,2006.
    [71]H. S. Nam, M. I. Mendelev, and D. J. Srolovitz. Solid-liquid phase diagrams for binary metallic alloys:Adjustable interatomic potentials. Phys. Rev. B,75(1):014204,2007.
    [72]G. C. Abell. Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B,31(10):6184,1985.
    [73]J. Tersoff. New empirical model for the structural properties of silicon. Phys. Rev. Lett., 56(6):632-635,1986.
    [74]J. Tersoff. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B,37(12):6991-7000, Apr 1988.
    [75]J. Tersoff. Modeling solid-state chemistry:Interatomic potentials for multicomponent sys-tems. Phys. Rev. B,39(8):5566-5568, Mar 1989.
    [76]D. W. Brenner. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B,42(15):9458-9471, Nov 1990.
    [77]D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics:Condensed Matter,14:783,2002.
    [78]L. Verlet. Computer "Experiments" on Classical Fluids. Ⅰ. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev.,159(1):98, Jul 1967.
    [79]R. W. Hockney and J. W. Eastwood. Computer Simulations Using Particles Chap.10. McGraw-Hill, New York,1981.
    [80]W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters. The Journal of Chemical Physics,76:637, 1982.
    [81]C. W. Gear. Argonne National Lab Report. ANL-7126, Argonne, IL,1966.
    [82]C. W. Gear. The numerical integration of ordinary differential equations. Math. Comp., 21(2):146-156,1967.
    [83]C. W. Gear. Numerical initial value problems in ordinary differential equations. Prentice Hall PTR Upper Saddle River, NJ, USA,1971.
    [84]M. Born. Uber Schwingungen in Raumgittern. Hirzel,1912.
    [85]L. V. Woodcock. Isothermal molecular dynamics calculations for liquid salts* 1. Chemical Physics Letters,10(3):257-261,1971.
    [86]H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, and J. R. Haak. Molec-ular dynamics with coupling to an external bath. The Journal of Chemical Physics,81:3684, 1984.
    [87]H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics,72:2384,1980.
    [88]S. Nose. Constant temperature molecular dynamics methods Prog. Theor. Phys.,103:1-46, 1991.
    [89]S. Nose. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics,100(l):191-198,2002.
    [90]W. G. Hoover. Canonical dynamics:Equilibrium phase-space distributions. Phys. Rev. A, 31(3):1695,1985.
    [91]M. Parrinello and A. Rahman. Polymorphic transitions in single crystals:A new molecular dynamics method. Journal of Applied Physics,52(12):7182-7190,1981.
    [92]D. Y. Sun and X. G. Gong. A new constant-pressure molecular dynamics method for finite systems. Journal of Physics:Condensed Matter,14:L487,2002.
    [93]P. G. de Gennes. Wetting:statics and dynamics. Rev. Mod. Phys.,57(3):827,1985.
    [94]D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley. Wetting and spreading. Rev. Mod. Phys.,81(2):739,2009.
    [95]R. Wang, W. Pan, J. Chen, M. Fang, and J. Meng. Effect of LaPO 4 content on the mi-crostructure and machinability of Al 2 O 3/LaPO 4 composites. Mater. Lett.,57(4):822-827, 2002.
    [96]X. H. Zhang, A. Quinn, and W. A. Ducker. Nanobubbles at the interface between water and a hydrophobic solid. Langmuir,24(9):4756-4764,2008.
    [97]A. P. Gunning, A. R. Mackie, P. J. Wilde, and V. J. Morris. Atomic force microscopy of emulsion droplets:Probing droplet-droplet interactions. Langmuir,20(1):116-122,2004.
    [98]D. J. Stokes. Characterisation of soft condensed matter and delicate materials using environ-mental scanning electron microscopy (ESEM). Advanced Engineering Materials,3(3):126-130,2001.
    [99]A. Checco, H. Schollmeyer, J. Daillant, P. Guenoun, and R. Boukherroub. Nanoscale wet-tability of self-assembled monolayers investigated by noncontact atomic force microscopy. Langmuir,22(1):116-126,2006.
    [100]J. Yang, J. Koplik, and J. R. Banavar. Molecular dynamics of drop spreading on a solid surface. Phys. Rev. Lett.,67(25):3539-3542,1991.
    [101]P. Van Remoortere, J. E. Mertz, L. E. Scriven, and H. T. Davis. Wetting behavior of a Lennard-Jones system. The Journal of Chemical Physics,110:2621,1999.
    [102]R. S. Voronov, D. V. Papavassiliou, and L. L. Lee. Boundary slip and wetting properties of interfaces:Correlation of the contact angle with the slip length. The Journal of Chemical Physics,124:204701,2006.
    [103]J. K. Nφrskov, K. W. Jacobsen, P. Stoltze, and L. B. Hansen. Many-atom interactions in metals. Surface Science,283(1-3):277-282,1993.
    [104]W. Tun, Z. Fu-Xin, and L. Yue-Wu. A Lennard-Jones embedded-atom potential and its application to the study of melting. Chinese Physics,11:139,2002.
    [105]M. Baskes. An atomistic study of solid/liquid interfaces in binary systems. JOM Journal of the Minerals, Metals and Materials Society,56(4):45-48,2004.
    [106]S. Nose. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics,81:511,1984.
    [107]S. Iijima et al. Helical microtubules of graphitic carbon. nature,354(6348):56-58,1991.
    [108]http://zh.wikipedia.org/zh/%E7%A2%B3%E7%BA%B3%E7%B1%B3%E7%AE% A1.
    [109]D. Mattia and Y. Gogotsi. Review:static and dynamic behavior of liquids inside carbon nanotubes. Microfluidics and Nanofluidics,5(3):289-305,2008.
    [110]S. C. Tsang, Y. K. Chen, P. J. F. Harris, and M. L. H. Green. A simple chemical method of opening and filling carbon nanotubes. Nature,372:159-162,1994.
    [111]D. Ugarte, A. Chatelain, and W. A. De Heer. Nanocapillarity and chemistry in carbon nan-otubes. Science,274(5294):1897,1996.
    [112]R. S. Iskhakov, S. V. Komogortsev, A. D. Balaev, A. V. Okotrub, A. G. Kudashov, V. L. Kuznetsov, and Y. V. Butenko. Fe nanowires in carbon nanotubes as an example of a one-dimensional system of exchange-coupled ferromagnetic nanoparticles. JETP Letters, 78(4):236-240,2003.
    [113]A. Leonhardt, M. Ritschel, R. Kozhuharova, A. Graff, T. Muhl, R. Huhle, I. Monch, D. Elefant, and C. M. Schneider. Synthesis and properties of filled carbon nanotubes. Diamond and Related Materials,12(3-7):790-793.2003.
    [114]P. M. Ajayan et al. Capillarity-induced filling of carbon nanotubes. Nature,361(6410):333-334,1993.
    [115]E. Dujardin, T. W. Ebbesen, H. Hiura, and K. Tanigaki. Capillarity and wetting of carbon nanotubes. Science,265(5180):1850,1994.
    [116]E. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, M. H. Rummeli, T. Gemming, J. Nogues, V. Skumryev, R. J. Kalenczuk, T. Pichler, and S. R. P. Silva. Iron filled single-wall carbon nanotubes-A novel ferromagnetic medium. Chemical Physics Letters,421(1-3):129-133, 2006.
    [117]M. Terrones. Carbon nanotubes:synthesis and properties, electronic devices and other emerging applications. International Materials Reviews,49(6):325-377,2004.
    [118]H. Kim and W. Sigmund. Iron nanoparticles in carbon nanotubes at various temperatures. Journal of Crystal Growth,276(3-4):594-605,2005.
    [119]H. Kim and W. Sigmund. Iron particles in carbon nanotubes. Carbon,43(8):1743-1748, 2005.
    [120]D. C. Wei, L. C. Cao, L. Fu, X. L. Li, Y. Wang, G. Yu, and Y. Q. Liu. A New Technique for Controllably Producing Branched or Encapsulating Nanostructures in a Vapor-Liquid-Solid Process. Advanced Materials,19(3):386-390,2007.
    [121]Q. Yuan and Y. P. Zhao. Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Phys. Rev. Lett.,104(24):246101,2010.
    [122]M. Horsch, M. Heitzig, C. Dan, J. Harting, H. Hasse, and J. Vrabec. Contact Angle Depen-dence on the Fluid- Wall Dispersive Energy. Langmuir,26(13):10913-10917,2010.
    [123]Y. Guo and W. Guo. Structural transformation of partially confined copper nanowires inside defected carbon nanotubes. Nanotechnology,17:4726,2006.
    [124]W. H. Noon, K. D. Ausman, R. E. Smalley, and J. Ma. Helical ice-sheets inside carbon nan-otubes in the physiological condition. Chemical Physics Letters,355(5-6):445-448,2002.
    [125]T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, F. Noca, and P. Koumoutsakos. Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Letters, 1(12):697-702,2001.
    [126]A. Kutana and K. P. Giapis. Contact angles, ordering, and solidification of liquid mercury in carbon nanotube cavities. Phys. Rev. B,76(19):195444,2007.
    [127]L. Boruvka and A. W. Neumann. Generalization of the classical theory of capillarity. The Journal of Chemical Physics,66:5464,1977.
    [128]M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta. Develop-ment of new interatomic potentials appropriate for crystalline and liquid iron. Philosophical Magazine,83(35):3977-3994,2003.
    [129]蔡文生,林翼,邵学广.团簇研究中的原子间势函数.化学进展,17(4):588-596,2005.
    [130]J. Q. Broughton and G. H. Gilmer. Surface free energy and stress of a Lennard-Jones crystal. Acta Metallurgica, 31(6):845-851,1983.
    [131]E. Durgun, S. Dag, V. M. K. Bagci, O. Giilseren, T. Yildirim, and S. Ciraci. Systematic study of adsorption of single atoms on a carbon nanotube. Phys. Rev. B,67(20):201401,2003.
    [132]Y. Yang, Y. F. Gao, D. Y. Sun, M. Asta, and J. J. Hoyt. Capillary force induced structural deformation in liquid infiltrated elastic circular tubes. Phys. Rev. B,81(24):241407,2010.
    [133]A. I. Savvatimskii. Melting point of graphite and liquid carbon (Concerning the pa-per'Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures'by El Asinovskii, AV Kirillin, and AV Kostanovskii). Physics-Uspekhi, 46:1295,2003.
    [134]Y. Kowaki, A. Harada, F. Shimojo, and K. Hoshino. Radius dependence of the melting temperature of single-walled carbon nanotubes:molecular-dynamics simulations. Journal of Physics:Condensed Matter,19:436224,2007.
    [135]K. Zhang, G. M. Stocks, and J. Zhong. Melting and premelting of carbon nanotubes. Nan-otechnology,18:285703,2007.
    [136]K. C. Mills and Y. C. Su. Review of surface tension data for metallic elements and alloys: Part 1 Pure metals. International materials reviews,51(6):329-351,2006.
    [137]G. Wille, F. Millot, and J. C. Rifflet. Thermophysical properties of containerless liquid iron up to 2500 K. International Journal of Thermophysics,23(5):1197-1206,2002.
    [138]M. J. P. Nijmeijer, A. F. Bakker, C. Bruin, and J. H. Sikkenk. A molecular dynamics simula-tion of the Lennard-Jones liquid-vapor interface. The Journal of Chemical Physics,89:3789, 1988.
    [139]W. D. Harkins. Linear or Edge Energy and Tension as Related to the Energy of Surface Formation and of Vaporization. The Journal of Chemical Physics,5:135,1937.
    [140]T. Getta and S. Dietrich. Line tension between fluid phases and a substrate. Phys. Rev. E, 57(1):655,1998.
    [141]F. Bresme and N. Quirke. Computer simulation study of the wetting behavior and line ten-sions of nanometer size particulates at a liquid-vapor interface. Phys. Rev. Lett.,80(17):3791-3794,1998.
    [142]G. Che, B. B. Lakshmi, C. R. Martin, and E. R. Fisher. Metal-nanocluster-filled carbon nanotubes:catalytic properties and possible applications in electrochemical energy storage and production. Langmuir,15(3):750-758,1999.
    [143]K. Svensson, H. Olin, and E. Olsson. Nanopipettes for metal transport. Phys. Rev. Lett.. 93(14):145901,Sep 2004.
    [144]R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, and X. L. Liang. Microwave absorption enhance-ment and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Advanced Materials,16(5):401-405,2004.
    [145]H. Terrones, F. Lopez-Urias, E. Munoz-Sandoval, J. A. Rodriguez-Manzo, A. Zamudio, A. L. Elfas, and M. Terrones. Magnetism in Fe-based and carbon nanostructures:Theory and applications. Solid State Sciences,8(3-4):303-320,2006.
    [146]A. Winkler, T. Muhl, S. Menzel, R. Kozhuharova-Koseva, S. Hampel, A. Leonhardt, and B. Buchner. Magnetic force microscopy sensors using iron-filled carbon nanotubes. Journal of Applied Physics,99:104905,2006.
    [147]D. Golberg, P. M. F. J. Costa, M. Mitome, S. Hampel, D. Haase, C. Mueller, A. Leonhardt, and Y. Bando. Copper-Filled Carbon Nanotubes:Rheostatlike Behavior and Femtogram Copper Mass Transport. Advanced Materials,19(15):1937-1942,2007.
    [148]N. Tit and M. W. C. Dharma-Wardana. Superconductivity in carbon nanotubes coupled to transition metal atoms. Europhysics Letters,62:405,2003.
    [149]F. Tan, X. Fan, G. Zhang, and F. Zhang. Coating and filling of carbon nanotubes with homo-geneous magnetic nanoparticles. Materials Letters,61(8-9):1805-1808,2007.
    [150]R. Hatakeyama and Y. F. Li. Synthesis and electronic-property control of Cs-encapsulated single-and double-walled carbon nanotubes by plasma ion irradiation. Journal of Applied Physics,102:034309,2007.
    [151]P. M. Ajayan, C. Colliex, J. M. Lambert, P. Bernier, L. Barbedette, M. Tence, and O. Stephan. Growth of manganese filled carbon nanofibers in the vapor phase. Phys. Rev. Lett.,72(11):1722-1725,1994.
    [152]C. H. Liang, G. W. Meng, L. D. Zhang, N. F. Shen, and X. Y. Zhang. Carbon nanotubes filled partially or completely with nickel. Journal of Crystal Growth,218(1):136-139,2000.
    [153]X. P. Gao, Y. Zhang, X. Chen, G. L. Pan, J. Yan, F. Wu, H. T. Yuan, and D. Y. Song. Carbon nanotubes filled with metallic nanowires. Carbon,42(1):47-52,2004.
    [154]S. Hampel, A. Leonhardt, D. Selbmann, K. Biedermann, D. Elefant, C. Muller, T. Gemming, and B. Buchner. Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon,44(11):2316-2322,2006.
    [155]R. Kozhuharova-Koseva, D. Elefant, M. Hofmann, A. Leonhardt, I. Monch, M. Ritschel, and B. Buchner. Temperature influence on the morphology and the magnetic properties of verti-cally aligned fe-filled carbon nanotubes. Fullerenes, Nanotubes, and Carbon Nanostructures, 15(2):89-97,2007.
    [156]R. Kozhuharova-Koseva, M. Hofmann, A. Leonhardt, I. Monch, T. Muhl, M. Ritschel, and B. Buchner. Relation between growth parameters and morphology of vertically aligned Fe-filled carbon nanotubes. Fullerenes, Nanotubes, and Carbon Nanostructures,15(2):135-143, 2007.
    [157]Y. Hayashi, T. Fujita, T. Tokunaga, K. Kaneko, T. Butler, N. Rupesinghe, J. D. Carey, S. R. P. Silva, and G. A. J. Amaratunga. Encapsluation of Co and Pd multi-metal nanowires inside multiwalled carbon nanotubes by microwave plasma chemical vapor deposition. Diamond and Related Materials,16(4-7):1200-1203,2007.
    [158]D. Golberg, M. Mitome, C. Muller, C. Tang, A. Leonhardt, and Y. Bando. Atomic structures of iron-based single-crystalline nanowires crystallized inside multi-walled carbon nanotubes as revealed by analytical electron microscopy. Acta Materialia,54(9):2567-2576,2006.
    [159]C. Muller, D. Golberg, A. Leonhardt, S. Hampel, and B. Buchner. Growth studies, TEM and XRD investigations of iron-filled carbon nanotubes. Physica Status Solidi (A),203(6):1064-1068,2006.
    [160]M. Weissmann, G. Garcia, M. Kiwi, R. Ramirez, and C. C. Fu. Theoretical study of iron-filled carbon nanotubes. Phys. Rev. B,73(12):125435,2006.
    [161]Y. J. Kang, J. Choi, C. Y. Moon, and K. J. Chang. Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms. Phys. Rev. B,71(11):115441,2005.
    [162]Y. J. Kang and K. J. Chang. The electronic and magnetic properties of carbon nanotubes interacting with iron atoms. Physica B:Condensed Matter,376:311-315,2006.
    [163]J. W. Kang and H. J. Hwang. Structural properties of caesium encapsulated in carbon nan-otubes. Nanotechnology,15:115,2004.
    [164]B. Zhu, Y. X. Wang, Z. Y. Pan, D. Cheng, and M. Hou. Nanowire formation by coalescence of small gold clusters inside carbon nanotubes. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics,57(2):219-226,2010.
    [165]Y. Xiao, B. E. Zhu, S. H. Guo, Y. X. Wang, and Z. Y. Pan. Structures of Au nanowires encapsulated in carbon nanotubes. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,267(18):3067-3071,2009.
    [166]W. Y. Choi, J. W. Kang, and H. J. Hwang. Structures of ultrathin copper nanowires encapsu-lated in carbon nanotubes. Phys. Rev. B,68(19):193405,2003.
    [167]L. Wang, H. W. Zhang, Y. G. Zheng, J. B. Wang, and Z. Q. Zhang. Single-walled carbon nan-otubes filled with bimetallic alloys:Structures and buckling behaviors. Journal of Applied Physics,103:083519,2008.
    [168]M. Hu, K. P. Giapis, J. V. Goicochea, and D. Poulikakos. Surface segregation of bimetallic alloys in nanoscale confinement. Applied Physics Letters,97:153107,2010.
    [169]J. Y. Guo and C. X. Xu. Comparative investigation on decorating carbon nanotubes with different transition metals. Applied Physics A:Materials Science & Processing, pages 1-5, 2011.
    [170]S. Arcidiacono, J. H. Walther, D. Poulikakos, D. Passerone, and P. Koumoutsakos. Solidifi-cation of gold nanoparticles in carbon nanotubes. Phys. Rev. Lett.,94(10):105502,2005.
    [171]G. Soldano and M. M. Mariscal. On the structural and mechanical properties of Fe-filled carbon nanotubes-a computer simulation approach. Nanotechnology,20:165705,2009.
    [172]J. A. Kittl, M. J. Aziz, D. P. Brunco, and M. O. Thompson. Nonequilibrium partitioning during rapid solidification of Si—As alloys. Journal of Crystal Growth,148(1-2):172-182, 1995.
    [173]J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson. Complete exper-imental test of kinetic models for rapid alloy solidification. Acta Materialia,48(20):4797-4811,2000.
    [174]C. J. Tymczak and John R. Ray. Asymetric crystallization and melting kinetics in sodium:A molecular-dynamics study. Phys. Rev. Lett.,64(11):1278-1281, March 1990.
    [175]C. J. Tymczak and John R. Ray. Interface response function for a model of sodium:A molecular dynamics study. The Journal of Chemical Physics,92(12):7520-7530, June 1990.
    [176]D. Y. Sun and M. Asta. Crystal-melt interfacial free energies and mobilities in fcc and bcc fe. Phys. Rev. B,69:174103,2004.
    [177]M. Asta J.J. Hoyt and A. Karma. Atomistic simulation methods for computing the kinetic coefficient in solid-liquid systems. Interface Science,10(2-3):181-189,2002.
    [178]W. J. Briels H. L. Tepper. Simulations of crystallization and meltingof the fcc (100) interface: the crucial role of lattice imperfections. Journal of Crystal Growth,230:270-276,2001.
    [179]Mark Asta Dorel Buta and Jeffrey J. Hoyt. Kinetic coefficient of steps at the si(111) crystal-melt interface from molecular dynamics simulations. The Journal of Chemical Physics, 127:074703,2007.
    [180]D. Y. Sun, M. I. Mendelev, C. A. Becker, K. Kudin, Tomorr Haxhimali, M. Asta, J. J. Hoyt, A. Karma, and D. J. Srolovitz. Crystal-melt interfacial free energies in hcp metals:A molecular dynamics study of mg. Phys. Rev. B,73(2):024116, Jan 2006.
    [181]K. M. Ho J. R. Morris, C. Z. Wang and C. T. Chan. Melting line of aluminum from simula-tions of coexisting phases. Phys. Rev. B,49(5):3109, February 1994.
    [182]X. Y. Song James R. Morris. The melting lines of model systems calculated from coexistence simulations. The Journal of Chemical Physics,116(21):9352, June 2002.
    [183]杨洋.合金固液界面动力学与纳米体系结构和稳定性的分子动力学研究.PhD thesis,华东师范大学,2010.
    [184]I. Maltsev, A. Mirzoev, D. Danilov, and B. Nestler. Atomistic and mesoscale simulations of free solidification in comparison. Modelling and Simulation in Materials Science and Engineering,17:055006,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700