四种天然化合物抑制肿瘤血管生成及沙棘总黄酮降血压作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.四种天然化合物抑制肿瘤血管生成和肿瘤生长的机理研究
     肿瘤血管生成(Tumor angiogenesis)在肿瘤生长和转移中发挥关键作用,是目前崭新的、有潜力的抗肿瘤治疗靶点。如何筛选出有效的、安全的、分子基础明确的肿瘤血管生成抑制剂是药物开发面临的巨大挑战,也是肿瘤治疗领域中的重大难题。目前国际临床上使用的血管生成抑制剂多为抗体或可溶性肽,其合成和纯化费用昂贵,应用范围狭窄。因此,寻找新型抗肿瘤血管生成药物,特别是从具有抗癌活性的传统药用植物中寻找,已成为癌症研究的新思路和新热点。
     开发肿瘤血管生成抑制剂的首要标准即要明确待测药物的信号分子靶点。由于肿瘤血管生成发生和发展过程中所参与的信号途径错综复杂,且交叉重叠,因而,阐明抗血管生成药物的作用机制是现代药物开发和创新的关键点和难点。本研究第一篇内容根据该领域目前研究所确定的内皮细胞信号通路,筛选出4种抗肿瘤血管生成植物单体化合物,包括藤黄双黄酮(Morelloflavone)、11-羰基-β-乙酰乳香酸(Acetyl-11-keto-β-boswellic acid,AKBA)、雷公藤红素(Celastrol)和1'-乙酰氧基胡椒酚乙酸(1′-acetoxychavicol acetates,ACA)。通过体外细胞、离体组织和体内动物模型三个研究层次,论文首次证实了上述天然化合物抗肿瘤血管生成活性及其分子基础。在体外细胞水平上,利用四甲基偶氮唑蓝(MTT)试验、流式细胞术和细胞凋亡蛋白检测技术,研究了植物单体化合物对人脐静脉内皮细胞(HUVECs)和人前列腺癌细胞(PC-3)增殖和生长的抑制作用;利用愈合迁移试验、跨膜迁移试验和小管状结构形成试验,研究了单体化合物对内皮细胞迁移和分化功能的影响:在离体组织水平,利用大鼠主动脉血管环试验,研究了单体化合物对毛细血管出芽的抑制作用;在体内动物水平,利用基质凝胶植入试验、荷前列腺肿瘤裸鼠模型,研究了单体化合物对肿瘤血管生成和肿瘤生长的抑制作用。在药物分子靶点研究部分,利用蛋白印迹技术(Western blotting)、Pull-down试验和蛋白激酶测定试验,探究了单体化合物对HUVECs和PC-3细胞信号途径的调控作用。下面依次阐述藤黄双黄酮、11-羰基-β-乙酰乳香酸、雷公藤红素和1'-乙酰氧基胡椒酚乙酸这4种天然化合物的抗肿瘤血管生成特性。
     藤黄双黄酮提取于传统药物植物藤黄科(Guttiferae)瓜哇凤果(Garciniadulcis),该化合物是否具有抗肿瘤活性未见报道。本研究发现,藤黄双黄酮可剂量依赖性地抑制HUVECs中胞外信号调节激酶(Raf/MEK/ERK)通路的活化,并能调控小G蛋白(Rho GTPases)活力(降低RhoA-GTPase和Rac1-GTPase活力,对Cdc42-GTPase无影响),从而剂量依赖性地降低内皮细胞增殖和迁移。离体大鼠主动脉环试验和基质凝胶植入试验结果显示,藤黄双黄酮可有效抑制毛细血管出芽和功能性、渗透性血管形成。用剂量为8mg/kg·d的藤黄双黄酮治疗荷人前列腺肿瘤(PC-3)裸鼠15d,在不影响荷瘤裸鼠正常体重的情况下,其可显著降低实体肿瘤大小和重量。以上结果揭示藤黄双黄酮具有抗肿瘤生长这一崭新生物学功能。
     11-羰基-β-乙酰乳香酸(AKBA)提取于印度传统草药Boswellia serrata。蛋白免疫印迹和体外激酶研究结果显示11-羰基-β-乙酰乳香酸可显著抑制内皮生长因子2型受体(VEGFR2,KDR/Flk-1)激酶活力,IC_(50)为1.68μmol/L。11-羰基-β-乙酰乳香酸通过特异性阻断VEGF/VEGF receptor信号通路介导的血管生成效应,浓度依赖性的抑制内皮细胞中调节存活、迁移和周期的各类蛋白分子,如Src、FAK、AKT、ERK、mTOR和S6K激酶等。在离体大鼠主动脉环试验和基质凝胶植入试验中,AKBA可有效抑制毛细血管分支密度和功能性血管形成。使用剂量为10mg/kg·d的AKBA每天皮下治疗荷PC-3裸鼠模型30d,该化合物可显著降低实体肿瘤体积和重量。血管特异性免疫组化结果证明,11-羰基-β-乙酰乳香酸抑制肿瘤生长的效应与降低肿瘤血管生成紧密相关。以上结果证实11-羰基-β-乙酰乳香酸是一种有效的肿瘤血管生成抑制剂。
     雷公藤(Trypterygium wilfordii Hook F.)作为传统中药,具有多种抗癌活性,然而靶向机理并不透彻。本研究发现,雷公藤活性成分雷公藤红素(又称南蛇藤素,Celastrol)在剂量为2mg/kg·d下治疗荷PC-3裸鼠16d,可显著降低实体肿瘤体积和重量,且对荷瘤鼠正常体重无明显影响。离体大鼠主动脉环试验和基质凝胶植入试验结果显示,雷公藤红素可有效抑制毛细血管分支数目和功能性血管形成。进一步的分子机理研究发现,雷公藤红素可一致性地、剂量依赖性地降低HUVECs和PC-3中AKT/mTOR/S6K信号通路的活化。以上结果提示,AKT/mTOR/S6K信号通路是雷公藤红素抑制肿瘤血管生成和肿瘤生长的新靶点。
     提取于姜科(Zingiberaceae)山姜属植物红豆蔻(Alpinia galanga Willd.)的根茎中的小分子天然化合物1'-乙酰氧基胡椒酚乙酸(ACA)可浓度依赖性和时间依赖性的降低HUVECs中Src家族激酶/黏着斑激酶(FAK)激酶磷酸化,且可显著降低Cdc42-GTPase和Rac1-GTPase活力,从而有效调控内皮细胞的迁移和增殖。离体大鼠主动脉环试验和基质凝胶植入模型结果证实,ACA可抑制毛细血管分支数目和功能性血管形成。使用剂量为6mg/kg·d的ACA连续皮下给药治疗荷PC-3裸鼠20d,可显著降低实体肿瘤体积和重量,且对荷瘤裸鼠正常体重无明显影响。血管特异性免疫组化结果提示,ACA抑制肿瘤生长的效应与降低血管生成密切相关。上述结果证明,1'-乙酰氧基胡椒酚乙酸通过靶向Src/FAK复合体和小G蛋白信号途径,抑制肿瘤血管生成和肿瘤生长。
     2.沙棘籽渣总黄酮的降血压研究
     沙棘黄酮是沙棘(Hippophae rhamnoides L.)的有效活性成分,具有广泛的药理学功能。然而,沙棘黄酮对心血管系统的治疗作用及机制探讨颇有局限。沙棘籽渣是初级利用后的工业弃物,为实现资源深度开发和深度利用,明确总黄酮类化合物对血压的保护作用,本文利用两种高血压动物模型:胰岛素抵抗合并高血压大鼠模型(IRH)和自发性高血压大鼠模型(SHR),研究了沙棘籽渣总黄酮(TFH-SR)的降压效用和机理。
     本文采用高蔗糖饲料压迫未成年Sprague Dawley(SD)大鼠,通过生化指标检测和电镜观察,比较了大鼠尾部静脉收缩压(SBP)、空腹血清胰岛素(FPI)、血脂代谢(TG、FFA、TC和HDL-C)、肾脏功能以及内皮结构功能变化,成功建立了IRH大鼠模型。应用梯度剂量的沙棘总黄酮(50mg/kg·d、100 mg/kg·d和150mg/kg·d)治疗模型鼠8周后,高蔗糖餐引发的轻度高血压、高胰岛素血症、血脂代谢紊乱以及血管紧张Ⅱ(AngiotensinⅡ)含量增加,均可以被沙棘总黄酮纠正或改善,其有效剂量为150mg/kg·d。该结果提示,沙棘黄酮可能通过调控胰岛素和血管紧张素这两大循环代谢系统,对胰岛素抵抗引发的心血管疾病有良好的预防或治疗功能。
     为了进一步证实沙棘总黄酮的降压作用,本研究采用剂量为100mg/kg·d的沙棘总黄酮灌喂自发性高血压模型鼠。通过检测大鼠SBP、循环和组织血管紧张素Ⅱ水平以及利用免疫组化对大鼠心肌和主动脉血管中血管紧张Ⅱ1型受体(AT_1R)蛋白半定量分析,发现沙棘总黄酮能有效降低SHR血压、血管紧张素Ⅱ和AT_1R蛋白表达水平,提示沙棘总黄酮能够抑制组织血管紧张素转换酶活力,有效控制血压以及保护靶器官。
1.Four Natural Compounds Suppress Tumor Angiogenesis and Tumor Growth
     Tumor angiogenesis is the hallmark of tumor growth and tumor metastasis,and it has been a novel and potential target for tumor therapy and drug development.How to select angiogenesis inhibitors which are effective,safe,affordable and with clear molecular basis is a great challenge to modern drug discovery,and also it is a key problem in caner therapy.Recently,most of anti-angiogenic reagents used in clinical are antibodies or soluble peptides,which can not successfully inhibit tumor growth. Therefore,identifying novel tumor angiogenesis inhibitors,especially from traditional herb medicine,has become a promising topic and new direction.
     Making clear of underlying molecular targets of certain drugs is the primary criterion to exploit angiogenesis inhibitors.Because the signaling pathways involved in tumor angiogenesis are complex and interactional,it is difficult to identify their detailed mechanism.Based on the well-known endothelial cell signaling pathways, we selected four angiogenesis inhibitors(Morelloflavone,acetyl-11-keto-β-boswellic acid,Celastrol and l'-acetoxychavicol acetates) from natural compounds and reported their underlying mechanisms for the first time.Through working on different platforms that are in vitro,ex vivo and in vivo models,we systematically investigated the biological activities of compounds on tumor angiogenesis.In in vitro models,we evaluated the anti-proliferative effect of compounds on primarily cultured human umbilical vascular endothelial cells(HUVECs) and human prostate cancer cells(PC-3) through MTT assay,flow cytometry and apoptosis protein detection.And also,we evaluated the inhibitory effects of compounds on biological functions of endothelial cells using wound-healing migration assay,invasion assay and capillary-structure formation assay.In ex vivo model,we carried out rat aortic ring assay to investigate the inhibitory function of indicated compounds on microvessel sprouting.And,further in in vivo mouse models,we used Matrigel plug assay and xenograft human prostate tumor mice to evaluate the inhibitory actions of compounds on infiltrating blood vessel formation and tumor growth.Finally,in molecular and biochemistry study,we used western blotting,pull-down assay and in vitro kinase assay to reveal the underlying mechanism.
     Morelloflavone,a biflavonoid extracted from Garcinia dulcis.However,the function and the mechanism of this compound in cancer treatment and tumor angiogenesis have not been elucidated to date.We demonstrated that morelloflavone could inhibit the activation of both RhoA-GTPases and Racl-GTPases,but have little effect on the activation of Cdc42-GTPase.Additionally,morelloflavone inhibited the phosphorylation and activation of Raf/MEK/ERK pathway kinases without affecting VEGFR2 activity,by which morelloflavone inhibits cell proliferation,migration, invasion,and capillary-like tube formation of HUVECs in a dose-dependent manner. Morelloflavone effectively inhibited microvessel sprouting of endothelial cells in the aortic ring assay and the formation of new blood microvessels induced by VEGF in the mouse Matrigel plug assay.Furthermore,Morelloflavone(8mg/kg·d,15d,n=5) could inhibit tumor growth and tumor angiogenesis by PC-3 in xenograft mouse tumor model in vivo,without toxic effect on mice body weight.These findings are the first to reveal the novel functions of Morelloflavone in tumor angiogenesis and its molecular basis for the anticancer action.
     VEGF/VEGF receptor signaling plays critical role in angiogenesis.In this study, we also demonstrated that Acetyl-11-keto-β-boswellic acid(AKBA),an active component from an Ayurvedic medicinal plant(Boswellia serrata),could strongly inhibit tumor angiogenesis.Western blot analysis and in vitro kinase assay revealed that AKBA suppressed VEGF-induced phosphorylation of VEGF receptor 2 kinase (KDR/Flk-1) with IC50 of 1.68μmol/L.Specifically,AKBA suppressed the downstream protein kinases of VEGFR2,including Src family kinase,focal adhesion kinase,extracellular signal-related kinase,AKT,mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase(S6K).AKBA significantly inhibited blood vessel formation in the Matrigel plug assay in mice and effectively suppressed microvessel sprouting in rat aortic ring assay ex vivo.Importantly,AKBA inhibited tumor growth in the human prostate tumor xenograft mice treated daily(10 mg/kg, n=5) and the inhibitory effect of AKBA on tumor growth was well-correlated with suppression of angiogenesis.
     Understanding molecular basis and target of traditional medicine is critical for modern drug development.Although Celastrol,derived from Trypterygium wilfordii Hook F.("Thunder of God Vine") of traditional Chinese medicine,could potentiate apoptosis in many kinds of tumor,its mechanism is still unclear.In this study,when administration with Celastrol(2 mg/kg) in xenograft human prostate cancer mice (n=5),we found Celastrol effectively suppressed the volume and the weight of solid tumors.In angiogenesis study,we found Celastrol significantly inhibited VEGF-triggered inflating neovessels in the Matrigel plug assay in vivo and microvessel sprouts in a rat aortic ring assay ex vivo.Our western blotting results showed that Celastrol could consistently suppress the phosphorylation of AKT,mTOR and S6K in treated HUVECs and PC-3 cells with a dose-dependent manner.Taken together,these findings suggest that Celastrol targets AKT/mTOR/S6K pathway, leading to effective suppression of tumor angiogenesis and tumor growth.
     The complex of Src family kinase and focal adhesion kinaes and small Rho GTPase are key components to regulate cell cytoskeleton,cell migration and vascular permeability.In this study,we found small molecular compound l'-acetoxychavicol acetates(ACA),extracted from Alpinia galangal,could effectively inhibit the activation of Src and FAK in a concentration-dependent and a time-dependent in HUVECs.Additionally,the activities of small Rho GTPase,especially Cdc42-GTPase and Racl-GTPase,were suppressed by ACA.Through the above molecular mechanisms,ACA could regulate endothelial cell migration,proliferation and survival. Furthermore,microvessel sprouting of endothelial cells in the aortic ring assay and the formation of new blood microvessels induced by VEGF in the mouse Matrigel plug assay could all be suppressed by ACA's treatment,l'-acetoxychavicol acetates could also inhibit tumor growth in human prostate tumor xenograft mice treated daily (6 mg/kg,n=5) and the immunochemistry analysis reveled that the inhibitory effect on tumor growth was accompanied with suppression of angiogenesis.These findings suggest that l'-acetoxychavicol acetates inhibits tumor angiogenesis through targeting Src/focal adhesion kinaes and small Rho GTPases.
     2.Antihypertensive Effect of Total Flavones Extracted from Hippophae rhamnoides L.
     The total flavones are active ingredient of Hippophae rhamnoides L.(TFH) and have diverse pharmacological functions.However,its protection on the cardiovascular system is still limited.Seed residues of Hippophae rhamnoides L.are rubbishes of primary manufacture in the industry.In order to deeply explore the resource of Hippophae rhamnoides L.and understand the biological function of TFH on hypertension,we used two kinds of hypertensive rat model to evaluate the cardio-protection of the total flavones extracted from Seed residues of Hippophae rhamnoides L.(TFH-SR).One model is insulin resistant and mild hypertensive rat model(IRH),and the other is spontaneously hypertensive rat model(SHR).
     We successfully set up IRH rat model through high-sucrose diet feeding by observation and comparison of systolic blood presser(SBP),serum insulin,lipid metabolism,and kidney and endothelial function.Further,we treated those IRH rats with different doses of TFH-SR(50mg/kg·d,100 mg/kg·d and 150mg/kg·d) for 8 weeks.The results showed that hypertension,hyperinsulinemia,dyslipidemia,and activated angiotensinⅡprovoked by the high sucrose diet all could be ameliorated or modulated by TFH-SR,and the effective dose is 150mg/kg·d.These data suggests that the total flavones might prove useful in the treatment and/or prevention of insulin resistance in non-diabetic state with cardiovascular disease by decreasing insulin resistance and blocking angiotensinⅡpathway.
     To further examine and confirm the antihypertensive action of TFH-SR,we treated SHR with TFH-SR at a dose of 100mg/kg·d.Though detection of SBP, circulatory and local angiotensinⅡlevel,and semi-analysis of the expression level of angiotensinⅡtype 1 receptor(AT_1R) using immunochemistry,we found TFH-SR could effectively decrease SBP,the formation of angiotensinⅡand the expression of AT_1R.These results indicate that TFH-SR could decrease blood pressure and protects target organs through inhibiting angiotensin converting enzyme activity and down-regulating the expression of AT_1R in SHR.
引文
1.Carmeliet P.Angiogenesis in life,disease and medicine.Nature.2005,438:932-936.
    2.Folkman J.Tumor angiogenesis:therapeutic implications.N Engl J Med.1971,285(21):1182-1186.
    3.Compagni A,Christofori G.Recent advances in research on multistage tumorigenesis.Br J Cancer.2000,83:1-5.
    4.Ferrara N,Kerbel RS.Angiogenesis as a therapeutic target.Nature.2005,438:967-74.
    5.Quesada AR,Munoz-Chapuli R,Medina MA.Anti-angiogenic drugs:from bench to clinical trials.Med Res Rev.2006,26:483-530.
    6.Takakura N.Basic science of angiogenesis and its progress in clinical application.Rinsho Ketsueki.2008,49:1451-1459.
    7.Cao Y.Tumor angiogenesis and molecular targets for therapy.Front Biosei.2009,14:3962-3973.
    8.Bikfalvi A.Significance of angiogenesis in tumour progression and metastasis.Eur J Cancer.1995,31A(7-8):1101-1104
    9.Ribatti D.The discovery of antiangiogenic molecules:a historical review.Curr Pharm Des.2009,15(4):345-352.
    10.Bertram JS.The molecular biology of cancer.Mol Aspects Med.2000,21(6):167-223.
    11.Hanahan D,Weinberg RA.The hallmarks of cancer.Cell.2000,100:57-70.
    12.阿斯楞,仝林虎,苏秀兰.肿瘤血管生成的分子机制.内蒙古医学杂志.2006,38(3):235-238.
    13.Blagosklonny MV.Antiangiogenie therapy and tumor progression.Cancer Cell.2004,5:13-17
    14.Madhusudan S,Harris AL.Drug inhibition of angiogenesis.Curr Opin Pharmacol.2002,2(4):403-414.
    15.Ferrara N,Davis-Smyth T.The biology of vascular endothelial growth factor.Endocr Rev.1997,18:4-25.
    16.Otrock ZK,Makarem JA,Shamseddine AI.Vascular endothelial growth factor family of ligands and receptors:review.Blood Cells Mol Dis.2007,38(3):258-268.
    17.Zhong H,Bowen JP.Molecular design and clinical development of VEGFR kinase inhibitors.Curr Top Med Chem.2007,7:1379-1393
    18.Kowanetz M,Ferrara N.Vascular endothelial growth factor signaling pathways:therapeutic perspective.Clin Cancer Res.2006,12(17):5018-5022.
    19.Hu B,Cheng SY.Angiopoietin-2:development of inhibitors for cancer therapy.Curr Oncol Rep.2009,11(2):111-116.
    20.Kobayashi H,Lin PC.Angiopoietin/Tie 2 signaling,tumor angiogenesis and inflammatory diseases.Front Biosci.2005,10:666-674
    21.Blavier L,Lazaryev A,Dorey F,et al.Matrix metalloproteinases play an active role in Wntl-induced mammary tumorigenesis.Cancer Res.2006,66(5):2691-2699.
    22.Wojtowicz-Praqa SM,Dickson RB,Hawkins MJ.Matrix metalloproteinase inhibitors.Invest New Drugs.1997,15(1):61-75.
    23.Vihinen P,K(a|¨)h(a|¨)ri VM.Matrix metalloproteinases in cancer:prognostic markers and therapeutic targets.Int J Cancer.2002,99(2):157-166.
    24.Vihinen P,Ala-aho R,K(a|¨)h(a|¨)ri VM.Matrix metalloproteinases as therapeutic targets in cancer.Curr Cancer Drug Targets.2005,5(3):203-220.
    25.Malemud CJ.Matrix metalloproteinases(MMPs) in health and disease:an overview.Front Biosci.2006,11:1696-1701
    26.Engebraaten O,Trikha M,Juell S,et al.Inhibition of in vive tumout growth by the blocking of host alpha(v)beta3 and alphaⅡ(b) beta3 integrins.Anticancer Res.2009,29(1):131-137.
    27.黄云鹏,林建华,林志雄.整合素αvβ3在肿瘤血管生成中的作用.中国肿瘤.2007,16(1):35-38
    28.Eliceiri BP,Cheresh DA.Role of alpha v integrins during angiogenesis.Cancer J.2000,6Suppl 3:S245-249
    29.Ahmed Z,Bicknell R.Angiogenic signaling pathways.Methods Mol Biol.2009,467:3-24
    30.Albini A,Noonan DM,Ferrari N.Molecular pathways for cancer angioprevention.Clin Cancer Res.2007,13(15):4320-4325.
    31.Ferrara N.Vascular endothelial growth factor and the regulation of angiogenesis.Recent Prog Horm Res.2000,55:15-35.
    32.陈珊,金伟,闵平,等.血管内皮生长因子家族及其受体与肿瘤血管生成研究进展.生命科学.2004,16(1):20-23.
    33.Kowanetz M,Ferrara N.Vascular endothelial growth factor signaling pathways:therapeutic perspective.Clin Cancer Res.2006,12:5018-5022.
    34.Van Cruijsen H,van der Veldt A,Hoekman K.Tyrosine kinase inh/bitors of VEGF receptors:clinical issues and remaining questions.Front Biosci.2009,14:2248-2268.
    35.Jain RK,Duda DG,Clark JW,et al.Lessons from phase Ⅲ clinical trials on anti-VEGF therapy for cancer.Nat Clin Pratt Oncol.2006,3(1):24-40.
    36.Castellino RC,Muh CR,Durden DL.PI-3 kinase-PTEN signaling node:an intercept point for the control of angiogenesis.Curr Pharm Des.2009,15(4):380-388.
    37.Krishna M,Narang H.The complexity of mitogen-activated protein kinases(MAPKs) made simple.Cell Mol Life Sci.2008,65(22):3525-3544.
    38. Muslin AJ. MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond). 2008,115(7):203-218.
    
    39. Grant S. Cotargeting survival signaling pathways in cancer. J Clin Invest. 2008, 118(9):3003-3006
    
    40. Lee KW, Kang NJ, Heo YS, et al. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res. 2008,68(3):946-955.
    
    41. Treiber G mTOR inhibitors for hepatocellular cancer: a forward-moving target. Expert Rev Anticancer Ther. 2009,9(2):247-261.
    
    42. Kanda S, Miyata Y, Kanetake H, et al. Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (Review). Int J Mol Med. 2007,20(1): 113-121.
    
    43. Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma.Drugs. 2009,69(2):223-240.
    
    44. Laber DA, Mushtaq M. Compassionate use of sorafenib in patients with advanced renal cell cancer. Clin Genitourin Cancer. 2009,7(1):34-38.
    
    45. Yasuda M, Ohbayashi M, Ohhinata K, et al. The involvement of integrin alphavbeta3 in polymorphonuclear leukocyte-induced angiogenesis in bovine aortic endothelial cells. Life Sci.2004,75(4):421-434.
    
    46. Eliceiri BP, Cheresh DA. Role of alpha v integrins during angiogenesis. Cancer J. 2000, 6 Suppl 3:S245-249.
    
    47. Ramakrishnan V, Bhaskar V, Law DA, et al. Preclinical evaluation of an anti-alpha5betal integrin antibody as a novel anti-angiogenic agent. J Exp Ther Oncol. 2006,5(4):273-286.
    
    48. Alghisi GC, Ponsonnet L, R(?)egg C. The integrin antagonist cilengitide activates alphaVbeta3, disrupts VE-cadherin localization at cell junctions and enhances permeability in endothelial cells.PLoS ONE. 2009,4(2): e4449.
    
    49. Neyns B, Hoorens A, Stupp R. Valproic acid related idiosyncratic drug induced hepatotoxicity in a glioblastoma patient treated with temozolomide . Acta Neurol Belg. 2008,108(4):131-134.
    
    50. Chamberlain MC. Cilengitide: does it really represent a new targeted therapy for recurrent glioblastoma? J Clin Oncol. 2009,27(11):1922
    
    51. Shutter JR, Scully S, Fan W, et al. D114, a novel Notch ligand expressed in arterial endothelium.Genes Dev. 2000,14:1313-1318.
    52.Rao PK,Dorsch M,Chickering T,et al.Isolation and characterization of the notch ligand delta4.Exp Cell Res.2000,260:379-386.
    53.Li JL,Harris AL.Crosstalk of VEGF and Notch pathways in tumout angiogenesis:therapeutic implications.Front Biosci.2009,14:3094-3110.
    54.Patel NS,Li JL,Generali D,et al.Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function.Cancer Res.2005,65(19):8690-8697.
    55.Williams CK,Li JL,Murga M,et al.Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function.Blood.2006,107(3):931-939.
    56.Hainaud P,Contrer(?)s JO,Villemain A,et al.The role of the vascular endothelial growth factor-Delta-like 4 ligand/Notch4-ephrin B2 cascade in tumor vessel remodeling and endothelial cell functions.Cancer Res.2006,66(17):8501-8510.
    57.Tsai JH,Lee WM.Tie2 in tumor endothelial signaling and survival:implications for antiangiogenic therapy.Mol Cancer Res.2009,7(3):300-310.
    58.Maisonpierre PC,Suri C,Jones PF,et al.Angiopoietin-2,a natural antagonist for Tie2 that disrupts in vivo angiogenesis.Science.1997,277(5322):55-60.
    59.Holash J,Maisonpierre PC,Compton D,et al.Vessel cooption,regression,and growth in tumors mediated by angiopoietins and VEGE Science.1999,284(5422):1994-1998.
    60.颜芳,欧希龙.血管生成素-1和2在肿瘤血管生成中的作用.现代医学.2007,35(1):75-78.
    61.高勇,王杰军,许青,等.人参皂甙Rg3抑制肿瘤血管新生血管形成的研究.第二军医大学学报.2001,22(1):40-42.
    62.徐敏,卜平,李瑶瑶.半枝莲黄酮类化合物对体外肿瘤血管生成的影响.世界华人消化杂志.2007,15(20):2215-219.
    63.柏长青,宋颖芳,王德堂,等.黄芪、党参提取物增强紫杉醇抑制肿瘤血管生成和转移的试验研究.细胞与分子免疫学杂志.2008,24(4):375-377.
    64.黄煜伦,周幽心,周岱,等.雷公藤红素抑制血管生成的试验研究.中华肿瘤杂志.2003,25(5):429-432.
    65.叶菁,陈培丰.中药及其提取物抑制肿瘤血管生成的研究进展.浙江中医药大学学报.2007,31(4):530-532.
    66.潘子民,叶大风,谢幸,等.人参皂苷Rg3对荷卵巢癌的严重联合免疫缺陷鼠的抗肿瘤 血管生成作用的研究.中华妇产科杂志.2002,37(4):227.
    67.高承贤,丁志山,尹丽慧,等.参麦注射液对移植性肿瘤血管生成的影响.中成药.2003,25(9):728-731.
    68.冯敢生.中药白芨提取物抑制肿瘤血管生成机制的试验研究.中华医学杂志.2003,83(5):412-416.
    69.丁志山.姜黄素具有抑制血管生成与诱导肿瘤细胞凋亡双重作用.中国药理学通报.2003,19(2):171.
    70.李大鹏.康莱特注射液抗癌作用机理研究进展.中药新药与临床药理.2001,12(2):12.
    71.张月英,张维东,贾青,等.蝎毒多肽提取物抑制DU2145细胞COX22和MMP29表达的研究.现代生物医学进展.2006,6(5):8-10.
    72.罗高琴,曾飒,刘德育.蛇葡萄素的血管生成抑制作用.中药材.2006,29(2):146-150.
    1.Compagni A,Christofori G.Recent advances in research on multistage tumorigenesis.Br J Cancer.2000,83:1-5.
    2.Carmeliet P.Angiogenesis in life,disease and medicine.Nature.2005,438:932-936.
    3.Hanahan D,Weinberg RA.The hallmarks of cancer.Cell.2000,100:57-70.
    4.阿斯楞,仝林虎,苏秀兰.肿瘤血管生成的分子机制.内蒙古医学杂志.2006,38(3):235-238.
    5.李慧瑾,夏海滨.肿瘤血管生成调节与肿瘤治疗.现代肿瘤医学.2008,16(7):1245-1248.
    6.Ferrara N,Kerbel RS.Angiogenesis as a therapeutic target.Nature.2005,438:967-974.
    7.Quesada AR,Munoz-Chapuli R,Medina MA.Anti-angiogenie drugs:from bench to clinical trials.Med Res Rev.2006,26:483-530.
    8.Takakura N.Basic science of angiogenesis and its progress in clinical application.Rinsho Ketsueki.2008,49:1451-1459.
    9.Folkman J.Tumor angiogenesis:therapeutic implications.N Engl J Med.1971,285:1182-1186
    10.Kerbel RS.Tumor angiogenesis.N Engl J Med.2008,358:2039-2049.
    11.Hicklin DJ,Ellis LM.Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.J Clin Oncol.2005,23(5):1011-1027.
    12.Ho QT,Kuo CJ.Vascular endothelial growth factor:biology and therapeutic applications.Int J Biochem Cell Biol.2007,39(7-8):1349-1357.
    13.Kerbel RS.Tumor angiogenesis:past,present and the near future.Carcinogenesis.2000,21(3):505-515.
    14.Manley PW,Martiny-Baron G,Schlaeppi JM,et al.Therapies directed at vascular endothelial growth factor.Expert Opin Investig Drugs.2002,11(12):1715-1736.
    15.Pytel D,Sliwinski T,Poplawski T,et al.Tyrosine kinase blockers:new hope for successful cancer therapy.Antieancer Agents Med Chem.2009,9(1):66-76.
    16.Kerbel RS.Tumor angiogenesis.N Engl J Med.2008,358(19):2039-2049.
    17.陈珊,金伟,闵平,等.血管内皮生长因子家族及其受体与肿瘤血管生成研究进展.生命科学.2004,16(1):19-23.
    18.Kowanetz M,Ferrara N.Vascular endothelial growth factor signaling pathways:therapeutic perspective.Clin Cancer Res.2006,12:5018-5022.
    19.Schlessinger J.New roles for Src kinases in control of cell survival and angiogenesis.Cell.2000,100:293-296.
    20.Vivaneo I,Sawyers CL.The phosphatidylinositol 3-Kinase AKT pathway in human cancer.Nat Rev Cancer.2002,2(7):489-501.
    21.Liu LZ,Zheng JZ,Wang XR,et al.Endothelial p70 S6 kinase 1 in regulating tumor angiogenesis.Cancer Res.2008,68:8183-8188.
    22.Gollob JA,Wilhelm S,Carter C,et al.Role of Raf kinase in cancer:therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway.Semin Oncol.2006,33:392-406.
    23.Wong C,Jin ZG.Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor.J Biol Chem.2005,280:33262-33269.
    24.张前,赵言群,解华,等.中药对肿瘤血管生成的影响.中华中医药杂志.2006,21(4):242-244.
    25.宋长城,吕祥,李柏.抗肿瘤血管生成中药的研究进展.中国中医药信息杂志.2007,14(6):97-99.
    1.Mojzis J,Varinska L,Mojzisova G,et al.Antiangiogenic effects of flavonoids and chalcones.Pharmacol Res.2008,57:259-266.
    2.Hutadilok-Towatana N,Kongkachuay S,Mahabusarakam W.Inhibition of human lipoprotein oxidation by morelloflavone and camboginol from Garcinia dulcis.Nat Prod Res.2007,21(7):655-662.
    3.Sanz MJ,Ferrandiz ML,Cejudo M,et al.Influence of a series of natural flavonoids on free radical generating systems and oxidative stress.Xenobiotica.1994,24(7):689-699.
    4.Lin YM,Anderson H,Flavin MT,et al.In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora.J Nat Prod.1997,60:884-888.
    5.Gil B,Sanz MJ,Terencio MC,et al.Morelloflavone,a novel biflavonoid inhibitor of human secretory phospholipase A2 with anti-inflammatory activity.Biochem Pharmacol.1997,53:733-740.
    6.Pinkaew D,Cho SG,Hui DY,et al.Morelloflavone blocks injury-induced neointimal formation by inhibiting vascular smooth muscle cell migration.Biochim Biophys Aeta.2009,1790(1):31-39.
    7.Krishna M,Narang H.The complexity of mitogen-activated protein kinases(MAPKs) made simple.Cell Mol Life Sei.2008,65(22):3525-3544.
    8.Muslin AJ.MAPK signalling in cardiovascular health and disease:molecular mechanisms and therapeutic targets.Clin Sci(Lond).2008,115(7):203-218.
    9.Grant S.Co-targeting survival signaling pathways in cancer.J Clin Invest.2008,118(9):3003-3006.
    10.Carracedo A,Ma L,Teruya-Feldstein J,et al.Inhibition of mTORC1 leads to MAPK pathway activation through a PI3Kdependent feedback loop in human cancer.J Clin.Invest.2008,118:3065-3074.
    11.Lee KW,Kang NJ,Heo YS,et al.Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin,a major flavonol in red wine.Cancer Res.2008,68(3):946-955.
    12.Manneville SE,Hall A.Rho GTPases in cell biology.Nature.2002,420(6916):629-635Sahai E,Marshall CJ.Rho-GTPases and cancer.Nat Rev Cancer.2002,2:133-142.
    13.韦娜,糜满天.Rho GTPase对细胞骨架及信号通路的多重影响.国外医学(分子生物学分册).2002,24(4):35-38
    14.Ridley AJ.Rho family proteins:coordinating cell responses.Trends Cell Biol 2001,11:471-7
    15.Olson MF,Ashworth A,Hall A.An essential role for Rho,Rac and Cdc42 GTPases in cell cycle progression through G1.Science.1995,269:1270-1272.
    16.Welsh CF.Rho GTPases as key transducers of proliferative signals in G1 cell cycle regulation.Breast Cancer Res Treat.2004,84:33-42.
    17.Burridge K,Wennerberg K.Rho and Rac take center stage.Cell.2004,116:167-179Merajver SD,Usimani SZ.Multifaceted role of Rho protein in angiogenesis.J Mammary Gland Biol Neoplasia.2005,10:291-298.
    18.Masson V,Devy L,Grignet-Debrus C,et al.Mouse aortic ring assay:a new approach of the molecular genetics of angiogenesis.Biol Proced Online.2002,4:24-31.
    19.Yi T,Cho SG,Yi Z,et al.Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways.Mol Cancer Ther.2008,7:1789-1796.
    20.Guo X,Stafford LJ,Bryan B,et al.A Rac/Cdc42-specific exchange factor,GEFT,induces cell proliferation,transformation,and migration.J Biol Chem.2003,278:13207-13215.
    21. Yi T, Yi Z, Cho SG, et al. Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res. 2008,68(6): 1843-1850.
    
    22. Mitchell DC, Abdelrahim M, Weng J, et al. Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2a and specificity protein-1. J Biol Chem. 2006,281:51-58.
    
    23. Jamora C, Fuchs E. Intercellular adhesion, signaling and the cytoskeleton. Nat Cell Biol. 2002,4:E101-108.
    
    24. Sequeira L, Dubyk CW, Riesenberger TA, et al. Rho GTPases in PC-3 prostate cancer cell morphology, invasion and tumor cell diapedesis. Clin Exp Metastasis. 2008,25(5):569-579
    
    25. Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett. 2008, 582: 2093-101
    
    26. Connolly JO, Simpson N, Hewlett L, et al. Rac regulates endothelial morphogenesis and capillary assembly. Mol Biol Cell. 2002,13:2474-2485.
    
    27. Giehl K. Oncogenic Ras in tumor progression and metastasis. Biol Chem 2005,386: 193-205
    
    28. Murphy DA, Makonnen S, Lassoued W, et al. Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43-9006). Am J Pathol. 2006,169: 1875-1885.
    
    29. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007,129:1261-1274.
    
    30. Huang D, Ding Y, Luo WM, et al. Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res. 2008,68: 81-88.
    
    31. Schreck R, Rapp UR. Raf kinases: oncogenesis and drug discovery. Int J Caner. 2006, 119:2261-2271.
    1.南京中医药大学.中药大辞典.上海科学技术出版社.1977,1379-1380.
    2.Zhou JY,Cui R.Chemical components of Boswellia carterii.Yao Xue Xue Bao.2002,37(8):633-635.
    3.Shah SA,Rathod IS,Suhagia BN,et al.A simple high-performance liquid chromatographic method for the estimation of boswellic acids from the market formulations containing boswellia serrata extract. J Chromatogr Sci. 2008,46(8):735-738.
    
    4. Syrovets T, Buchele B, Krauss C, et al. Acetyl-boswellic acids inhibit lipopolysaccharide-mediated TNF-alpha induction in monocytes by a direct interaction with IkappaB kinases. J Immunol. 2005,174:498-506.
    
    5. Takada Y, Ichikawa H, Badmaev V, et al. Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J Immunol. 2006,176:3127-3140.
    
    6. Safayhi H, Mack T, Sabieraj J, et al. Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther. 1992 ,261:1143-1146.
    
    7. Safayhi H, Sailer ER, Ammon HP. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol Pharmacol. 1995,47:1212-1216.
    
    8. Bishnoi M, Patil CS, Kumar A, et al. Potentiation of antinociceptive effect of NSAIDs by a specific lipooxygenase inhibitor, acetyl 11-keto-beta boswellic acid. Indian J Exp Biol. 2006,44:128-132.
    
    9. Poeckel D, Werz O. Boswellic acids: biological actions and molecular targets. Curr Med Chem.2006,13:3359-69.
    
    10. Safayhi H, Rall B, Sailer ER, et al. Inhibition by boswellic acids of human leukocyte elastase.J Pharmacol Exp Ther. 1997,281:460-463.
    
    11. Liu JJ, Nilsson A, Oredsson S, et al. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells.Carcinogenesis. 2002,23:2087-2093.
    
    12. Lu M, Xia L, Hua H, et al. Acetyl-keto-beta-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res. 2008, 68:1180-1186.
    
    13. Zhao W, Entschladen F, Liu H, et al. Boswellic acid acetate induces differentiation and apoptosis in highly metastatic melanoma and fibrosarcoma cells. Cancer Detect Prev. 2003,27:67-75.
    
    14. Liu JJ, Nilsson A, Oredsson S, et al. Keto- and acetyl-keto-boswellic acids inhibit proliferation and induce apoptosis in Hep G2 cells via a caspase-8 dependent pathway. Int J Mol Med. 2002,10:501-505.
    
    15. Glaser T, Winter S, Groscurth P, et al. Boswellic acids and malignant glioma: induction of apoptosis but no modulation of drug sensitivity. Br J Cancer. 1999, 80:756-765.
    16.Hostanska K,Daum G,Saller R.Cytostatic and apoptosis-inducing activity of boswellic acids toward malignant cell lines in vitro.Anticancer Res.2002,22:2853-2862.
    17.陈珊,金伟,阂平,等.血管内皮生长因子家族及其受体与肿瘤血管生成研究进展.生命科学.2004,16(1):19-23.
    18.Kowanetz M,Ferrara N.Vascular endothelial growth factor signaling pathways:therapeutic perspective.Clin Cancer Res.2006,12:5018-5022.
    19.Schlessinger J.New roles for Src kinases in control of cell survival and angiogenesis.Cell.2000,100:293-296.
    20.Vivaneo I,Sawyers CL.The phosphatidylinositol 3-Kinase AKT pathway in human cancer.Nat Rev Cancer.2002,2(7):489-501.
    21.Liu LZ,Zheng JZ,Wang XR,et al.Endothelial p70 S6 kinase 1 in regulating tumor angiogenesis.Cancer Res.2008,68:8183-8188.
    22.Gollob JA,Wilhelm S,Carter C,et al.Role of Raf kinase in cancer:therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway.Semin Oncol.2006,33:392-406
    23.Wong C,Jin ZG.Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor.J Biol Chem.2005,280:33262-33269.
    24.Kowanetz M,Ferrara N.Vascular endothelial growth factor signaling pathways:therapeutic perspective.Clin Cancer Res.2006,12:5018-5022.
    25.Ferrara N,Kerbel RS.Angiogenesis as a therapeutic target.Nature.2005,438:967-974.
    26.Pourgholami MH,Morris DL.Inhibitors of vascular endothelial growth factor in cancer.Cardiovase Hematol Agents Med Chem.2008,6:343-347.
    27.Shibuya M.Differential roles of vascular endothelial growth factor receptor-1 and receptor-2in angiogenesis.J Biochem Mol Biol.2006,39:469-478.
    28.Singh SK,Bhusari S,Singh R,et al.Effect ofacetyl 11-keto beta-boswellic acid on metastatic growth factor responsible for angiogenesis.Vascul Pharmacol.2007,46:333-337.
    29.Roodhart JM,Langenberg MH,Witteveen E,Voest EE.The molecular basis of class side effects due to treatment with inhibitors of the VEGF/VEGFR pathway.Curr Clin Pharmacol.2008,3:132-143.
    30.Kanda S,Miyata Y,Kanetake H,et al.Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy.Int J Mol Med.2007,20:113-121.
    31. Chou MT, Wang J, Fujita DJ. Src kinase becomes preferentially associated with the VEGFR,KDR/Flk-1, following VEGF stimulation of vascular endothelial cells. BMC Biochem. 2002,3:32.
    
    32. Ali N, Yoshizumi M, Fujita Y, et al. A novel Src kinase inhibitor, M475271, inhibits VEGF-induced human umbilical vein endothelial cell proliferation and migration. J Pharmacol Sci.2005,98:130-141.
    
    33. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells.Curr Opin Cell Biol. 2006,18:516-523.
    
    34. Matsuo M, Yamada S, Koizumi K, et al. Tumour-derived fibroblast growth factor-2 exerts lymphangiogenic effects through Akt/mTOR/p70S6kinase pathway in rat lymphatic endothelial cells. Eur J Cancer. 2007,43:1748-1754.
    
    35. Li W, Tan D, Zhang Z, et al. Activation of Akt-mTOR-p70S6K pathway in angiogenesis in hepatocellular carcinoma. Oncol Rep. 2008,20:713-719.
    
    36. Verheul HM, Salumbides B, Van Erp K, et al. Combination strategy targeting the hypoxia inducible factor-1 alpha with mammalian target of rapamycin and histone deacetylase inhibitors.Clin Cancer Res. 2008,14:3589-3597.
    
    37. Garcia-Maceira P, Mateo J. Silibinin inhibits hypoxia-inducible factor-1 alpha and mTOR/p70S6K/4E-BPl signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy. Oncogene. 2009,28:313-324.
    
    38. Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008,8:851-864.
    1.王曙东,费建红.雷公藤抗肿瘤作用的研究概况.中国药业.2005,14(6):91.
    2.Li H,Zhang YY,Huang XY,et al.Beneficial effect of triptefine on systemic lupus erythematosus induced by active chromatin in BALB/c mice.Eur J Pharmacol.2005,512(2-3):231-237.
    3.Kiaei M,Kipiani K,Petfi S,et al.Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis.Neurodegener Dis.2005,2(5):246-254.
    4 Allison AC,Cacabelos R,Lombardi VR,et al.Celastrol,a potent antioxidant and anti-inflammatory drug,as a possible treatment for Alzheimer's disease.Prog Neuropsychopharmacol Biol Psychiatry.2001,25(7):1341-1357.
    5.Tao X,Cush JJ,Garret M,et al.A phase I study of ethyl acetate extract of the Chinese antirheumatic herb Tripterygium wilfordii hook F in rheumatoid arthritis.J Rheumatol.2000,28(10):2160-2167.
    6.Li H,Zhang YY,Tan HW,et al.Therapeutic effect of tripterine on adjuvant arthritis in rats.J Ethnopharmacol.2008,118(3):479-484.
    7.周幽心,姜华,陈学彬,等.雷公藤红素对荷SHG44胶质瘤裸鼠的抑瘤试验.中国神经肿瘤杂志.2005,3(4):262-266.
    8.陈国柱,徐元基,杜芝燕,等.雷公藤红素对非小细胞肺癌细胞株H1299增殖与凋亡的影响.生物技术通讯.2008,19(6):826-829.
    9.罗伟,陈卫昌.雷公藤红素联合5-氟尿嘧啶在人结肠癌细胞中的相互作用.中国现代医药杂志.2008,10(12):4-7.
    10.Ngassapa O,Soejarto DD,Pezzuto JM,Farnsworth NR.Quinone-methide triterpenes and salaspermic acid from Kokoona ochracea.J Nat Prod.1994,57(1):1-8.
    11.闵红波,黄勤,郭志勇,等.雷公藤红素诱导视网膜母细胞瘤Y79细胞凋亡及对凋亡核因子-κB的影响.中国中医眼科杂志.2004,14(3):146-148.
    12.Yang H,Chen D,Cui QC,et al.Celastrol,a triterpene extracted from the Chinese "Thunder of God Vine," is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice.Cancer Res.2006,66(9):4758-4765.
    13.Sethi G,Ahn KS,Pandey MK,et al.Celastrol,a novel triterpene,potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation.Blood.2007,109(7):2727-2735.
    14.Nagase M,Oto J,Sugiyama S,et al.Apoptosis induction in HL-60 cells and inhibition of topoisomerase Ⅱ by triterpene Celastrol.Biosci Biotechnol Biochem.2003,67(9):1883-1887.
    15.Zhang T,Hamza A,Cao X,et al.A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells.Mol Cancer Ther.2008,7(1):162-170.
    16.Trott A,West JD,Klai(?) L,et al.Activation of heat shock and antioxidant responses by the natural product celastrol:transcriptional signatures of a thiol-targeted molecule.Mol Biol Cell.2008,19(3):1104-1112.
    17.Hieronymus H,Lamb J,Ross KN,et al.Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators.Cancer Cell.2006,10(4):321-330.
    18.Huang Y,Zhou Y,Fan Y,et al.Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression.Cancer Lett.2008,264(1):101-106.
    19.周幽心,孙成法,许期年,等.雷公藤红素抑制血管内皮细胞株增殖的体外研究.实用癌症杂志.2004,19(6):564-566.
    20.杨杰,彭辉灿,陈倩,等.雷公藤红素对大鼠视网膜血管内皮细胞增生和凋亡的影响.眼科新进展.2000,29(2):98-101.
    21.黄煜伦,周幽心,周岱,等.雷公藤红素抑制血管生成的试验研究.中国肿瘤杂志.2003,25(5):429-432.
    22.Baldo P,Cecco S,Giacomin E,et al.mTOR pathway and mTOR inhibitors as agents for cancer therapy.Curr Cancer Drug Targets.2008,8(8):647-665.
    23.Strimpakos AS,Karapanagiotou EM,Saif WM,et al.The role of mTOR in the management of solid tumors:An overview.Cancer Treat Rev.2008,13.
    24.Liu LZ,Zheng JZ,Wang XR,et al.Endothelial p70 S6 kinase 1 in regulating tumor angiogenesis.Cancer Res.2008,68(19):8183-8188.
    25.Lee DF,Kuo HP,Chen CT,et al.IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway.Cell.2007,130(3):440-455
    26.Campone M,Levy V,Bourbouloux E,et al.Safety and pharmaeokineties of paclitaxel and the oral mTOR inhibitor everolimus in advanced solid tumours.Br J Cancer.2009,6.
    27.Wolpin BM,Hezel AF,Abrams T,et al.Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer.J Clin Oncol.2009,27(2):193-198.
    28.Motzer RJ,Escudier B,Oudard S,et al.Efficacy of everolimus in advanced renal cell carcinoma:a double-blind,randomised,placebo-controlled phase Ⅲ trial.Lancet.2008,372(9637):449-456.
    29. Verheul HM, Salumbides B, Van Erp K, et al. Combination strategy targeting the hypoxia inducible factor-1 alpha with mammalian target of rapamycin and histone deacetylase inhibitors.Clin Cancer Res. 2008,14:3589-3597.
    
    30. Garcia-Maceira P, Mateo J. Silibinin inhibits hypoxia-inducible factor-lalpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy. Oncogene. 2009,28:313-324.
    
    31. Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008,8:851-864.
    
    32. Kitagawa Y, Dai J, Zhang J, et al. Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res. 2005,65:10921-10929.
    
    33. Anagnostopoulos K, Tentes I, Kortsaris AH. Cell signaling in cancer. J BUON. 2008,13(1):17-22.
    
    34. Guo C, Gasparian AV, Zhuang Z, et al. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-kappaB and p53 pathways. Oncogene. 2009,28(8):1151-1161.
    1.卓心明,李博安.天然化合物ACA的生物活性研究进展.国外医学药学分册.2007,34(3):181-186。
    2.Ye Y,Li B.1'S-1'-acetoxychavicol acetate isolated from Alpinia galanga inhibits human immunodeficiency virus type 1 replication by blocking Rev transport.J Gen Virol.2006,87:2047-2053.
    3.Ito K,Nakazato T,Murakami A,et al.Induction of apoptosis in human myeloid leukemic cells by 1'-acetoxychavicol acetate through a mitochondrial-and Fas-mediated dual mechanism.Clin Cancer Res.2004,10(6):2120-2130.
    4.Campbell CT,Prince M,Landry GM,et al.Pro-apoptotic effects of 1'-acetoxychavicol acetate in human breast carcinoma cells.Toxicol Lett.2007,173(3):151-160.
    5.Ito K,Nakazato T,Murakami A,et al.1'-Acetoxychavicol acetate induces apoptosis of myeloma cells via induction of TRAIL.Biochem Biophys Res Commun.2005,338(4):1702-1710.
    6.Ito K,Nakazato T,Xian MJ,et al.1'-acetoxychavicol acetate is a novel nuclear factor kappaB inhibitor with significant activity against multiple myeloma in vitro and in vivo.Cancer Res.2005,15,65(10):4417-4424.
    7.Ohnishi H,Asamoto M,Tujimura K,et al.Inhibition of cell proliferation by nobiletin,a dietary phytochemical,associated with apoptosis and characteristic gene expression,but lack of effect on early rat hepatocarcinogenesis in vivo.Cancer Sci.2004,95(12):936-942.
    8.Zheng Q,Hirose Y,Yoshimi N,et al.Further investigation of the modifying effect of various chemopreventive agents on apoptosis and cell proliferation in human colon cancer cells.J Cancer Res Clin Oncol.2002,128(10):539-546.
    9.Ichikawa H,Murakami A,Aggarwal BB.1'-Acetoxychavicol acetate inhibits RANKL-induced osteoclastic differentiation of RAW 264.7 monocytic cells by suppressing nuclear factor-kappaB activation. Mol Cancer Res. 2006,4(4):275-281.
    
    10. Miyauchi M, Nishikawa A, Furukawa F, et al. Inhibitory effects of 1'-acetoxychavicol acetate on N-Nitrosobis (2-oxopropyl)-amine-induced initiation of cholangiocarcinogenesis in Syrian hamsters. Jpn J Cancer Res. 2000,91(5):477-481.
    
    11. Murakami A, Matsumoto K, Koshimizu K, et al. Effects of selected food factors with chemopreventive properties on combined lipopolysaccharide- and interferon-gamma-induced IkappaB degradation in RAW264.7 macrophages. Cancer Lett. 2003,195(1):17-25.
    
    12. Nakamura Y, Murakami A, Ohto Y, et al. Suppression of tumor promoter-induced oxidative stress and inflammatory responses in mouse skin by a superoxide generation inhibitor l'-acetoxychavicol acetate.Cancer Res. 1998,58(21):4832-4839.
    
    13. Tanaka T, Makita H, Kawamori T, et al. A xanthine oxidase inhibitor l'-acetoxychavicol acetate inhibits azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis. 1997,18(5):1113-1118.
    
    
    14 Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the h-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006, 8:1223-1234.
    
    15. Schlessinger J. New roles for Src kinases in control of cell survival and angiogenesis. Cell.2000,100:293-296.
    
    16. Wallez Y, Cand F, Cruzalegui F, et al. Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene. 2007,26:1067-1077.
    
    17. Abu-Ghazaleh R, Kabir J, Jia H, et al. Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochem J. 2001,360:255-264.
    
    18. Angelucci A, Bologna M. Targeting vascular cell migration as a strategy for blocking angiogenesis: the central role of focal adhesion protein tyrosine kinase family. Curr Pharm Des.2007, 13(21):2129-2145.
    
    19. Avraham HK, Lee TH, Koh Y, et al.Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. J Biol Chem. 2003,278(38):36661-36668.
    
    20. Kondo A, Ohigashi H, Murakami A, et al. A potent inhibitor of tumor promoter-induced Epstein-Barr virus activation,1'-acetoxychavicol acetate from Languas galangal, a traditional Thai condiment.Biosci Biotech Biochem.1993,57:1344-1345.
    21.McLean GM,Carragher NO,Avizienyte E,et al.The role of focal-adhesion kinase in cancer-a new therapeutic opportunity.Nat Rev Cancer.2005,5(7):505-515.
    22.Hauck CR,Hsia DA,Schlaepfer DD.The focal adhesion kinase--a regulator of cell migration and invasion.IUBMB Life.2002,53(2):115-119.
    23.McLean GW,Avizienyte E,Frame MC.Focal adhesion kinase as a potential target in oncology.Expert Opin Pharmacother.2003,4(2):227-234.
    24.Manneville SE,Hall A.Rho GTPases in cell biology.Nature.2002,420(6916):629-635.
    25.韦娜,糜满天.Rho GTPase对细胞骨架及信号通路的多重影响.国外医学(分子生物学分册).2002,24(4):383-385.
    26.Burridge K,Wennerberg K.Rho and Rac take center stage.Cell.2004,116:167-179.
    27.Downey C,Craig DH,Basson MD.Pressure activates colon cancer cell adhesion via paxillin phosphorylation,Crk,Cas,and Rac1.Cell Mol Life Sci.2008,65(9):1446-1457.
    28.Merajver SD,Usimani SZ.Multifaceted role of Rho protein in angiogenesis.J Mammary Gland Biol Neoplasia.2005,10:291-298
    1.廉永善,陈学林.沙棘属植物天然产物化学组分的时空分布.西北师范大学学报(自然科学版).2000,36(1):113-128.
    2.张鞍灵,高锦明.中国沙棘果实化学成分初步研究.陕西林业科技.1999,2:14-15.
    3.董文彦,张琦,史晓伟,等.沙棘-山楂汁对小鼠血脂的影响.沙棘.1995,8(3):36-39.
    4.兰弘,杨温贞,胡萍,等.沙棘汁对大鼠胚胎致畸形和小鼠生殖细胞的致突变作用.营养学报.1990,12(3):253-255.
    5.郁利平,隋志仁,范洪学.沙棘汁对细胞免疫功能及抑瘤作用的影响.营养学报.1993,15(3):280-283.
    6.Clair E,Yang B,Raija T,et al.Effects of an antioxidant-rich juice(sea buckthom) on risk factors for coronary heart disease in humans.Journal of Nutritional Biochemistry.2002,13: 346-354.
    7.姜彦德,周永超,毕慈芬,等.沙棘油治疗高血脂症的临床研究.沙棘.1993,6(3):23-24.
    8.李玉芬,徐铭鱼.沙棘油的抗菌试验研究简报.沙棘.1993,6(2):28-29.
    9.车锡平,霍海如,封卫毅,等.沙棘油局部用药对小白鼠等的抗炎作用和毒性试验.沙棘.1995,8(3):40-44.
    10.许青媛,陈春梅.沙棘油对试验性血栓形成及凝血系统的影响.天然产物研究与开发.1991,3(3):70-72.
    11.赵晓梅,李增希.沙棘与沙棘总黄酮抗急性心肌缺血和心律失常作用的比较.内蒙古医学杂志.1997,29(3):138-140.
    12.王秉文,李克喜,齐永红.沙棘总黄酮对离体心及离体蟾蜍心脏的作用.沙棘.1994,7(2):42-44.
    13.钟飞,蒋晕,吴芬芬,等.沙棘总黄酮对小鼠细胞免疫功能的影响.中国药理学通报.1989,5(5):307-310.
    14.王军宪,王启祥,李星海,等.沙棘叶黄酮甙元类成分研究初报.沙棘.1997,10(3):33-34.
    15.阮栋梁,王晖,李和.沙棘叶子中黄酮的分离与鉴定.沙棘.2002,15(4):32-34.
    16.付桂香,赵世萍,冯瑞芝,等.高效液相色谱法测定沙棘叶中黄酮含量.中国中药杂志.2002,15(4):32-34.
    17.吴素林.反相HPLC法同时测定沙棘果肉异鼠李素、槲皮素及沙棘总黄酮的含量.沙棘.1998,11(4):31-33.
    18.杨建渝,徐叶周.沙棘果汁中总黄酮甙元的含量测定.西北药学杂志.1989,4(3):31-32.
    19.Yue ME,Jiang TF,Shi YP.Fast determination of flavonoids in Hippophae rhamnoides and its medicinal preparation by capillary zone electrophoresis using dimethyl-beta-cyclodextrin as modifier.Talanta.2004,62(4):695-699.
    20.高锦明,张鞍灵.中国沙棘果实黄酮成分研究.西北林学院学报.1999,14(3):52-55.
    21.曹群华,瞿伟菁,李家贵,等.大孔树脂吸附纯化沙棘籽渣黄酮的研究.中国中药杂志.2004,29(3):225-229.
    22.孙斌,瞿伟菁,张晓玲,等.高效液相色谱法测定沙棘籽渣中黄酮苷元含量.中国药学杂志.2005,40(2):139-141.
    23.Chu QC,Qu WQ,Peng YY,et al.Determination of flavonoids in Hippophae rhamnoides L.and its phytopharmaceuticals by capillary electrophoresis with electrochemical detection.Journal of Chromatography.2003,58:67-71.
    24.吴秀瑛,王燕昆,李红芳.沙棘全成分和沙棘总黄酮对大鼠心脏功能的影响.中国药业.1999,8(10):20.
    25.张振贤,胡文文.醋柳黄酮片治疗冠心病心绞痛101例.辽宁中医杂志.1997,24(6):258
    26.王秉文,朱蓉,冯养正,等.沙棘总黄酮对正常人心功能和血流动力的影响.西安医科大学学报,1993:14(2):130-140.
    27.王秉文,王永红,杨银京,等.沙棘总黄酮对豚鼠心功能的影响.沙棘.1993,6(3):25-27.
    28.王秉文,李克喜,齐永红,等.沙棘总黄酮对在体蛙心及离体蟾蜍心脏的作用.沙棘.19947(2):42-44.
    29.朱福,王美华,胡春燕,等.醋柳黄酮对高血压病靶器官的影响.高血压杂志.2002,10(3):219-222.
    30.王秉文,李克喜,冯养正,等.沙棘总黄酮豚鼠离体乳头肌的正性变力作用.沙棘.1993,6(2):23-27.
    31.王正荣,王玲,尹华虎,等.沙棘总黄酮对牵张所致心衰心肌细胞的收缩力学和钙离子转运的影响.航天医学与医学工程.2000,13(1):6-9.
    32,忻伟钧,陈萍,华福元,等.醋柳黄酮治疗高脂血症和高粘血症.中国新药与临床杂志.1997,16(1):17.
    33.Cheng J,Kondo K,Suzuki Y,et al.Inhibitory effects of total flavones of Hippophae rhamnoides L on thrombosis in mouse femoral artery and in vitro platelet aggregation.Life Science.2003,72(20):2263-2271.
    34.牛天福.沙棘黄酮口服液对高脂血症疗效的初步观察.沙棘.1997,10(1):36-38.
    35.句海松,李小洁,赵保路,等.沙棘总黄酮对活性氧自由基的清除作用.中国药理学通报.1990,6(2):9.
    36.曹群华,瞿伟菁,黄晓青,等.沙棘籽渣和果渣中黄酮抗脂质过氧化、清除自由基作用.中成药.2003,25(8):670-672.
    37.杨现艳,瞿伟菁,徐自良,等.沙棘籽渣黄酮对更年期大鼠血脂机体内抗氧化系统的影响.中国中药杂志.2006,31(13):1109-1112.
    38.曹群华,瞿伟菁,牛伟,等.沙棘黄酮对链脲佐菌素致糖尿病大鼠降糖作用.营养学报.2005,27(2):151-155.
    39.孙斌,章平,瞿伟菁,等.沙棘黄酮类化合物诱导人肝癌细胞凋亡研究.中药材.2003,26(12):875-877.
    40.雷鸣鸣,沈异,周建全,等.沙棘的药用成分及其对心血管系统影响的研究进展.四川中 医.2004,22(9):26-29.
    41.戚文航.高血压领域研究进展.心血管病学进展.2006,27(5):538-543.
    1.Giorgio S.Pathophysiology of insulin resistance.J Clin Endocrinol Metab.2006,20(4):665-679.
    2.Barbara M,Janja M,Andrej J,et al.Molecular mechanisms of insulin resistance and associated diseases.Clin Chim Acta.2007,375:20-35.
    3.Young JB,Landsberg L.Stimulation of the sympathetic nervous system during sucrose feeding.Nature.1977,269:615-617.
    4.Reaven GM,Risser TR,Chen Y-DI,et al.Characterization of a model of dietary-induced hypertriglyceridemia in young,nonobese rats.J Lipid Res.1979,20:371-378.
    5.Ahrens RA,Demuth P,Lee MK,et al.Moderate sucrose ingestion and blood pressure in the rat.J Nutr.1980,110:725-731.
    6.Bu(?)ag RD,Tomita T,Sasaki S.Chronic sucrose ingestion induces mild hypertension and tachycaidia in rats.Hypertension.1983,5:218-225.
    7.Hwang IS,Ho H,Hoffman BB,et al.Fructose-Induced Insulin Resisitance and Hypertension in Rats.Hypertension.1987,10:512-516.
    8.杨万松,黄体钢,樊振旺,等.高蔗糖诱发大鼠胰岛素抵抗和高血压机制试验研究.天津医药.1998,26(4):229-332.
    9.潘玲,刘继林,王建,等.试验性胰岛素抵抗综合征大鼠模型.华西医学.2001,15(4):421-422.
    10.Ba(?)os G,Carbajal K,Cardoso G,et al.Vascular reactivity and effect of serum in a rat model of hypertrigliceridemia and hypertension.Am J Hypertens.1997,10:379-88.
    11.Reaven GM,Ho H.Sugar-induced hypertension in Sprague-Dawley rats.Am J Hypertens.1991,4:610-614.
    12.程朝晖,吕俊华,刘建军.红丝线草提取物对高血压合并高脂血症模型大鼠降压作用的 研究.中药材.2005,27(12):927-930.
    13.陈奇编.中药药理研究方法学[M].第一版,北京:人民卫生出版社.1993,941.
    14.李光伟,潘孝仁.空腹血胰岛素、葡萄糖比值作为β细胞功能指数的可能性.中华内分泌代谢杂志.1998,14(4):232-235.
    15.Zavaroni I,Sander S,Scott S,et al.Effect of fi'uctose feeding on insulin secretion and insulin action in the rat.Metabolism.1980,29:970.
    1.Reaven GM.Insulin resistance/compensatory hyperinsulinemia,essential hypertension,and cardiovascular disease.J Clin Endocrinol Metab.2003,88(6):2399-2403.
    2.Lamounier-Zepter V,Ehrhart-Bornstein M,Bomstein SR.Insulin resistance in hypertension and cardiovascular disease.Best Pract Res Clin Endocrinol Metab.2006,20(3):355-367.
    3.Tack CJ,Smits P,Willemsen JJ,et al.Effects of insulin on vascular tone and sympathetic nervous system in NIDDM.Diabetes.1996,45(1):15-22.
    4.Velloso LA,Folli F,Sun X J,et al.Cross-talk between the insulin and angiotensin signaling systems.Proc Natl Acad Sci USA.1996,93(22):12490-12495.
    5.Velloso LA,Folli F,Perego L,et al.The multi-faceted cross-talk between the insulin and angiotensin Ⅱ signaling systems.Diabetes Metab Res Rev.2006,22(2):98-107.
    6.Sartori M,Ceolotto G,Papparella I,et al.Effects of angiotensin Ⅱ and insulin on ERK1/2activation in fibroblasts from hypertensive patients.Am J Hypertens.2004,17(7):604-610.
    7.Park H,Hasegawa G,Obayashi H,et al.Relationship between insulin resistance and inflammatory markers and anti-inflammatory effect of losartan in patients with type 2 diabetes and hypertension.Clin Chim Acta.2006,374(1-2):129-134.
    8.朱福,王美华,胡春燕,等.醋柳黄酮对高血压病靶器官的影响.高血压杂志.2002,10(3):219-222.
    9.雷鸣鸣,沈异,周建全,等.沙棘的药用成分及其对心血管系统影响的研究进展.四川中医.2004,22(9):26-29.
    10.Eccleston C,Baoru Y,Tahvonen R,et al.Effects of an antioxidant-rich juice(sea buckthom)on risk factors for coronary heart disease in humans.J Nutr Biochem.2002,13(6):346-354.
    11.Geetha S,Sai Ram M,Singh V,et al.Anti-oxidant and immunomodulatory properties of seabuckthom(Hippophae rhamnoides)-an in vitro study.J Ethnopharmaeol.2002,79(3):373-378.
    12.徐武华,陈坚,邓哲彤.醋柳黄酮与依那普利治疗高血压的临床对照研究.中国综合临床.2001,17(12):902-903.
    13.廖晓阳,章茂顺,王伟文,等.醋柳黄酮对原发性高血压患者一氧化氮、内皮素的影响.华西医学.2005,20(2):247-249.
    14.Wang ZR,Wang L.Yin HH,et al.Effect of Total Flavonoids of Hippophae Rhamnoides on contractile Mechanics and Calcium Transfer in Stretched Myocyte.Space Med Med Eng(Beijing).2000,13(1):6-9.
    15.李家富,章茂顺,王家良,等.醋柳黄酮对血管平滑肌细胞胞内游离钙浓度的影响.中国临床药理学与治疗学.2004,9(3):305-307.
    16.朱福,章茂顺,王家良,等.醋柳宗黄酮对兔血管紧张素转换酶的抑制作用.中国临床药 理学杂志.2000,9(2):95-98.
    17.曹群华,瞿伟菁,李家贵,等.大孔树脂吸附纯化沙棘籽渣黄酮的研究.中国中药杂志.2004,29(3):225-229.
    18.李光伟,潘孝仁.检测人群胰岛素敏感性的一项新指数.中华内科杂志.1993,32(10):656-660
    19.Ba(?)os G,Carbajal K,Cardoso G,et al.Vascular reactivity and effect of serum in a rat model of hypertriglyceridemia and hypertension.Am J Hypertens.1997,10:379-88.
    20.Aguilera AA,Diaz GH,Barcelata ML,et al.Effects of fish oil on hypertension,plasma lipids,and tumor necrosis factor-α in rats with sucrose-induced metabolic syndrome.J Nutr Biochem.2004,15:350-357.
    21.Oliart-Ros RM,Torres-M(?)rquez ME,Badillo A,et al.Dietary fatty acids effects on sucrose induced cardiovascular syndrome in rats.J Nutr Biochem.2001,12:207-212.
    22.Uchida A,Nakata T,Hatta T,et al.Reduction of insulin resistance attenuates the development of hypertension in sucrose-fed SHR.Life Sci.1997,61:455-464.
    23.Chen CC,Wang H J,Shih HC,et al.Comparison of the metabolic effects of metformin and troglitazone on fructose-induced insulin resistance in male Sprague-Dawley rats.J Formos Med Assoc.2001,100(3):176-180.
    24.Baum M.Insulin stimulates volume absorption in the rabbit proximal convoluted tubule.J Clin Invest.1987,79:1104-1109.
    25.Young JB,Landsberg L.Stimulation of the sympathetic nervous system during sucrose feeding.Nature.1977,269:615-617.
    26.Bu(?)ag RD,TomitaT,Sasaki S.Chronic sucrose ingestion induces mild hypertension and tachycardia in rats.Hypertension.1983,5:218-225.
    27.Suzuki M,Nomura C,Odaka H,et al.Effect of an insulin sensitizer,pioglitazone on hypertension in fructose-drinking rats.Japanese Journal of Pharmacology 1997,74:297-302.
    28.Reil TD,Bamard RJ,Kashyap VS,et al.Diet-induced changes in endothelial-dependent relaxation of the rat aorta.J Surg Res.1999;85:96-100.
    29.Reaven GM.Role of insulin resistance in human disease.Diabetes.1988,37:1595-1607.
    30.Cao Q,Qu W,Deng Y,et al.Effect of flavonoids from the seed and fruit residue of Hippophae rhamnoides L.on glycometabolism in mice.Zhong Yao Cal.2003,26(10):735-737
    31.曹群华,瞿伟菁,牛伟,等.沙棘黄酮对链脲佐菌素致糖尿病大鼠将糖作用.营养学报. 2005,27(2):151-155.
    32.Yang X,Qu W,Xu Z,et al.Effect of flavonoids from Hippophae rhamnoides L.residues on blood lipid metabolism and antioxidative activity in climacteric rats.Zhongguo Zhong Yao Za Zhi 2006,31(13):1109-1112
    33.Reil TD,Bamard RJ,Kashyap VS,et al.Diet-induced changes in endothelial-dependent relaxation of the rat aorta.J Surg Res.1999,85:96-100.
    34.Gao X,Ohlander M,Jeppsson N,et al.Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthom(Hippophae rhamnoides L.) during maturation.J Agric Food Chem.2000,48:1485-1490.
    35.Zhuang X,Zhang M,Gao Z,et al.Effect of total flavones of Hippophae rharnnoides L.on sympathetic activity in hypertension.Huaxi Yike Daxue Xueban.2001,32(4):547-550.
    36.Giacchetti G,Sechi LA,Griffin CA,et al.The tissue renin-angiotensin system in rats with fructose-induced hypertension:overexpression of type 1 angiotensin Ⅱ receptor in adipose tissue.J Hypertens.2000,18:695-702.
    37.Freita RRA,Lopes KL,Carillo BA,et al.Sympathetic and renin-angiotensin systems contribute to increased blood pressure in sucrose-fed rats.Am J Hypertens.2007,20:692-698.
    38.Limura O,Shimamoto K,Matsuda K,et al.Effects of angiotensin receptor antagonist and angiotensin converting enzyme inhibitor on insulin sensitivity in fructose-fed hypertensive rats and essential hypertension.Am J Hypertens.1995,8:353-357.
    1.程朝晖,吕俊华,刘建军.红丝线草提取物对高血压合并高脂血症模型大鼠降压作用的研究.中药材.2004,27(12):927-930.
    2.徐武华,陈坚,邓哲彤.醋柳黄酮与依那普利治疗高血压的临床对照研究.中国综合临床.2001,17(12):902-903.
    3.朱福,王美华,胡春燕,等.醋柳黄酮对高血压病靶器官的影响.高血压杂志.2002,10(3):219-222.
    4.曹群华,瞿伟菁,黄晓青,等.沙棘籽渣和果渣中黄酮抗脂质过氧化、清除自由基作用.中成药.2003,25(8):670-672.
    5.朱福,章茂顺,王家良,等.醋柳宗黄酮对兔血管紧张素转换酶的抑制作用.中国临床药理学杂志.2000,9(2):95-98.
    6.朱福,章茂顺.醋柳黄酮及其单体对血管紧张素转换酶抑制作用量效关系研究.上海医学.1999,22(7):427-429.
    7.Thomas WG,Mendelsohn FA.Angiotensin receptors:form and function and distribution.Int J Biochem Cell Biol.2003,35:774-779.
    8.Oro C,Qian H,Thomas WG.Type 1 angiotensin receptor pharmacology:Signaling beyond G proteins.Pharmacol Ther.2007,113:210-226.
    9.Thomas WG,Qian H.Arresting angiotensin type 1 receptors.Trends Endocrinol Metab.2003,14:130-136.
    10.Wieland T,Mittmann C.Regulators of G-protein signaling:multifunctional proteins with impact on signalling in the cardiovascular system.Pharmacol Ther.2003,97:95-115.
    1.Kerbel RS.Tumor angiogenesis.N Engl J Med.2008,358:2039-2049.
    2.刘容,周建英.肿瘤血管生成的试验研究方法.国际呼吸杂志.2007,27(5):375-378.
    3.Pang X,Yi T,Yi Z,et al.Morelloflavone,a biflavonoid,inhibits tumor angiogenesis by targeting rho GTPases and extracellular signal-regulated kinase signaling pathways.Cancer Res.2009,15;69(2):518-525.
    4.Staton CA,St ribbling SM,Tazzyman S,et al.Current methods for assaying angiogenesis in vitro and in vivo.Int J Exp Path.2004,85:233-248.
    5.刘剑平,侯梅.肿瘤微血管生成模型的应用现状.中国肿瘤.2002,1:45-47.
    6.Masson V,Devy L,Grignet-Debrus C,et al.Mouse aortic ring assay:a new approach of the molecular genetics of angiogenesis.Biol Proced Online.2002,4:24-31.
    7.Yi T,Cho SG,Yi Z,et al.Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways.Mol Cancer Ther.2008,7:1789-1796.
    8.Pyun B J,Choi S,Lee Y,et al.Capsiate,a nonpungent capsaicin-like compound,inhibits angiogenesis and vascular permeability via a direct inhibition of Src kinase activity.Cancer Res.2008,68:227-235.
    9.Yi T,Yi Z,Cho SG,et al.Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling.Cancer Res.2008,68(6):1843-1850.
    10.Guo X,Stafford L J,Bryan B,et al.A Rac/Cdc42-specific exchange factor,GEFT,induces cell proliferation,transformation,and migration.J Biol Chem.2003,278:13207-13215.
    11.Mitchell DC,Abdelrahim M,Weng J,et al.Regulation of KiSS-I metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2a and specificity protein-1.J Biol Chem.2006,281:51-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700