下丘脑室旁核盐皮质激素受体在慢性充血性心力衰竭中的交感兴奋作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管近年来的医疗水平已有了很大的提高,但慢性充血性心力衰竭(简称慢性心衰)病人的预后仍不容乐观。很多心血管疾病发展到后期往往会表现有慢性心衰。在对慢性心衰发生机制的研究中,人们已普遍接受神经体液过度兴奋的理论,即交感神经系统的激活在慢性心衰时最先发生,随之带动了一系列体液因素系统如肾素-血管紧张素-醛固酮系统(RAAS)、下丘脑-垂体系统和细胞因子的激活,在这些神经体液因素的共同作用下,心衰的病理进程不断被推进。于是交感神经活动增强的机制一直成为慢性心衰研究的焦点之一。下丘脑室旁核(PVN)作为神经内分泌活动的关键脑区,除了在调节细胞外液容量和交感神经驱动方面具有重要作用外,本课题组前期的研究还发现该脑区肾素-血管紧张素系统(RAS)、氧化应激反应及促炎因子(PIC)在慢性心衰时均有增强表现,并明显影响交感神经放电,同时伴随心功能的恶化,但引起中枢内这些体液因素变化的机制尚需进一步确定。
     人们对醛固酮/盐皮质激素功能的传统认识是它主要作用于肾脏和结肠上的受体发挥保盐作用,这种认识在过去的二十年里已有了很大的改变。研究显示,醛固酮在心血管纤维化、调节盐欲的中枢机制、调节交感神经活动以及在高血压和心衰的实验模型中都有作用。Random Aldactone Evaluation Study (RALES),是一大型医学临床研究机构,已证实给心衰病人额外小剂量口服盐皮质激素受体(MR)拮抗剂soironolactone(SL,安体舒通)(同时给予对照组安慰剂)可显著降低其发病率和死亡率,这一发现引发人们对醛固酮在心血管病中的作用给予很大关注。但产生这种有益效果的原因尚不确定。
     一直以来人们将中枢MR的激活与提高盐欲和交感神经对高血压的调节联系起来,因此使用MR阻滞剂阻断其激活可能会对心衰产生(至少是部分)有益的影响是说得通的。肿瘤坏死因子-α(TNF-α)是一种促炎因子,也是操纵中枢MR的兴奋性介质。患有严重心衰的病人血浆TNF-α水平升高且与预后相关。缺血所致心衰大鼠血浆TNF-α水平也有升高,而行冠脉结扎术24小时后开始持续经侧脑室灌注SL,可阻止血浆TNF-α水平的升高。相反,对正常大鼠以足以诱导盐欲的剂量使用MR激动剂,可增高血浆TNF-α水平;而这一现象可被侧脑室使用SL所阻断。这两项研究显示:血源性促炎因子受到、至少是部分受到中枢MR的调节。
     心衰除了外周炎症性反应,下丘脑PVN处的促炎因子也表现为上调并参与了交感兴奋作用。TNF-α、IL-1β和IL-6都具有激活下丘脑-垂体-肾上腺皮质(HPA)轴和增强交感神经兴奋性的作用,但PIC调节交感活动的机制尚不清楚。在PVN区,一些兴奋性和抑制性神经递质汇聚于此并影响其神经活动,包括谷氨酸、去甲肾上腺素(NE)和γ-氨基丁酸(GABA)。谷氨酸作为中枢神经系统中一种重要的兴奋性神经递质已被人们广泛认识,研究发现PVN处分布有功能性谷氨酸受体,在心血管反射中参与控制;研究还显示心衰大鼠交感神经的高度兴奋与PVN处细胞外升高的NE也有关;作为中枢神经系统中重要的抑制性神经递质,GABA在PVN区也发挥了重要的调节作用。因此我们进一步假设心衰时中枢增多的PIC引起了兴奋性和抑制性神经递质失衡从而导致交感兴奋性增强。
     第一部分慢性充血性心力衰竭时中枢盐皮质激素受体的激活对交感神经活动的影响
     目的:验证慢性充血性心衰时阻断中枢盐皮质激素受体(MR)能否降低交感神经兴奋性;同时观察对外周和中枢一些活性物质的影响。方法:心衰模型的制备采用结扎SD大鼠冠状动脉左前降支致心肌梗死的方法进行;假手术对照组则在手术中采取只穿线不结扎的方法进行。给药组大鼠六周内每天口服MR选择性阻滞剂RU28318(每天按30mg/kg,溶于饮用水中),对照组给普通饮用水。确保实验结束时各组至少有12只动物存活。6周后,通过对各组大鼠测定血流动力学指标评价心功能,包括左室内压最大上升和下降速率(±dp/dtmax)和左室舒张末压(LVEDP);通过测定右心室/体重比(RV/BW)口肺/体重比(Lung/BW)反映左心室前负荷变化;电生理记录肾交感神经放电活动(RSNA)、ELISA测定血浆去甲肾上腺素(NE)作为交感神经兴奋性指标,以及PIC在血浆和下丘脑的含量,ALDO在血浆中的含量及PGE2在脑脊液中的水平;免疫组织化学染色和Western blot评价PVN内COX-2和CRH的表达。结果:经RU28318处理的心衰大鼠血浆TNF-α水平降低;和心衰对照组大鼠相比PVN区COX-2染色减少,脑脊液中PGE2含量相应减低;表达TNF-α和CRH的神经元数量下降。同时,RU28318处理的心衰大鼠RSNA减弱,伴随血浆去甲肾上腺素水平降低;RV/BW和Lung/BW均降低,但左室功能没有改善。另外,RU28318对心衰大鼠血浆增高的ALDO没有明显作用。结论:慢性心衰时,阻断中枢MR可降低交感神经活动,减轻外周炎症反应及PVN区TNF-a和CRH表达。
     第二部分慢性充血性心力衰竭时中枢盐皮质激素受体通过炎性因子发挥其交感兴奋作用
     目的:验证慢性心衰时,中枢内MR的交感兴奋作用是通过提高外周血PIC实现的。方法:心衰模型和假手术对照组制备方法同第一部分。作为对照,部分大鼠仍按第一部分实验方案进行,即给药组大鼠六周内每天口服MR阻滞剂RU28318,每天按30mg/kg,溶于饮用水中,对照组给普通饮用水;另一部分使用抗肿瘤坏死因子-α抑制剂英夫利西(infliximab, INF)每天30mg/kg,溶入饮用水中,以确定单纯由于外周细胞因子的减少是否也能引起RU28318所致的结果;同时还设立了联合用药组(RU28318+INF),以确定能否产生其他额外的效应。保证各组实验结束时至少有12只动物存活。后期处理基本同前部分实验。即6周后,各组大鼠测定血流动力学指标评价心功能;电生理记录RSNA; ELISA技术测定血浆NE、PIC、ALDO含量,及脑组织PIC及脑脊液中PGE2的水平;本部分实验除了继续检测外周和中枢TNF-α含量,还补充了对IL-1β的检测,以进一步探讨RU28318和INF对PICs的确切作用;通过免疫组织化学染色和Western blot评价COX-2和CRH的表达。结果:对心衰大鼠使用TNF-α抑制剂INF以及联合用药(RU28318+INF)产生的各项结果和单独用RU28318处理的心衰大鼠很相似:血浆PIC中TNF-α、IL-1β水平均降低(但血中ALDO水平没有明显改变);PVN区COX-2染色减弱,表达TNF-α,IL-1β和CRH的神经元数量下降。结论:慢性心衰时,阻断MR产生的交感活动抑制是通过降低血中促炎因子起作用的。
     第三部分阻断肿瘤坏死因子-α的作用对慢性充血性心力衰竭时神经递质失衡的影响
     目的:通过中枢阻断肿瘤坏死因子-α(TNF-α)的作用,观察对慢性充血性心力衰竭时神经递质失衡的影响,探讨中枢炎性因子对心衰时交感兴奋的作用。方法:心衰模型和假手术对照组制备方法同第一部分。对心衰大鼠和假手术大鼠持续四周经侧脑室灌流TNF-α抑制剂英夫利西(infliximab, INF,10μg/h)或人工脑脊液(aCSF);另一种处理则是以腹腔注射方式给予相似剂量的INF。4周后测定心脏功能学指标和形态学指标(LVEDP、±dp/dt max、RV/BW和Lung/BW)和肾交感神经放电(RSNA); ELISA技术测定促炎因子(PIC)在血浆和组织中含量以及血中血管紧张素Ⅱ(ANGⅡ)的含量;神经递质去甲肾上腺素(NE)及血中儿茶酚胺的水平利用高效液相色谱获得;免疫组织化学染色确定PVN内谷氨酸(Glu)和γ-氨基丁酸(GABA)的限速酶酪氨酸羟化酶(TH)和谷氨酸脱羧酶(GAD67)以及神经元型一氧化氮合酶(nNOS)的表达;结果:和假手术组相比,心衰大鼠PVN区NE和TH表达增强,GAD67和nNOS表达减弱;血浆炎性因子、儿茶酚胺、血管紧张素Ⅱ增多;肾交感神经活动增强。对心衰大鼠经侧脑室持续灌流INF可减轻上述神经递质失衡现象,以及心衰时肾交感神经的过度兴奋表现。而经腹腔灌注相似剂量的INF对心衰大鼠PVN处的NE、TH、GAD67和nNOS的含量没有影响,对肾交感神经兴奋也无作用。说明上述影响是通过位于中枢的PIC起作用的。结论:心衰时PVN区炎性因子增高,引起中枢兴奋性神经递质增多,抑制性神经递质减少,神经递质平衡失调从而增强交感兴奋促进心衰发展。
Despite recent therapeutic advanced, the prognosis for patients with congestiveheart failure (CHF) remains dismal. CHF is the common outcome of a variety ofcardiovascular diseases. Neurohumoral excitation (NHE) is a cardinal manifestationof the CHF syndrome,closely correlated with disease severity and adverse prognosis.Sympathoexcitation is considered a trigger point that promotes the excessive releaseof neurohormones in CHF, where plasma norepinephrine (NE), angiotensin (ANGⅡ),aldosterone, cytokines,etc. were found to be correlated with severity of CHF.However, the mechanisms of sympathoexcitation are still not fully understood. Thehypothalamic paraventricular nucleus (PVN) is a principal central site mediatingneurohumoral responses. PVN is also a critical brain site to regulate extracellularfluid volume and sympathetic drive.
     The traditional view of aldosterone/mineralocorticoid as a hormone actingprimarily upon receptors in the kidneys and the colon to conserve sodium hasundergone substantial modification in the past two decades, as evidence has emergedfor its involvement in cardiac and vascular fibrosis, central nervous systemmechanisms regulating sodium appetite and sympathetic nerve activity, andexperimental models of hypertension and heart failure. Interest in the role ofaldosterone in cardiovascular diseases was heightened by the Random AldactoneEvaluation Study (RALES), a large clinical trial demonstrating that the addition of asmall oral dose of the mineralocorticoid receptor (MR) antagonist spironolactone (SL)to the regimen of otherwise optimally managed patients with established heart failuredramatically reduced morbidity and mortality. The mechanism(s) accounting for thesebeneficial effects were unknown.
     Activation of MR in the brain has long been associated with increased saltappetite and sympathetically mediated hypertension. It is therefore reasonable to hypothesize that blocking the activation of brain MR might account, at least inpart, for the salutary influences of MR antagonist in HF.
     One excitatory mediator that responds to manipulations of brain MR is tumornecrosis factor alpha (TNF--inflammatory cytokine. Plasma levels ofTNF-with ischemia-induced HF also have high circulating levels of TNF-continuous ICV infusion of SL, initiated within24hours of coronary artery ligation,prevents the expected rise in plasma TNF-treatment with the MR agonist in a dose sufficient to induce sodium appetiteincreases plasma TNF-SL. These two studies demonstrated the surprising finding that plasma levels ofpro-inflammatory cytokines are regulated, at least in part, by brain MR.
     Our recent studies suggest that, in addition to the neurohormones,proinflammatory cytokines (PICs) are upregulated in the PVN and contribute tosympathoexcitation in HF. TNF---6share a common property ofactivating the hypothalamic-pituitary-adrenal axis (HPA) and increasing sympatheticnerve activity. However, the mechanisms by which PICs modulate sympatheticactivity in HF are not clear. A number of excitatory and inhibitory neurotransmittersconverge in the PVN to influence its neuronal activity, including glutamate(Glu),norepinephrine (NE), and gamma-aminobutyric acid (GABA). Glutamate is awell-known excitatory neurotransmitter in the central nervous system and it has beenreported that functional glutamate receptors expressed in the PVN are involved in thecontrol of cardiovascular reflexes. It has also been shown that sympathetichyperactivity in rats with HF is associated with increased extracellular norepinephrine(NE) in the PVN. GABA is a well-known inhibitory neurotransmitter in the centralnervous system and is a dominant inhibitory neurotransmitter within the PVN.Previous work demonstrated a GABA-mediated inhibitory mechanism within thePVN contributing to sympathoexcitation in HF rats. Therefore, we hypothesized thatincreased PICs in the brains of HF rats caused an imbalance in the excitatoryand inhibitory neurotransmitters in the PVN, contributing to increased sympathoexcitation in HF.
     Part One: Activation of Mineralocorticoid Receptorin Hypothalamic Paraventricular Nucleus Contributes toSympathoexcitation in Congestive Heart Failure
     Aims: To observe the primary hypothesis that mineralocorticoid receptorantagonism would reduce sympathetic activity in rats with HF. Methods:Sprague-Dawly (SD) rats were subjected to coronary artery ligation to induce heartfailure (HF), or sham surgery without ligating the vessel (SHAM). Followed by6weeks treatment with RU28318,30mg/kg per day, orally) or vehicle (drinking water).At the end of the experiment, ensure that in each group there are at least12animalssurvived. After6weeks, left ventricular function parameters, such as left ventricularend-diastolic pressure (LVEDP) and maximum change in pressure over time (±dp/dtmax) were determined by hemodynamic measurements. The right ventricular-to-bodyweight (RV/BW) and lung-to-body weight (lung/BW) ratios were calculated asindices of pulmonary congestion and right ventricular remodeling, two indices of theseverity of HF. The renal sympathetic nerve activity (RSNA) was recorded and theplasma NE level was measured using an ELISA kit, two indices of the severity ofsympathetic nervous excitation. ELISA techniques was also used to measure TNF-ALDO levels in plasma and PGE2level in CSF. Immunohistochemical studies wereperformed to assess the expression of TNF--2, and CRH in PVN. Results:RU28318treated HF rats had lower plasma TNF--2staining of PVNneurons, and fewer PVN neurons staining for TNF--treatedHF rats. RU28318.-treated HF rats had less prostaglandin E2in cerebrospinal fluid,lower RSNA and plasma norepinephrine levels, lower left ventricular end-diastolicpressure,and lower right ventricle/body weight and lung/body weight ratios, but noimprovement in left ventricular function. Conclusion: This study demonstrates thatmineralocorticoid receptor antagonism would reduce sympathetic activity andcytokine stress peripherally and centrally
     Part Two: Brain Mineralocorticoid Receptor InducesSympathetic Drive by Increasing Circulating ProinflammatoryCytokines in Congestive Heart Failure
     Aims: To examined the potential impact of oral administration of a selective MRantagonist, RU28318, on blood-borne cytokines and on cytokine-driven central neuralmechanisms that may contribute to the progression of heart failure. Methods:Sprague-Dawly (SD) rats were underwent coronary ligation to induce HF, or shamsurgery. Followed by6weeks treatment with RU28318,30mg/kg per day, orally orvehicle (drinking water), as in Part One. Another set of rats were treated withanticytokine agents infliximab (INF,30mg/kg daily, in drinking water) to determinewhether the cytokine lowering effect of MR antagonism is sufficient to account forthe observed responses to RU28318. Combined MR antagonism and cytokineinhibition to determine whether it would produce additive or facilitative responses. Atthe end of the experiment, ensure that in each group there are at least12animalssurvived. After6weeks, left ventricular function parameters were determined byhemodynamic measurements. RV/BW and lung/BW ratios were calculated, the RSNAwas recorded. The plasma NE, PIC, ALDO level and concentration of PIC in PVNwas measured using ELISA techniques. Immunohistochemical studies wereperformed to assess the expression of TNF---2, and CRH in PVN.Western blot was used to measure COX-2and CRH protein expression. Results:Treatment of HF rats with anticytokine agents, infliximab, or combined MRantagonist and cytokine inhibition produced very similar results. Conclusion: Thisstudy reveals an effect of MR antagonism to minimize cytokine-induced centralneural excitation in rats with HF.
     Part Three: Effect of Tumour Necrosis Factor-to Attenuate Neurotransmitters Imbalancedin Congestive Heart Failure
     Aims: Blocking brain tumour necrosis factor-(TNF-neurotransmitters imbalanced in congestive heart failure (HF). we explored thepossible roles of brain proinflammatory cytokines (PIC) on modulatingneurotansmitters in the exaggerated sympathetic activity in HF. Methods:Sprague-Dawley rats were underwent coronary ligation to induce HF or SHAMcontrol. And then, they were treated for4-weeks with a continuousintracerebroventricular (ICV) infusion of the TNF-infliximab (INF,10g/h), or vehicle. Another set of HF and SHAM rats were treated withintraperitoneal (ip) infusion of a similar dose of INF. After4weeks, LVEDP and±dp/dtmaxwere measured by hemodynamic measurements. The RV/BW and lung/BWratios were calculated. The RSNA was recorded. Plasma and tissue inflammatorycytokine levels were measured using ELISA techniques. The concentrations of NEand the rate-limiting enzymes of glutamate and GABA, respectively, TH and GAD67,and circulating catecholamine levels were measured using HPLC withelectrochemical detection. Immunohistochemical labelling was performed to identifyTH, GAD67and nNOS in PVN. Results: HF rats had higher levels of glutamate, NE,and TH, and lower levels of GABA, nNOS, and67-kDa isoform of glutamatedecarboxylase (GAD67) in the PVN when compared with SHAM rats. Plasmacytokines, NE, epinephrine, angiotensin and renal sympathetic nerve activity(RSNA) were also increased in HF rats. The same ICV treatments also attenuated theincreased RSNA in HF rats. IP treatment with similar doses of INF did not affectglutamate, NE, TH, GABA, nNOS, and GAD67in the PVN and had no effect onRSNA of HF rats. Conclusion: These findings indicate that brain PICs induceneurotransmitters imbalanced and contribute to the increased sympathetic drive inHF.
引文
1.Mc Murray JJ, Pfeffer MA. Heart failure. Lancet.2005;365(9474):1877-1889.
    2.Dayer M, Cowie MR. Heart failure: diagnosis and healthcare burden. Clin Med.2004;4(1):13-18.
    3.Neubauer S. The failing heart--an engine out of fuel. N Engl J Med.2007;356(11):1140-1151.
    4.Braunwald E, Bristow MR. Congestives heart failure: fifty years of progess.Circulation,2000;102(20Suppl4): IV14-23.
    5.Sharma R, Coats AJ, Anker SD et al. The role of inflammatory mediators in chronicheart failure: cytokines, nitric oxide, and endothelin-1. Int J Cardiol,2000,72(2):175-186.
    6.Zhang ZH, Kang YM, Yan-Jun Xu, Harjot K. Saini et al. Pentoxifylline attenuatescardiac dysfunction and reduces TNF--reperfused heart. Am JPhysiol Heart Circ Physiol,2005;289(2): H832-H839.
    7.Kang YM, Zhang ZH, Xue B, et al. Inhibition of Brain Pro-inflammatory CytokineSynthesis Reduces Hypothalamic Excitation in Rats with Ischemia-induced HeartFailure. American Journal of Physiology-Heart and Circulatory Physiology,2008;295(1): H227-H236.
    8.Chikanza IC, Grossman AB. Neuroendocrine immune responses in inflammation:the concept of the neuroendocrine immune loop. Baillieres Clin Rheumatol,1996;10(2):199-225.
    9.Brown MR, Fisher LA. Corticotropin-releasing factor: effects on the autonomicnervous system and visceral systems. Fed Proc,1985;44(1Pt2):243-248.
    10.Francis J, Weiss RM, Wei S-G,Johnson AK, Beltz TG, Zimmerman K, Felder RB,Central mineralocorticoid receptor blockade improves volume regulation and reducessympathetic drive in heart failure. Am J Physiol Heart Circ Physiol.2001a;281:H2241-2251
    11.Lal A, Veinot JP, Leenen FH. Critical role of CNS effects of aldosterone in cardiacremodeling post-myocardial infarction in rats. Cardiovasc Res.2004;64:437-447
    12.Wang H, Huang BS, Leenen FH. Brain sodium channels and ouabainlikecompounds mediate central aldosteron-induced hypertension. Am J Physiol HeartCirc Physiol.2003;285:H2516-H2523.
    13.Callera GE, Montezano AC, Yog A, et al. C-Src-dependent nongenomic signalingresponses to aldosterone are increased in vasculr myoccytes from spontaneouslyhypertensive rats. Hypertension.2005;46:1032-1038.
    14.Fiebeler A, Schmidt F, Muller DN, et al. Mineralocorticoid receptor affects AP-1and nuclear factor-kappab activation in angiotensin-induced cardiac injury.Hypertension.2001;37;787-793
    15.Odermatt A, Arnold P, Frey FJ. The intracellular localization of themineralocorticoid receptor is regulated by11beta-hydroxysteroid dehydrogenasetype2. J Biol Chem.2001;276:28484-28492
    16.Zhang ZH, Kang YM, Yu Y, et al.11beta-HSD-2activity in hypothalamicparaventricular nucleus modulates sympathetic excitation. Hypertension.2006;48:127-133.
    17.Francis J, Weiss RM, Wei S-G,Johnson AK, Beltz TG, Zimmerman K, Felder RB,Central mineralocorticoid receptor blockade improves volume regulation and reducessympathetic drive in heart failure. Am J Physiol Heart Circ Physiol.2001a;281:H2241-2251.
    18.Lal A, Veinot JP, Leeenen FH. Critical role of CNS effects of aldosterone incardiac remodeling postmyocardial infarcation in rats. Cardiovasc Res.2004;64:437-447.
    19.Rahmouni K, Barthelmebs M, Grima M, Imbs JL, Wybren De J. Brainmineralocoticoid receptor control of blood pressure and kidney function innormotensive rats. Hypertension.1999;331201-1206.
    20.Grossmann C, Gekle M. Nongenotropic aldosterone effects and the EGFR:interaction and biological relevance. Steroids.2008;73:973-978.
    21. Francis J, Weiss RM Johnson AK, Felder RB. Central mineralocoticoid receptorblockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am JPhysiol Regul Integr Comp Physiol.2003b;284:R328-335.
    22. Guggilam A, Patel KP, Haque M, Ebenezer PJ, Kapusta DR, Francis J. Cytokineblockade attenuates sympathoexcitation in heart failure: Cross-talk between nNOS,AT-1R and cytokines in the hypothalamic paraventricular nucleus. European Journalof Heart Failure2008;10:625-634.
    23. Li YF, Patel KP. Paraventricular nucleus of the hypothalamus and elevatedsympathetic activity in heart failure: the altered inhibitory mechanisms. Acta PhysiolScand2003;177:17-26.
    24. Martin DS, Haywood JR. Sympathetic nervous system activation by glutamateinjections into the paraventricular nucleus. Brain Res1992;577:261-267.
    1.Francis J, Weiss RM, Wei S-G, Johnson AK, Beltz TG, Zimmerman K, Felder RB. Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. Am J Physiol Heart Circ Physiol.2001a;281:H2241-2251.
    2.Leenen FH, Skarda V, Yuan B, White R. Changes in cardiac ANG Ⅱ postmyocardial infarction in rats:effect of nephrectomy and ACE inhibitors. Am J Physiol Heart Circ Physiol.1999;276:H317-325.
    3.Yu Y, Wei S-G, Zhang Z-H, Ginez-Sanchez E, Weiss RM, Felder RB. Does aldosterone upregulate the brain rennin-angiotensin system in rats with heart failure? Hypertension.2008;51:727-733.
    4.Francis J, Chu Y, Johnson AK, Weiss RM, Felder RB. Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol.2004a;286:H2264-2271.
    5.Kang YM, Zhang ZH, Xne B, Weiss RM, Felder RB.Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circ Res.2006;99:758-766.
    6.Francis J, Weiss RM, Wei SG, Johnson AK, Felder RB. Progression of heart failure after myocardial infarction in the rat. Am J Physiol Regul Integr Comp Physiol.2001b;281:R1734-1745.
    7.Francis J, Wei S-G, Weiss RM. Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. Am J Physiol Heart Circ Physiol.2004b;287: H2138-2146.
    8.Francis J, Weiss RM, Wei SG, Johnson AK, Felder RB. Progression of heart failure after myocardial infarction in the rat. Am J Physiol Regul Integr Comp Physiol.2001b;281:R1734-1745.
    9.Kang YM, Zhang ZH, Xne B, Weiss RM, Felder RB. Inhibition of brain proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circ Res.2008;295:H227-236.
    10.周文武,林玲,陈军,et al.冠脉结扎法制做大鼠心肌缺血模型.中国实验动物学报.2004;12(4):226-230.
    11.高琴,关瑞锦.充血性心力衰竭大鼠模型的制作及意义.心血管康复医学杂志.2004;13(1):27-30.
    12.Francis GS. Neurohumoral activation and progression of heart failure: hypothetical and clinical considerations. J CardiovascPharmacol.1998;32:S16-S21.
    13.Middlekauff HR and Mark AL. The treatment of heart failure:the role of neurohumoral activation. Intern Med.1998;37:112-122.
    14.Parmley WW. Neuroendocrine changes in heart failure and their clinical relevance. Clin Cardiol.1995;18:440-445.
    15.Sigurdsson A and Swedberg K. The role of neurohormonalactivation in chronic heart failure and postmyocardial infarction. Am Heart J.1996;132:229-234.
    16.Middlekauff HR and Mark AL. The treatment of heart failure:the role of neurohumoral activation. Intern Med.1998;37:112-122.
    17.Kjaer A and Hesse B. Heart failure and neuroendocrine activation:diagnostic, prognostic and therapeutic perspectives.Clin Physiol.2001;21:661-672.
    18.Dibner Dunlap ME and Thames MD. Control of sympathetic nerve activity by vagal mechanorefiexes is blunted in heart failure. Circulation.1992;86:1929-1934.
    19.DiBona GF and Sawin LL. Reflex regulation of renal nerve activity in cardiac failure. Am J Physiol Regul Integr Comp Physiol.1994;266:R27-R39.
    20.Zucker IH, Wang W, Brandle M, Schultz HD, and Patel KP. Neural regulation of sympathetic nerve activity in heart failure. Prog Cardiovasc Dis.1995;37:397-414.
    21.Sun SY, Wang W, Zucker IH, and Schultz HD. Enhanced activity of carotid body chemoreceptors in rabbits with heart failure:role of nitric oxide. J Appl Physiol.1999;86:1273-1282,.
    22.Ma R, Zucker IH, and Wang W. Reduced NO enhances the central gain of cardiac sympathetic afferent reflex in dogs with heart failure. Am J Physiol Heart Circ Physiol.1999;276:H19-H26.
    23.Blatteis CM. Neuromodulative actions of cytokines. Yale J Biol Med.1990;63:133-146.
    24.Brody MJ. Central nervous system and mechanisms of hypertension. Clin Physiol Biochem.1988;6:230-239.
    25.Rivest S. How circulating cytokines trigger the neural circuits that control the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology.2001;26:761-788,
    26.Johnson AK, de Olmos J, Pastuskovas CV, Zardetto-Smith AM, and Vivas L. Theextended amygdala and salt appetite. Ann NY Acad Sci.1999;877:258280.
    27.McKinley MJ, McAllen RM, Pennington GL, Smardencas A, Weisinger RS, andOldfield BJ. Physiological actions of angiotensin II mediated by AT1and AT2receptors in the brain.Clin Exp Pharmacol Physiol Suppl.1996;3: S99S104.
    28.Francis GS. Neurohumoral activation and progression of heart failure:hypothetical and clinical considerations. J CardiovascPharmacol.1998;32: S16S21.
    29.Frangogiannis NG, Smith CW, and Entman ML. The in-flammatory response inmyocardial infarction. Cardiovasc Res.2002;53:3147.
    30.Ferrari R. Tumor necrosis factor in CHF: a double facet cytokine.Cardiovasc Res.1998;37:554559,.
    31.Askari B and Ferreri NR. Regulation of prostacyclin synthesis by angiotensin IIand TNF-alpha in vascular smooth muscle. Prostaglandins Other Lipid Mediat;2001;63:175187.
    32.Chen HH and Burnett JC Jr. The natriuretic peptides in heart failure: diagnosticand therapeutic potentials. Proc Assoc Am Physicians.1999;111:406416.
    33.Johnson AK and Thunhorst RL. The neuroendocrinology of thirst and salt appetite:visceral sensory signals and mechanisms of central integration. FrontNeuroendocrinol.1997;18:292353.
    34.Manolis AJ, Olympios C, Sifaki M, Handanis S, Bresnahan M, Gavras I, andGavras H. Suppressing sympathetic activation in congestive heart failure. A newtherapeutic strategy. Hypertension.1995;26:719724.
    35.Knepper MA. Long-term regulation of urinary concentrating capacity. Am JPhysiol Renal Physiol.1998;275: F332F333.
    36.Leenen FH. Cardiovascular consequences of sympathetic hyperactivity. Can JCardiol15, Suppl.1999; A:2A7A.
    37.Esler M, Kaye D, Lambert G, Esler D, and Jennings G. Adrenergic nervoussystem in heart failure. Am J Cardiol.1997;80:7L14L.
    38.Bristow MR. Mechanistic and clinical rationales for using-blockers in heartfailure. J Card Fail.2000;6:814.
    39.to cardiac dysfunction after myocardial infarction. Am J Physiol Heart Circ Physiol.1999;277: H1786H1792.
    40.Connell JM, Davies E. The new biology of aldosterone. J Endocrinol.2005;186:1-20.
    41.Weber KT, Sun Y, Campbell SE, Slight SH, Ganjam VK, Griffing GT, SwinfardRW, Diza-Arias AA. Chronic mineralocorticoid excess and cardiovascularremodeling. Steroids.1995;60:125-132.
    42.De Nicola AF, Grillo C, Gonzalez S. Physiological, biochemical and molecularmechanisms of salt appetite control by mineralocorticoid action in brain. BrazilianJournal of Medical&Biological Research.1992;25:1153-1162.
    43.Francis J, Weiss RM, Wei S-G, Johnson AK, Beltz TG, Zimmerman K, Felder RB,Central mineralocorticoid receptor blockade improves volume regulation and reducessympathetic drive in heart failure. Am J Physiol Heart Circ Physiol.2001a;281:H2241-2251.
    44.Gomez Aanchez EP, Fort CM, Gomez-Aanchez CE. Intracerebroventricularinfusion of RU28318blocks aldosterone-salt hypertension. Am J Physiol EndocrinolMetab.1990;258:E482-484.
    45.Francis J, Wei S-G, Weiss RM. Brain angiotensin-converting enzyme activity andautonomic regulation in heart failure. Am J Physiol Heart Circ Physiol.2004b;287:H2138-2146.
    46.Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J,The effect of spironolactone on morbidty and mortality in patients with severe heartfailure. Random Aldactone Evaluation Study Investigators. N Engl J Med.1999;341709-717.
    47.Gomez Aanchez EP. Central hypertensive effects of aldosterone. FrontNeuroendocrinol.1997;18:440-462.
    48. Francis J, Weiss RM Wei S G, Johnson AK Beltz TG, Zimmerman K, Felder RB.Central mineralocorticoid receptor blockade improves volume regulation and reducessympathetic drive in heart failure. Am J Physiol Heart Circ Physiol.2001a;281:H2241-2251.
    49.Grossmann C, Gekle M. Nongenotropic aldosterone effects and the EGFR:interaction and biological relevance. Steroids.2008;73:973-978.
    1.Francis J, Weiss RM, Wei S-G,Johnson AK, Beltz TG, Zimmerman K, Felder RB,Central mineralocorticoid receptor blockade improves volume regulation and reducessympathetic drive in heart failure.Am J Physiol Heart Circ Physiol.2001a;281:H2241-2251
    2.Lal A, Veinot JP, Leenen FH. Critical role of CNS effects of aldosterone in cardiacremodeling post-myocardial infarction in rats. Cardiovasc Res.2004;64:437-447
    3.Wang H, Huang BS, Leenen FH. Brain sodium channels and ouabainlikecompounds mediate central aldosteron-induced hypertension. Am J Physiol HeartCirc Physiol.2003;285:H2516-H2523.
    4.Callera GE, Montezano AC, Yog A, et al. C-Src-dependent nongenomic signalingresponses to aldosterone are increased in vasculr myoccytes from spontaneouslyhypertensive rats Hypertension.2005;46:1032-1038.
    5.Fiebeler A, Schmidt F, Muller DN, et al. Mineralocorticoid receptor affects AP-1and nuclear factor-kappab activation in angiotensin-induced cardiac injury.Hypertension.2001;37;787-793
    6.Odermatt A, Arnold P, Frey FJ. The intracellular localization of themineralocorticoid receptor is regulated by11beta-hydroxysteroid dehydrogenasetype2.J Biol Chem.2001;276:28484-28492
    7.Zhang ZH, Kang YM, Yu Y, et al.11beta-HSD-2activity in hypothalamicparaventricular nucleus modulates sympathetic excitation. Hypertension.2006;48:127-133.
    8.Dibbs Z, KurrelmeyerK, Kalra D, Seta Y, Wang F, Bozkurt B, Baumgarten G,Sivasubramanian N, Mann KL. Cytokines in heart failure: pathogenetic mechanismsand potential treatment. Proc Assoc Am Physicians.1999;111:423-428.
    9.Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokinesand cytokine receptors in advanced heart failure: an analysis of the cytokine databasefrom the vesnarinone trial(VEST). Circulation.2001;1032055-2059.
    10.Francis J, Weiss RM Johnson AK, Felder RB. Central mineralocoticoid receptorblockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am JPhysiol Regul Integr Comp Physiol.2003b;284:R328-335.
    11.Francis J,Biltz T,Johnson AK, Felder RB. Mineralocorticoids act centrally toregulate blood-borne tumor necrosis factor-alpha in norma rats. Am J Physiol RegulIntegr Comp Physiol.2003a;285:R1402-1409.
    12.Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis bycytokines: actions and mechanisms of action. Physiol Rev.1999;79:1-71.
    13.Chrousos GP. The stress response and immune function: clinical implications. The1999Novera H. Spector Lecture. Ann N Y Acad Sci.2000;917:38-67.
    14.Dunn AJ. Cytokine activation of the HPA axis. Ann N Y Acad Sci.2000;917:608-617.
    15.Rivest S, Lacroix S, Vallieres L, Nadeau S, Zang J, Laflamme N. How the bloodtalks to the brain parenchyma and the paraventricular nucleus of the hypothalamusduring systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med.2000;223:22-38
    16.Schiltz JC, Sawchenko PE. Distinct brain vascular cell types manifest induciblecyclooxygenase expression as a function of the strength and nature of immuneinsults.J Neurosci.2002;22:5606-5618.
    17.Schiltz JC, Sawchenko PE.Signaling the brain in systemic inflammation: the roleof perivascular cells. Front Biosci.2003;8:s1321-1329.
    18.Ericsson A, Arias C. Evidence for an intramedullary prostaglandin-dependentmechanism in the activation of stress-related neuroendocrine circuitry byintravenous interleukin-1. JNeurosci.1997;17:7166-7179.
    19.Ericsson A, Arias C, Sawchenko PE.A functional anatomical analysis of centralpathways subserving the effects of interleukin-1on stress-related neuroendocrineneurons. J Neurosci.1994;14:897-913.
    20.Zhang Z-H, Wei S-G, Francis J, Felder RB. Cardiovascular an renal sympatheticactivation by blood-borne TNR-alpha in rat: the role of central porstaglandins. Am JPhysiol Regul Integr Comp Physiol.2003;284:R916-927.
    21.Hoffman WE, Schmid PG. Cardiovascular and antidiuretic effects of centralprostaglandin E2. Physiol.1979;288:159-169
    22.Feuerstem G, Adelberg SA, Kopin KJ, Jacobowitz DM. Hypothalamic sites forcardiovascular and sympathetic modulation by prostaglandinE2. Cardiovasc Res.1982;231:335-342.
    23. Rivest S, Lacroix S, Vallieres L, Nadeau S, Zhang J, Laflamme N. How the bloodtalks to the brain parenchyma and the paraventricular nucleus of the hypothalamusduring systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med.2000;223:22-38.
    24. Francis J, Weiss RM, Johnson AK, Felder RB. Central mineralocorticoid receptorblockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am JPhysiol Regul Integr Comp Physiol.2003;284:R328-35.
    25. Chrousos GP. The stress response and immune function: clinical implications. The1999Novera H. Spector Lecture. Ann N Y Acad Sci.2000;917:38-67.
    26. Schulz R, Aker S, Belosjorow S, Heusch G. TNF alpha in ischemia/reperfusioninjury and heart failure. Basic Research in Cardiology.2004;99:8-11.
    27. Chrousos GP. The stress response and immune function: clinical implications. The1999Novera H. Spector Lecture. Ann N Y Acad Sci.2000;917:38-67.
    28. Francis J, Weiss RM, Johnson AK, Felder RB. Central mineralocorticoid receptorblockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am JPhysiol Regul Integr Comp Physiol.2003;284:R328-35.
    29.Kang Y-M, Zhou R, Zheng W, Tomanek R, Felder RB. Pre-treatment withetanercept inhibits full expression of the pro-inflammatory cytokine cascadefollowing acute myocardial infarction (ABSTRACT). FASEB J.2005;19:A1289.
    30.Voisin L, Breuille D, Ruot B, Ralliere C, Rambourdin F, Dalle M, Obled C.Cytokine modulation by PX differently affects specific acute phase proteins duringsepsis in rats. Am J Physiol.1998;275:R1412-9.
    31.Jankowska EA, Ponikowski P, Piepoli MF, Banasiak W, Anker SD, Poole-WilsonPA. Autonomic imbalance and immune activation in chronic heart failure--Pathophysiological links. Cardiovascular Research.2006;70:434-445.
    32.Schulz R, Aker S, Belosjorow S, Heusch G. TNF alpha in ischemia/reperfusioninjury and heart failure. Basic Research in Cardiology.2004;99:8-11.
    33.Francis J, Beltz T, Johnson AK, Felder RB. Mineralocorticoids act centrally toregulate blood-borne tumor necrosis factor-alpha in normal rats. Am J Physiol RegulIntegr Comp Physiol.2003;285:R1402-9.
    34.Rivest S, Lacroix S, Vallieres L, Nadeau S, Zhang J, Laflamme N. How the bloodtalks to the brain parenchyma and the paraventricular nucleus of the hypothalamusduring systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med.2000;223:22-38.
    35.Siebenlist U, Franzoso G, Brown K. Structure, regulation and function ofNF-kappa B. Annu Rev Cell Biol.1994;10:405-55.
    36.Zhang ZH, Wei SG, Francis J, Felder RB. Cardiovascular and renal sympatheticactivation by blood-borne TNF-alpha in rat: the role of central prostaglandins. Am JPhysiol Regul Integr Comp Physiol.2003;284:R916-27.
    37.Ferri CC, Ferguson AV. Prostaglandin E2mediates cellular effects ofinterleukin-1beta on parvocellular neurones in the paraventricular nucleus of thehypothalamus. J Neuroendocrinol.2005;17:498-508.
    38.De Nicola AF, Grillo C, Gonzalez S. Physiological, biochemical and molecularmechanisms of salt appetite control by mineralocorticoid action in brain. Braz J MedBiol Res.1992;25:1153-62.
    39.Enomoto S, Yoshiyama M, Omura T, Matsumoto R, Kusuyama T, Kim S, Izumi Y,Akioka K, Iwao H, Takeuchi K, Yoshikawa J. Effects of eplerenone on transcriptionalfactors and mRNA expression related to cardiac remodelling after myocardialinfarction. Heart.2005;91:1595-600.
    40. Fraccarollo D, Galuppo P, Schmidt I, Ertl G, Bauersachs J. Additive ameliorationof left ventricular remodeling and molecular alterations by combined aldosterone andangiotensin receptor blockade after myocardial infarction. Cardiovasc Res.2005;67:97-105.
    41.Zheng H, Li YF, Cornish KG, Zucker IH, Patel KP. Exercise training improvesendogenous nitric oxide mechanisms within the paraventricular nucleus in rats withheart failure. Am J Physiol Heart Circ Physiol.2005;288:H2332-41.
    42.Yoshiyama M, Omura T, Yoshikawa J. Additive improvement of left ventricularremodeling by aldosterone receptor blockade with eplerenone and angiotensin II type1receptor antagonist in rats with myocardial infarction. Nippon Yakurigaku Zasshi.2004;124:83-9.
    43. Francis J, Weiss RM, Wei SG, Johnson AK, Beltz TG, Zimmerman K, Felder RB.Central mineralocorticoid receptor blockade improves volume regulation and reducessympathetic drive in heart failure. Am J Physiol Heart Circ Physiol.2001;281:H2241-51.
    1.Swanson LW, Sawchenko PE. Paraventricular nucleus: a site for the integration ofneuroendocrine and autonomic mechanisms. Neuroendocrinology1980;31:410-417.
    2.Boudaba C, Szabo K, Tasker JG. Physiological mapping of local inhibitory inputsto the hypothalamic paraventricular nucleus. J Neurosci1996;16:7151-7160.
    3.Hermes ML, Coderre EM, Buijs RM, Renaud LP. GABA and glutamate mediaterapid neurotransmission from suprachiasmatic nucleus to hypothalamicparaventricular nucleus in rat. J Physiol1996;496:749-757.
    4.Tasker JG, Boudaba C, Schrader LA. Local glutamatergic and GABAergic synapticcircuits and metabotropic glutamate receptors in the hypothalamic paraventricular andsupraoptic nuclei. Adv Exp Med Biol1998;449:117-121.
    5.Antonaccio MJ, Kerwin L, Taylor DG. Reductions in blood pressure, heart rate andrenal sympathetic nerve discharge in cats after the central administration of muscimol,a GABA agonist. Neuropharmacology1978;17:783-791.
    6.Brennan TJ, Haywood JR, Ticku MK. GABA receptor binding and hemodynamicresponses to ICV GABA in adult spontaneously hypertensive rats. Life Sci1983;33:701-709.
    7.Arabia AM, Catapano L, Storini C, Perego C, De Luigi A, Head GA et al. Impairedcentral stress-induced release of noradrenaline in rats with heart failure: amicrodialysis study. Neuroscience2002;114:591-599.
    8.Basu S, Sinha SK, Shao Q, Ganguly PK, Dhalla NS. Neuropeptide Y modulation ofsympathetic activity in myocardial infarction. J Am Coll Cardiol1996;27:1796-803.
    9.Chen QH, Haywood JR, Toney GM. Sympathoexcitation by PVN injectedbicuculline requires activation of excitatory amino acid receptors. Hypertension2003;42:725-731.
    10. Zhang K, Li YF, Patel KP. Reduced endogenous GABA-mediated inhibition inthe PVN on renal nerve discharge in rats with heart failure. Am J Physiol Regul IntegrComp Physiol2002;282:R1006-R1015.
    11.Baumgarten G, Knuefermann P, and Mann DL. Cytokines as emerging targets inthe treatment of heart failure. Trends Cardiovasc Med.2000;10:216223.
    12. Blatteis CM. Neuromodulative actions of cytokines. Yale J Biol Med.1990;63:133146.
    13.Das UN. Free radicals, cytokines and nitric oxide in cardiac failure and myocardialinfarction. Mol Cell Biochem.2000;215:145152,
    14.Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, and Mann DL.Cytokines and cytokine receptors in advanced heart failure: an analysis of thecytokine database from the vesnarinone trial (VEST). Circulation.2001;103:20552059.
    15.Kang Y-M, Zhang Z-H, Xne B, Weiss RM, Felder RB. Inhibition of brainproinflammatory cytokines and hypothalamic activation in rats with ischemia-inducedheart failure. Circ Res.2008;295:H227-236.
    16.Dibbs Z, Kurrelmeyer K, Kalra D, Seta Y, Wang F, Bozkurt B, Baumgarten G,Sivasubramanian N, and Mann DL. Cytokines in heart failure: pathogeneticmechanisms and potential treatment. Proc Assoc Am Physicians.1999;111:423428.
    17.Dunn AJ. Cytokine activation of the HPA axis. Ann NY Acad Sci.2000;917:608617.
    18.Decavel C, van den Pol AN. Converging GABA-and glutamate-immunoreactiveaxons make synaptic contact with identified hypothalamic neurosecretory neurons. JComp Neurol.1992;316(1):104-116.
    19. Zhang K, Patel KP. Effect of nitric oxide within the paraventricular nucleus onrenal sympathetic nerve discharge: role of GABA. Am J Physiol.1998;275: R728-R734.
    20. Nagura S, Sakagami T, Kakiichi A, Yoshimoto M, Miki K. Acute shifts inbaroreflex control of renal sympathetic nerve activity induced by REM sleep andgrooming in rats. J Physiol2004;558:975-983.
    21.Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH. Chronic exercise reducessympathetic nerve activity in rabbits with pacing-induced heart failure: A role forangiotensin II. Circulation2000;102:1854-1862.
    22.Zucker IH, Wang W, Br ndle M, Schultz HD, Patel KP. Neural regulation ofsympathetic nerve activity in heart failure. Prog Cardiovasc Dis1995;37:397-414.
    23. Li YF, Patel KP. Paraventricular nucleus of the hypothalamus and elevatedsympathetic activity in heart failure: the altered inhibitory mechanisms. Acta PhysiolScand2003;177:17-26.
    24.Martin DS, Haywood JR. Sympathetic nervous system activation by glutamateinjections into the paraventricular nucleus. Brain Res1992;577:61-267.
    25. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS et al.Targeted anticytokine therapy in patients with chronic heart failure: results of theRandomized Etanercept Worldwide Evaluation (RENEWAL). Circulation2004;109:1594-1602.
    1.Connell JM, Davies E. The new biology of aldosterone. J Endocrinol.2005;186:1-20.
    2.Weber KT, Sun Y, Campbell SE, Slight SH, Ganjam VK, Griffing GT, Swinfard RW,Diza-Arias AA. Chronic mineralocorticoid excess and cardiovascular remodeling.Steroids.1995;60:125-132.
    3.De Nicola AF, Grillo C, Gonzalez S. Physiological, biochemical and molecularmechanisms of salt appetite control by mineralocorticoid action in brain. BrazilianJournal of Medical&Biological Research.1992;25:1153-1162.
    4.Francis J, Weiss RM, Wei S-G,Johnson AK, Beltz TG, Zimmerman K, Felder RB,Central mineralocorticoid receptor blockade improves volume regulation and reducessympathetic drive in heart failure. Am J Physiol Heart Circ Physiol.2001a;281:H2241-2251.
    5.Gomez-Aanchez EP, Fort CM, Gomez-Aanchez CE. Intracerebroventricularinfusion of RU28318blocks aldosterone-salt hypertension. Am J Physiol EndocrinolMetab.1990;258:E482-484.
    6.Francis J, Wei S-G, Weiss RM. Brain angiotensin-converting enzyme activity andautonomic regulation in heart failure. Am J Physiol Heart Circ Physiol.2004b;287:H2138-2146.
    7.Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J,The effect of spironolactone on morbidty and mortality in patients with severe heartfailure. Random Aldactone Evaluation Study Investigators. N Engl J Med.1999;341709-717.
    8.Gomez-Aanchez EP. Central hypertensive effects of aldosterone. FrontNeuroendocrinol.1997;18:440-462.
    9. Francis J, Weiss RM Wei S-G, Johnson AK Beltz TG, Zimmerman K, Felder RB.Central mineralocorticoid receptor blockade improves volume regulation and reducessympathetic drive in heart failure. Am J Physiol Heart Circ Physiol.2001a;281:H2241-2251.
    10.Leenen FH, Skarda V, Yuan B, White R. Changes in cardiac ANGpostmyocardial infarction in rats: effect of nephrectomy and ACE inhibitors. Am JPhysiol Heart Circ Physiol.1999;276:H317-325.
    11.Yu Y, Wei S-G, Zhang Z-H, Ginez-Sanchez E, Weiss RM, Felder RB. Doesaldosterone upregulate the brain rennin-angiotensin system in rats with heart failure?Hypertension.2008;51:727-733.
    12. Francis J, Chu Y, Johnson AK, Weiss RM, Felder RB. Acute myocardial infarctioninduces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol.2004a;286:H2264-2271.
    13.Kang Y-M, Zhang Z-H, Xne B, Weiss RM, Felder RB.Novel effect ofmineralocorticoid receptor antagonism to reduce proinflammatory cytokines andhypothalamic activation in rats with ischemia-induced heart failure. Circ Res.2006;99:758-766.
    14.Francis J, Weiss RM Wei S-G, Johnson AK Felder RB. Progression of heartfailure after myocardial infarction in the rat. Am J Physiol Regul Integr CompPhysiol.2001b;281:R1734-1745.
    15.Kang Y-M, Zhang Z-H, Xne B, Weiss RM, Felder RB. Inhibition of brainproinflammatory cytokines and hypothalamic activation in rats with ischemia-inducedheart failure. Circ Res.2008;295:H227-236.
    16.Rahmouni K, Barthelmebs M, Grima M, Imbs JL, Wybren De J. Brainmineralocoticoid receptor control of blood pressure and kidney function innormotensive rats. Hypertension.1999;331201-1206.
    17.Grossmann C, Gekle M. Nongenotropic aldosterone effects and the EGFR:interaction and biological relevance.Steroids.2008;73:973-978.
    18.Dibbs Z, KurrelmeyerK, Kalra D, Seta Y, Wang F, Bozkurt B, Baumgarten G,Sivasubramanian N, Mann KL. Cytokines in heart failure: pathogenetic mechanismsand potential treatment. Proc Assoc Am Physicians.1999;111:423-428.
    19.Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokinesand cytokine receptors in advanced heart failure: an analysis of the cytokine databasefrom the vesnarinone trial(VEST). Circulation.2001;1032055-2059.
    20.Francis J, Weiss RM Johnson AK, Felder RB. Central mineralocoticoid receptorblockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am JPhysiol Regul Integr Comp Physiol.2003b;284:R328-335.
    21.Francis J,Biltz T,Johnson AK, Felder RB. Mineralocorticoids act centrally toregulate blood-borne tumor necrosis factor-alpha in norma rats. Am J Physiol RegulIntegr Comp Physiol.2003a;285:R1402-1409.
    22.Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis bycytokines: actions and mechanisms of action. Physiol Rev.1999;79:1-71.
    23.Chrousos GP. The stress response and immune function: clinical implications. The1999Novera H. Spector Lecture. Ann N Y Acad Sci.2000;917:38-67.
    24.Dunn AJ. Cytokine activation of the HPA axis. Ann N Y Acad Sci.2000;917:608-617.
    25.Rivest S, Lacroix S, Vallieres L, Nadeau S, Zang J, Laflamme N. How the bloodtalks to the brain parenchyma and the paraventricular nucleus of the hypothalamusduring systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med.2000;223:22-38.
    26.Schiltz JC, Sawchenko PE. Distinct brain vascular cell types manifest induciblecyclooxygenase expression as a function of the strength and nature of immune insults.J Neurosci.2002;22:5606-5618.
    27.Schiltz JC, Sawchenko PE.Signaling the brain in systemic inflammation: the roleof perivascular cells. Front Biosci.2003;8:s1321-1329.
    28.Ericsson A, Arias C, Sawchenko PE. Evidence for an intramedullaryprostaglandin-dependent mechanism in the activation of stress-relatedneuroendocrine circuitry by intravenous interleukin-1. J Neurosci.1997;17:7166-7179.
    29. Ericsson A, Arias C, Sawchenko PE.A functional anatomical analysis of centralpathways subserving the effects of interleukin-1on stress-related neuroendocrineneurons. J Neurosci.1994;14:897-913.
    30.Zhang Z-H, Wei S-G, Francis J, Felder RB. Cardiovascular an renal sympatheticactivation by blood-borne TNR-alpha in rat: the role of central porstaglandins. Am JPhysiol Regul Integr Comp Physiol.2003;284:R916-927.
    31.Hoffman WE, Schmid PG. Cardiovascular and antidiuretic effects of centralprostaglandin E2.J Physiol.1979;288:159-169.
    32.Feuerstem G, Adelberg SA, Kopin KJ, Jacobowitz DM. Hypothalamic sites forcardiovascular and sympathetic modulation by prostaglandinE2.Brain Res.1982;231:335-342.
    33. Yu Y, Kang YM, Zhang Z-H, Wei S-G, Chu Y, Weiss RM, Felder RB. Increasedcyclooxygenase-2expression in hypothalamic paraventricular nucleus in rats withheart failure: role of nuclear factor kappaB. Hypertension.2007;49:511-518.
    34. Gomez-Sanchez EP, Ahmad N, Romero DG, Gomez-Sanchez CE.Is aldosteronesynthesized within the rat brain?Am J Physiol Endocrinol Metab.2005;288:E342-346.
    35.Huang BS, White RA, Ahmad M, Tan J, Jeng AY, Leenen FHH. Central infusionof aldosterone synthase inhibitor attenuates left ventricular dysfunction andremodeling inrats after myocardial infarction. Cardiovasc Res.2009;81:574-581.
    36. Gomez-Sanchez EP, Zhou M, Gomez-Sanchez CE. Mineralocorticoids, salt andhigh blood pressure.Steroids.1996;61:184-188.
    37Mckinley MJ, McAllen RM, Pennington GL, Smardencas A, Weisinger RS,Oldfield BJ. Physillogical actions of angiotensin mediated by AT1and AT2receptors in the brain. Clinical&Experimental Pharmacology&Physiology-Supplement.1996;3:S99-104
    38.Tan J, Wang H, Leenen FH.Increases in brain and cardiac AT1receptor and ACEdensities after myocardial infarct in rats. Am J Physiol Hrart Cire Physiol.2004;286:H1665-1671.
    39.Guggilam A, Haque M, Kerut EK, Mcllwain E, Lucchesi P, Seghal K, FrancisJ.TNF-alpha blockade decrease oxidative stress in the paraventricular nucleus andattenuates sympathoexcitation in heart failure rate. Am J Physiol Heart Cire Physiol.2007;293:H599-609.
    40.Aimmerman MC, Lazartigues E, Lang JA, Sinnaryah P, Ahmad IM, Spita DR,Davisson RL. Superoxide mediates the actions of angiotensin in the central nervoussystem. Circ Res.2002;91:1038-1045.
    41.Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, Zucker IH.Superoxidemediates sympathoexcitation in heart failure:roles of angiotensin and NAD(P)Hoxidase.Cire Res.2004;95:937-944.
    42.Zhang ZH, Yu Y, Kang YM, Wei S-G, Felder RB. Aldosterone acts centrally toincrease brain rennin-angiotensin system activity and oxidative stress in normal rats.Am J Physiol Regul Integr Comp Physiol.2003;284:R916-927.
    43.Callera GE, Montezano AC, Yogi A, Tostes RC, He Y, Schiffrin EL, Touyz RM.c-Xre-dependent nongenomic signaling responses to aldosterone are increased invascular myocytes from spontaneously hypertensive rats. Hypertension.2005;46:1032-1038.
    44.Torres M, Forman HJ. Redox signaling and the MAP kinase pathways.Biofactor.2003;17:287-296.
    45.Wei SG, Yu Y, Zhang ZH, Weiss RM, Felder RB. Angiotensin-triggered p44/42mitogen-activated protein kinase mediates sympathetic excitation in heart failure rats.Hypertension.2008;52:342-350.
    46.Wei S-G, Yu Y, Zhang Z-H, Felder RB. Angiotensin upregulates hypothalamicAT1receptor expreesion in rats via the mitogen-activated protein kinase pathway. AmJ Physiol Heart Cire Physiol.2009;296:H1425-1433.
    47. Zhang Z-H, Yu Y, Wei S-G,, Felder RB.Aldosterone induces sympatho-excitationvia brain mitogen-activated protein kinase signaling pathways in rat. FASEB J.2009;23: Program#610.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700