乙醛脱氢酶2活性水平及基因型与冠心病的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冠状动脉粥样硬化性心脏病(coronary atherosclerotic heart disease,CAD)是指冠状动脉粥样硬化使血管腔狭窄或阻塞,导致心肌缺血、缺氧而引起的心脏病,它和冠状动脉功能性改变(痉挛)一起,统称冠状动脉性心脏病,简称冠心病(coronary heart disease,CHD)。冠心病是威胁人类健康、影响生活质量的常见疾病。目前,有研究显示乙醛脱氢酶2(aldehyde dehydrogenase2,ALDH2)不仅是酒精代谢过程中的关键酶,而且是体内重要的抗氧化应激分子,可减少乙醛及其他脂肪族醛的细胞毒性,对心脏有保护作用。
     ALDH2由ALDH2基因编码,有学者认为ALDH2基因参与了冠心病的发生与发展。ALDH2基因具有单核苷酸多态性,其中研究最多的是Glu504Lys多态性位点(又称rs671),该位点发生碱基置换,即鸟嘌呤(G,野生型)被腺嘌呤(A,突变型)替代。所以,ALDH2有两个等位基因:G等位基因(ALDH2*1)和A等位基因(ALDH2*2),导致人群中该酶基因型有3种情况:野生纯合型(GG型又称ALDH2*1/*1)、突变杂合型(GA型又称ALDH2*1/*2)和突变纯合型(AA型又称ALDH2*2/*2)。日本学者发现ALDH2突变基因型是日本男性心肌梗死(myocardial infarction,MI)的独立危险因素。
     硝酸酯类药物是心血管领域中应用较早且应用较广泛的药物,但是硝酸酯类药物的生物转化机制仍未被完全阐明。最近,研究人员发现ALDH2对硝酸甘油发挥临床疗效具有一定影响,但是关于ALDH2不同基因型患者与硝酸酯类药物尤其是单硝酸异山梨酯治疗心绞痛临床疗效之间的研究相对较少。
     本研究拟从ALDH2活性水平及基因型方面,探讨ALDH2与冠心病特别是心肌梗死的相关性,以及ALDH2不同基因型患者临床应用硝酸甘油和单硝酸异山梨酯有效性之间的关系,为冠心病临床评估、发病机制以及药物治疗提供一定的理论依据和新的思路。
     第一部分乙醛脱氢酶2活性水平与冠心病的相关性研究
     目的:探讨乙醛脱氢酶2活性水平与冠心病之间的关系。
     方法:选择2011年1月至2012年12月在唐山工人医院心内科住院的患者共191例,其中心绞痛患者62例,急性心肌梗死(acute myocardialinfarction,AMI)患者64例,对照者65例。记录所有研究对象临床基本资料,包括:年龄、性别、吸烟史、饮酒史、高血压病史和糖尿病病史,测量受试对象身高(Height,H)、体重(Weight,W),计算体重指数(body mass index,BMI)。入选研究对象于入院第二天清晨采集外周静脉血,采用血液ALDH2活性比色法定量检测试剂盒检测ALDH2活性水平;同时采用酶法测定总胆固醇(total cholesterol,TC)、甘油三酯(triglycerides,TG)、高密度脂蛋白胆固醇(high density lipoproteincholesterol,HDL-C)和低密度脂蛋白胆固醇(low density lipoproteincholesterol,LDL-C)。采用SPSS16.0软件进行数据统计,对三组患者临床基本资料、ALDH2活性水平进行比较,采用相关分析分析血浆ALDH2活性水平与BMI、TC、TG、HDL-C、LDL-C水平的相关性。
     结果:
     (1)对照组、心绞痛组、AMI组ALDH2活性水平分别为(23.76±6.31)U/L、(22.37±6.03)U/L、(21.14±5.76)U/L,三组活性水平依次降低,但差异无统计学意义(p>0.05)。
     (2)相关分析显示对照组、心绞痛组、AMI组ALDH2水平与BMI、TC、TG、HDL-C、LDL-C水平均无相关性(p>0.05)。
     结论:对照组、心绞痛组和AMI组ALDH2活性水平依次下降,但差异无统计学意义,ALDH2水平与BMI、TC、TG、HDL-C、LDL-C水平无相关性,提示ALDH2活性水平与冠心病病情严重程度无关,ALDH2不能作为判断冠心病病情严重程度的预测指标。
     第二部分乙醛脱氢酶2基因型与急性心肌梗死的相关性研究
     目的:探讨乙醛脱氢酶2基因型与急性心肌梗死之间的相关性。
     方法:选择2011年1月至2012年12月在唐山工人医院心内科住院诊断为急性心肌梗死(AMI)患者210例和对照者221例。记录所有研究对象临床基本资料,包括:年龄、性别、吸烟史、饮酒史、高血压病史和糖尿病病史,测量受试对象身高(H)、体重(W),计算体重指数(BMI)。采用酶法测定总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)。采集所有受试者外周静脉血提取基因组DNA,采用测序方法检测ALDH2基因Glu504Lys位点多态性。所有入选患者均进行冠状动脉造影检查,根据病变累及支数,分为单支病变、双支病变和三支病变。采用SPSS16.0软件进行数据统计,对AMI组和对照组临床基本资料、基因型频率和等位基因频率进行比较,并进一步对研究人群的饮酒情况和年龄情况进行分层分析,采用多因素Logistic回归分析判断疾病危险因素作用的大小,计算比数比(Odds Ratio,OR)和95%可信区间(95%Confidence Index,95%CI)。
     结果:
     (1)AMI组和对照组ALDH2基因型分布均符合Hardy-Weinberg平衡。
     (2)AMI组GG、GA、AA基因型频率分别为:50.48%、43.81%、5.71%,对照组GG、GA、AA基因型频率分别为:69.68%、28.05%、2.26%,两组基因型分布差异有统计学意义(p<0.001)。AMI组G等位基因频率低于对照组(72.38%vs.83.71%),A等位基因频率高于对照组(27.62%vs.16.29%),两组比较差异有统计学意义(p<0.05)。
     (3)以有无AMI为因变量,将年龄、性别、吸烟史、饮酒史、高血压病史、糖尿病病史、BMI、TC、TG、HDL-C、LDL-C、ALDH2基因型引入Logistic回归模型,多因素Logistic回归分析显示ALDH2GA+AA突变基因型是AMI的危险因素(OR=1.300,95%CI:1.035-1.634,p=0.0243)。
     (4)AMI组ALDH2不同基因型与冠状动脉病变支数无明显相关性(p>0.05)。
     (5)根据研究人群的饮酒情况进行分层分析,在非饮酒人群中多因素Logistic回归分析显示,GA+AA突变基因型是AMI的危险因素(OR=1.791,95%CI:1.005-3.189,p=0.048);在饮酒人群中Logistic回归分析显示,GA+AA突变基因型不是AMI的危险因素(OR=1.041,95%CI:0.974-1.113,p=0.2327)。
     (6)根据研究人群的年龄进行分层分析,多因素Logistic回归分析显示,在早发人群(男性<55岁,女性<65岁)中未发现携带GA+AA突变基因型个体患AMI的风险增加(OR=1.030,95%CI:0.983-1.079,p=0.2097),提示ALDH2GA+AA突变基因型不是早发AMI的危险因素;在晚发人群(男性≥55岁,女性≥65岁)中发现携带GA+AA突变基因型个体患AMI的风险增加(OR=1.424,95%CI:1.029-1.969,p=0.0329)。
     结论:
     (1)ALDH2GA+AA突变基因型是AMI的危险因素。
     (2)AMI患者ALDH2基因型与冠状动脉病变支数无相关性。
     (3)分层分析显示,ALDH2GA+AA突变基因型是非饮酒人群AMI的危险因素,而不是饮酒人群AMI的危险因素;ALDH2GA+AA突变基因型是晚发AMI的危险因素,而不是早发AMI的危险因素。
     第三部分乙醛脱氢酶2不同基因型心绞痛患者应用硝酸甘油和单硝酸异山梨酯临床疗效的相关性研究
     目的:探讨乙醛脱氢酶2不同基因型心绞痛患者应用硝酸甘油和单硝酸异山梨酯临床疗效之间的关系。
     方法:选择2011年1月至2012年12月在唐山工人医院心内科住院诊断为冠心病心绞痛患者395例,将患者随机分为2组,硝酸甘油组201例,单硝酸异山梨酯组194例,记录所有研究对象临床基本资料,包括:年龄、性别、吸烟史、饮酒史、高血压病史和糖尿病病史等,测量受试对象身高(H)、体重(W),计算体重指数(BMI)。采用酶法测定总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)。采集所有受试者外周静脉血提取基因组DNA,采用测序方法检测ALDH2基因Glu504Lys位点多态性。所有研究对象用药期间,定期做心电图及肝肾功能检查,观察两组内不同基因型患者心绞痛发作频率、程度、持续时间,对比静息心电图ST-T变化,并记录用药期间不良反应的发生情况,比较不同患者的临床症状疗效和心电图疗效。
     结果:
     (1)硝酸甘油组和单硝酸异山梨酯组ALDH2基因型分布无明显差异(p>0.05)。
     (2)应用硝酸甘油的临床症状疗效:ALDH2GG野生基因型患者显效40例,有效55例,无效40例;ALDH2GA+AA突变基因型患者显效17例,有效20例,无效29例。GG野生基因型患者、GA+AA突变基因型患者应用硝酸甘油的临床症状疗效差异无统计学意义(p>0.05)。
     应用硝酸甘油的心电图疗效:ALDH2GG野生基因型患者显效28例,有效56例,无效51例;ALDH2GA+AA突变基因型患者显效10例,有效21例,无效35例。GG野生基因型患者、GA+AA突变基因型患者应用硝酸甘油的心电图疗效差异无统计学意义(p>0.05)。
     (3)应用单硝酸异山梨酯的临床症状疗效:ALDH2GG野生基因型患者显效47例,有效73例,无效12例;ALDH2GA+AA突变基因型患者显效20例,有效31例,无效11例。GG野生基因型患者、GA+AA突变基因型患者应用单硝酸异山梨酯的临床症状疗效差异无统计学意义(p>0.05)。
     应用单硝酸异山梨酯的心电图疗效:ALDH2GG野生基因型患者显效41例,有效67例,无效24例;ALDH2GA+AA突变基因型患者显效18例,有效26例,无效18例。GG野生基因型患者、GA+AA突变基因型患者应用单硝酸异山梨酯的心电图疗效差异无统计学意义(p>0.05)。
     (4)ALDH2GG野生基因型患者应用单硝酸异山梨酯治疗心绞痛的临床症状疗效、心电图疗效优于硝酸甘油,差异有统计学意义(p<0.05);ALDH2GA+AA突变基因型患者应用单硝酸异山梨酯治疗心绞痛的临床症状疗效、心电图疗效也优于硝酸甘油,差异有统计学意义,(p<0.05)。
     结论:
     (1)ALDH2GG野生基因型患者与GA+AA突变基因型患者应用硝酸甘油治疗心绞痛的临床疗效无差异。
     (2)ALDH2GG野生基因型患者与GA+AA突变基因型患者应用单硝酸异山梨酯治疗心绞痛的临床疗效无差异。
     (3)无论是ALDH2GG野生基因型患者还是GA+AA突变基因型患者,应用单硝酸异山梨酯治疗心绞痛的临床疗效均优于硝酸甘油,且不良反应小,安全性高。
Coronary atherosclerotic heart disease (CAD) refered to coronaryatherosclerosis caused vascular stenosis or obstruction, leading to myocardialischemia, hypoxia, together with coronary functional change (spasm) werecalled coronary heart disease (CHD). CHD was a common disease having aserious threat to health, affecting the quality of life. Currently, studies haveshown that aldehyde dehydrogenase2(ALDH2) was not only one of the keyenzyme in the process of alcohol metabolism, but also an important moleculesagainst oxidative stress. ALDH2reduced the cytotoxicity of acetaldehyde andother aliphatic aldehydes and played an antioxidant effect, having a protectiveeffect on the heart.
     The ALDH2was encoded by ALDH2gene. Domestic and internationalstudies showed that the ALDH2gene involved in the occurrence anddevelopment of coronary heart disease. The ALDH2gene showed singlenucleotide polymorphism. The most studied genetic polymorphism was theGlu504Lys polymorphism locus (as known as rs671). This locus occurrednucleotide substitution, guanine (G, wild-type) was replaced by adenine (A,mutant). ALDH2polymorphism had two alleles: wild-type with the catalyticactivity was called the G allele (ALDH2*1), and the mutant with catalyticability inactivation was called the A allele (ALDH2*2). So this locus had threegenotypes, wild homozygote (GG as known as ALDH2*1/*1), mutationheterozygous (GA as known as ALDH2*1/*2) and mutation homozygote (AAas known as ALDH2*2/*2). Japanese researchers found that the ALDH2mutation genotype was the independent risk factor of myocardial infarction(MI) in Japanese men.
     Nitrates was a drug having an earlier and common application in the fieldof cardiovascular disease, but the mechanism of nitrates biotransformation was not yet fully clarified. Recently, researchers realized that ALDH2mayplay an important role in the clinical efficacy of nitroglycerin. However, thestudy on ALDH2different genotype and nitrates especially isosorbidemononitrate clinical efficacy in angina patients was few.
     This study was designed to explore the association between aldehydedehydrogenase2activity levels and aldehyde dehydrogenase2genotype withcoronary heart disease, especially myocardial infarction, and the relationshipbetween ALDH2genotype and nitroglycerin and isosorbide mononitrateclinical efficacy in angina patients, providing the theoretical basis and newideas for the clinical assessment, pathogenesis and drug treatment of coronaryheart disease.
     Part1Association study between aldehyde dehydrogenase2activity levelsand coronary heart disease
     Objective: To investigate the relationship between the aldehydedehydrogenase2activity levels and coronary heart disease.
     Methods: A total of191subjects hospitalized in our hospital fromJanuary2011to December2012were enrolled, including62cases of patientswith angina pectoris,64cases of acute myocardial infarction (AMI), and65cases in the control group. The clinical basic data were recorded, includingage, sex, history of smoking, drinking, hypertension and diabetes,the patients'height, weight, and BMI (body mass index, BMI). The blood samples of allthe selected subjects were collected in the next day morning. Activity level ofALDH2was tested by blood ALDH2activity colorimetric quantitativedetection kit, and the levels of total cholesterol (TC), triglycerides (TG),high-density lipoprotein cholesterol (HDL-C) and low-density lipoproteincholesterol (LDL-C) were tested by enzymatic determination. SPSS16.0statistics software was used to compare the clinical data, ALDH2activity level,and the correlation between the plasma ALDH2activity level and BMI, TC,TG, HDL-C and LDL-C levels in the three groups of patients.
     Results:
     (1)The ALDH2activity level of the control group, angina group and AMI group declined in turn[(23.76±6.31) U/L,(22.37±6.03) U/L, and(21.14±5.76) U/L, respectively], but the difference was not statisticallysignificant (p>0.05).
     (2)Correlation analysis showed that the level of ALDH2was notrelated to BMI, TC, TG, HDL-C and LDL-C in control group, angina groupand AMI group (p>0.05).
     Conclusions: The ALDH2activity in control group, angina group andAMI group had a trend of descend, but the difference was not statisticallysignificant. ALDH2activity level was not related to the level of BMI, TC, TG,HDL-C and LDL-C. This suggested that ALDH2activity level had nothing todo with the severity of coronary heart disease, and ALDH2activity was not apredict indicators to judge the severity of coronary heart disease.
     Part2Association study between aldehyde dehydrogenase2genotype andacute myocardial infarction
     Objective: To explore the correlation between aldehyde dehydrogenase2genotype and acute myocardial infarction.
     Methods: A total of431subjects hospitalized in our hospital fromJanuary2011to December2012were selected for the research, including210cases of acute myocardial infarction (AMI) patients and221cases in thecontrol. The clinical basic data were recorded, including age, sex, history ofsmoking,drinking, hypertension and diabetes, the patients' height, weight, andBMI. The levels of total cholesterol (TC), triglycerides (TG), high-densitylipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol(LDL-C) were tested by enzymatic determination. The blood samples of allthe selected subjects were collected for the extraction of genomic DNA, andthe Glu504Lys locus of ALDH2gene was detected by direct sequencing. Allthe patients were underwent coronal artery angiography. According to thelesion involved the count, it was divided into single vessel lesion, doublevessel lesion and triple lesion. SPSS16.0data statistics software was used tocompare the basic clinical data, the genotype and allele frequencies of the twogroups, and the stratified analysis was carried out according to the drinking and the age of the study population. Multivariate Logistic regression analysiswas used to determine the risk factor of the disease, and the odds ratio (OR)and95%confidence intervals (95%CI) were calculated.
     Results:
     (1)The distribution of ALDH2genotype in AMI group and controlgroup was in Hardy-Weinberg equilibrium.
     (2)The genotype frequencies of GG, GA and AA in AMI group were asfollows:50.48%,43.81%,5.71%, and the control group were:69.68%,28.05%,2.26%. The distributional difference of three genotypes in the twogroups was statistically significant (p<0.001). The G allele frequency in AMIgroup was lower than that in control group (72.38%vs.83.71%), and the Aallele frequency in AMI group was higher than that in control group (27.62%vs.16.29%). The difference was statistically significant (p<0.05).
     (3)Taking the presence or absence of AMI as the dependent variable,age, gender, history of smoking, drinking, hypertension and diabetes, BMI,TC, TG, HDL-C, LDL-C, and ALDH2genotype were introduced to Logisticregression model, multi-factor Logistic regression analysis showed thatALDH2GA+AA mutant genotype was the risk factor of AMI (OR=1.300,95%CI:1.035-1.634, p=0.0243).
     (4)ALDH2genotype had no significant correlation with the coronarylesion count in AMI group (p>0.05).
     (5)Stratified analysis were carried out according to the drinking ofstudy population, multi-factor Logistic regression analysis showed thatGA+AA mutant genotype was the risk factor of AMI in the non-drinkingcrowd (OR=1.791,95%CI:1.005-3.189, p=0.048); while GA+AA mutantgenotype was not the risk factor of AMI in the drinking crowd (OR=1.041,95%CI:0.974-1.113, p=0.2327).
     (6)Stratified analysis were carried out according to the age of studypopulation, multi-factor Logistic regression analysisis did not found GA+AAmutant genotype increase the risk of AMI in early-onset crowd (man<55years old, women<65years old)(OR=1.030,95%CI:0.983-1.079, p=0.2097),suggesting that ALDH2GA+AA mutant genotype was not the riskfactor of premature AMI; while in late-onset crowd (men≥55years old,women≥65years old) multi-factor Logistic regression analysisis found theindividuals carrying GA+AA mutant genotype had high risk of AMI(OR=1.424,95%CI:1.029-1.969, p=0.0329).
     Conclusions:
     (1)ALDH2GA+AA mutant genotype was the independent risk factorof AMI.
     (2)ALDH2genotype had no significant correlation with the coronarylesion count in AMI patients.
     (3)ALDH2GA+AA mutant genotype was the risk factor of AMI innon-drinking crowd, but not in drinking crowd. ALDH2GG+AA mutantgenotype was the risk factor of late-onset AMI, but not the risk factor ofearly-onset AMI.
     Part3Correlation study of the aldehyde dehydrogenase2differentgenotype and the clinical efficacy in angina pectoris patients withapplication of nitroglycerin and isosorbide mononitrate.
     Objective: To explore the relationship between aldehyde dehydrogenase2different genotype and the clinical efficacy in angina pectoris patients withapplication of nitroglycerin and isosorbide mononitrate.
     Methods:395patients with angina pectoris hospitalized in our hospitalfrom January2011to December2012were selected for the research. Thepatients were randomly divided into2groups,201cases of nitroglyceringroup,194cases of isosorbide mononitrate group. The clinical basic data wererecorded, including age, sex, history of smoking,drinking, hypertension anddiabetes, the patients' height, weight, and BMI. The levels of total cholesterol(TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) andlow-density lipoprotein cholesterol (LDL-C) were tested by enzymaticdetermination. The blood samples of all the selected subjects were collectedfor the extraction of genomic DNA, and the Glu504Lys locus of ALDH2genewas detected by direct sequencing. Electrocardiogram (ECG) and liver and kidney function were observed in the subjects during the treatment. Theangina attack frequency, magnitude, duration and the changes of resting ECGST-T were observed in different genotype patients and the adverse reactionsduring the treatment were also recorded. The clinical symptom and ECGefficacy were compared in the patients.
     Results:
     (1)The ALDH2genotype distribution in nitroglycerin group andisosorbide mononitrate group was no significant difference (p>0.05).
     (2)Clinical symptom efficacy of nitroglycerin treatment: extremelyeffective40cases, effective55cases, ineffective40cases in ALDH2GG wildgenotype; extremely effective17cases, effective20cases, ineffective29casesin ALDH2GA+AA mutant genotype; the clinical symptom efficacy has nosignificant difference between ALDH2GG wild genotype and GA+AAmutant genotype patients with nitroglycerin treatment (p>0.05).
     ECG efficacy of nitroglycerin treatment: extremely effective28cases,effective56cases, ineffective51cases in ALDH2GG wild genotype;extremely effective10cases, effective21cases, ineffective35cases inALDH2GA+AA mutant genotype; the ECG efficacy has no significantdifference between ALDH2GG wild genotype and GA+AA mutant genotypepatients with nitroglycerin treatment (p>0.05).
     (3)Clinical symptom efficacy of isosorbide mononitrate treatment:extremely effective47cases, effective73cases, ineffective12cases inALDH2GG wild genotype; extremely effective20cases, effective31cases,ineffective11cases in ALDH2GA+AA mutant genotype; the clinicalsymptom efficacy has no significant difference between ALDH2GG wildgenotype and GA+AA mutant genotype patients with isosorbide mononitratetreatment (p>0.05).
     ECG efficacy of isosorbide mononitrate treatment: extremely effective41cases, effective67cases, ineffective24cases in ALDH2GG wild genotype;extremely effective18cases, effective26cases, ineffective18cases inALDH2GA+AA mutant genotype; the ECG efficacy has no significant difference between ALDH2GG wild genotype and GA+AA mutant genotypepatients with isosorbide mononitrate treatment treatment (p>0.05).
     (4)The clinical symptom efficacy and ECG efficacy of ALDH2GGwild genotype patients with nitroglycerin were better than those withisosorbide mononitrate treatment and the difference was statisticallysignificant (p<0.05). The clinical symptom efficacy and ECG efficacy ofALDH2GA+AA mutant genotype patients with nitroglycerin were better thanthose with isosorbide mononitrate treatment and the difference wasstatistically significant (p<0.05),
     Conclusions:
     (1)The clinical symptom efficacy and ECG efficacy has no significantdifference between ALDH2GG wild genotype and GA+AA mutant genotypeangina patients with nitroglycerin treatment.
     (2)The clinical symptom efficacy and ECG efficacy has no significantdifference between ALDH2GG wild genotype and GA+AA mutant genotypeangina patients with isosorbide mononitrate treatment.
     (3)Whether ALDH2GG wild genotype or GA+AA mutant genotypeangina patients, the application of isosorbide mononitrate had more betterclinical efficacy, less adverse and higher safety than nitroglycerin.
引文
1Chen CH, Budas GR, Churchill EN, et al. Activation of aldehydedehydrogenase-2reduces ischemic damage to the heart. Science,2008,321(5895):1493-1495
    2Goedde HW, Agarwal DP, Harada S, et al. Population genetic studies onaldehyde dehydrogenase isozyme deficiency and alcohol sensitivity. Am JHum Genet,1983,35(4):769-772
    3Takagi S, Iwai N, Yamauchi R, et al. Aldehyde dehydrogenase2gene is arisk factor for myocardial infarction in Japanese men. Hypertens Res,2002,25(5):677-681
    4Vasiliou V, Nebert DW. Analysis and update of the human aldehydedehydrogenase (ALDH) gene family. Hum Genomics,2005,2(2):138-143.
    5Goedde HW, Agarwal DP. Pharmacogenetics of aldehyde dehydrogenase(ALDH). Pharmacol Ther,1990,45(3):345-371
    6Doser TA, Turdi S, Thomas DP, et al. Transgenic overexpression ofaldehyde dehydrogenase-2rescues chronic alcohol intake-inducedmyocardial hypertrophy and contractile dysfunction. Circulation,2009,119(14):1941-1949
    7徐丹令,孙爱军,王时俊,等.乙醛脱氢酶2在大鼠心肌缺氧损伤中的抗凋亡作用.中国病理生理杂志,2006,22(4):683-686
    8俞佳艳,孙爱军,贾建国,等.转染乙醛脱氢酶2基因对心肌梗死后心衰小鼠心功能的影响.中国临床医学,2008,15(3):277-280
    9Ohsawa I, Nishimaki K, Yasuda C,et al. Deficiency in a mitochondrialaldehyde dehydrogenase increases vulnerability to oxidative stress in PC
    12cells. J Neurochem,2003,84(5):1110-1117
    10孙爱军,王克强,李杰,等.心功能衰竭大鼠模型心肌线粒体蛋白的差异表达分析.中国动脉硬化杂志,2004,12(2):183-185
    11范凡,孙爱军,卜丽萍,等. miR34a通过调控乙醛脱氢酶2参与心肌细胞凋亡及心室重构.中国动脉硬化杂志,2011,19(3):222
    12高琴,姜翠荣,于影,等.线粒体乙醛脱氢酶2在心肌缺血后处理中的作用.中国药理学通报,2010,26(8):1088-1092
    13Cotran RS, Kumar V, Robbins SL eds. Pathologic basis of disease[M].Philadelphia: W.B.Saunders Company,1994,517
    14Willerson JT, Chon JN eds. Cardiovascular medicine[M]. NewYork:Churchill Livingstone,1995,316
    15Adams JE3rd, Abendschein DR, Jaffe AS. Biochemical markers ofmyocardial injury. Is MB creatine kinase the choice for the1990s?Circulation,1993,88(2):750-763
    16Ellis AK. Serum protein measurements and the diagnosis of acutemyocardial infarction. Circulation,1991,83(3):1107-1109
    17王焱,陈银蓉,巩燕,等.急性心肌梗死患者血浆乙醛脱氢酶2活性水平的变化及意义.上海医学,2010,33(5):413-416
    1Goedde HW, Agarwal DP, Harada S, et al. Population genetic studies onaldehyde dehydrogenase isozyme deficiency and alcohol sensitivity. Am JHum Genet,1983,35(4):769-772
    2Takagi S, Iwai N, Yamauchi R, et al. Aldehyde dehydrogenase2gene is arisk factor for myocardial infarction in Japanese men. Hypertens Res,2002,25(5):677-681
    3Narita M, Kitagawa K, Nagai Y, et al. Effects of aldehyde dehydrogenasegenotypes on carotid atherosclerosis. Ultrasound Med Biol,2003,29(10):1415-1419
    4Wyman RA, Fraizer MC, Keevil JG, et al. Ultrasound-detected carotidplaque as a screening tool for advanced subclinical atherosclerosis. AmHeart J,2005,150(5):1081-1085
    5Goedde HW, Aqarwal DP. Pharmacogenetics of aldehyde dehydrogenase(ALDH). Pharmacol Ther,1990,45(3):345-371
    6Li H, Borinskaya S, Yoshimura K,et al. Refined geographic distributionof the oriental ALDH2*504Lys (nee487Lys) variant. Ann Hum Genet,2009,73(Pt3):335-345
    7Chen Z, Foster MW, Zhang J, et al. An essential role for mitochondrialaldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad SciUSA,2005,102(34):12159-12164
    8Oota H, Pakstis AJ, Bonne-Tamir B, et al. The evolution and populationgenetics of the ALDH2locus: random genetic drift, selection, and lowlevels of recombination. Ann Hum Genet,2004,68(Pt2):93-109
    9薛丽,陈玉国,徐峰.中国汉族冠心病患者乙醛脱氢酶2基因多态性与心肌梗死的相关性研究.山东大学学报,2007,45(8):808-812
    10罗怀荣,张亚平.乙醛脱氢酶2(ALDH2)基因研究进展及其与饮酒行为的关系.遗传,2004,26(2):263-266
    11曹西蓉,吴德生.中国五个民族人群样本中酒精代谢相关酶基因多态型分布比较.卫生研究,2002,31(3):156-159
    12李志祥,谢桂岚. ALDH2基因第12外显子(G/A)多态性在北京汉族人群的检测.中国现代医学杂志,2005,15(3):457-458
    13Muramatsu T, Wang ZC, Fang YR, et al. Alcohol and aldehyde dehydrog-enase genotypes and drinking behavior of Chinese living in Shanghai. Hu-m Genet,1995,96(2):151-154
    14Chen CC, Lu RB, Chen YC, et al. Interaction between the functionalpolymorphisms of the alcohol-metabolism genes in protection againstalcoholism. Am J Hum Genet,1999,65(3):795-807
    15Goedde HW, Agarwal DP, Fritze G, et al. Distribution of ADH2andALDH2genotypes in different populations. Hum Genet,1992,88(3):344-346
    16Boonyaphiphat P, Thongsuksai P, Sriplung H, et al. Lifestyle habits andgenetic susceptibility and the risk of esophageal cancer in the Thaipopulation. Cancer Lett,2002,186(2):193-199
    17Takagi S, Iwai N, Yamauchi R, et al. Aldehyde dehydrogenase2gene is arisk factor for myocardial infarction in Japanese men. Hypertens Res,2002,25(5):677-681
    18Takeuchi F, Yokota M, Yamamoto K, et al. Genome-wide associationstudy of coronary artery disease in the Japanese. Eur J Hum Genet,2012,20(3):333-340
    19Jo SA, Kim EK, Park MH, et al. A Glu487Lys polymorphism in the genefor mitochondrial aldehyde dehydrogenase2is associated with myocardialinfarction in elderly Korean men. Clin Chim Acta,2007,382(1-2):43-47
    20Xu F, Chen YG, Geng YJ, et al. The polymorphism in acetaldehydedehydrogenase2gene, causing a substitution of Glu>Lys(504), is notassociated with coronary atherosclerosis severity in Han Chinese. TohokuJ Exp Med,2007,213(3):215-220
    21Xu F, Chen YG, Xue L, et al. Role of aldehyde dehydrogenase2Glu504lys polymorphism in acute coronary syndrome. J Cell Mol Med,2011,15(9):1955-1962
    22Guo YJ, Chen L, Bai YP, et al. The ALDH2Glu504Lys polymorphism isassociated with coronary artery disease in Han Chinese: Relation withendothelial ADMA levels.Atherosclerosis,2010,211(2):545-550
    23Crabb DW, Edenberg HJ, Bosron WF, et al. Genotypes for aldehydedehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2)allele is dominant. J Clin Invest,1989,83(1):314-316
    24Takeuchi F, Isono M, Nabika T, et al. Confirmation of ALDH2as a Majorlocus of drinking behavior and of its variants regulating multiple metabolicphenotypes in a Japanese population. Circ J,2011,75(4):911-918
    25Yu C, Li Y, Chen W, et al. Genotype of ethanol metabolizing enzymegenes by oligonucleotide microarray in alcoholic liver disease in Chinesepeople. Chin Med J,2002,115(7):1085-1087
    26Corrao G, Rubbiati L, Bagnardi V, et al. Alcohol and coronary heartdisease: a meta-analysis. Addiction,2000,95(10):1505-1523
    27Mukamal KJ, Jensen MK, Gr nbaek M, et al. Drinking frequency,mediating biomarkers, and risk of myocardial infarction in women andmen. Circulation,2005,112(10):1406-1413
    28Gurevitz O, Jonas M, Boyko V, et al. Clinical profile and long-termprognosis of women<or=50years of age referred for coronaryangiography for evaluation of chest pain. Am J Cardiol,2000,85(7):806-809
    29Akosah KO, Gower E, Groon L, et al. Mild hypercholesterolemia andpremature heart disease: do the national criteria underestimate disease risk?J Am Coll Cardiol,2000,35(5):1178-1184
    1Goedde HW, Agarwal DP, Harada S, et al. Population genetic studies onaldehyde dehydrogenase isozyme deficiency and alcohol sensitivity. AmJ Hum Genet,1983,35(4):769-772
    2王吉耀,廖二元,胡品津.内科学(供8年制及7年制临床医学等专业用)[M].北京:人民卫生出版社,257-276
    3杨平,余宏伟,魏彤.丹红注射液治疗冠心病心绞痛的临床观察.中国医学创新,2010,7(3):31-32
    4Conway DS, Heeringa J, Van Der Kuip DA, et al. Atrial fibrillation andthe prothrombotic state in the elderly: the Rotterdam Study. Stroke,2003,34(2):413-417
    5Saving KL, Mankin PE. CD62expression during thrombus formation. Jpediatr Hematol Oncol,2003,25(3):266-269
    6Arnold WP, Mittal CK, Katsuki S, et al. Nitric oxide activates guanylatecyclase and increases guanosine3':5'-cyclic monophosphate levels invarious tissue preparations. Proc Natl Acad Sci U S A,1977,74(8):3203-3207
    7Gruetter CA, Gruetter DY, Lyon JE, et al. Relationship between cyclicguanosine3':5'-monophosphate formation and relaxation of coronaryarterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite andnitric oxide: effects of methylene blue and methemoglobin. J PharmacolExp Ther,1981,219(1):181-186
    8Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology,pathophysiology, and pharmacology. Pharmacol Rev,1991,43(2):109-142
    9Vondriska TM, Zhang J, Song C, et al. Protein kinase C epsilon-Srcmodules direct signal transduction in nitric oxide-induced cardioprotection:complex formation as a means for cardioprotective signaling. Circ Res,2001,88(12):1306-1313
    10Sasaki N, Sato T, Ohler A, et al. Activation of mitochondrialATP-dependent potassium channels by nitric oxide. Circulation,2000,101(4):439-445
    11Gori T, Di Stolfo G, Dragoni S, et al. The mechanism of nitrate-inducedpreconditioning. Clin Hemorheol Microcirc,2008,39(1-4):191-196
    12Chen Z, Zhang J, Stamler JS. Identification of the enzymatic mechanismof nitroglycerin bioactivation. Proc Natl Acad Sci U S A,2002,99(12):8306-8611
    13Li Y, Zhang D, Jin W, et al. Mitochondrial aldehyde dehydrogenase-2(ALDH2) Glu504Lys polymorphism contributes to the variation inefficacy of sublingual nitroglycerin. J Clin Invest,2006,116(2):506-11
    14Sydow K, Daiber A, Oelze M, et al. Central role of mitochondrialaldehyde dehydrogenase and reactive oxygen species in nitroglycerintolerance and cross-tolerance. J Clin Invest,2004,113(3):482-489
    15Wenzel P, Müller J, Zurmeyer S, et al. ALDH-2deficiency increasescardiovascular oxidative stress-evidence for indirect antioxidativeproperties. Biochem Biophys Res Commun,2008,367(1):137-143
    16Esplugues JV, Rocha M, Nu ez C, et al. Complex I dysfunction andtolerance to nitroglycerin: an approach based on mitochondrial-targetedantioxidants. Circ Res,2006,99(10):1067-1075
    17Li H, Borinskaya S, Yoshimura K, et al. Refined geographic distributionof the oriental ALDH2*504Lys (nee487Lys) variant. Ann Hum Genet,2009,73(Pt3):335-345
    18Chen Z, Foster MW, Zhang J, et al. An essential role for mitochondrialaldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad SciU S A,2005,102(34):12159-12164
    19张鹤,陈玉国,徐峰,等.乙醛脱氢酶2基因多态与硝酸甘油疗效相关性研究.中华内科杂志,2007,46(8):629-632
    20赵吉,孙爱军,邹云增,等. ALDH2基因多态性与稳定型心绞痛患者硝酸甘油有效性关联的实验研究.中国分子心脏病学杂志,2010,10(2):92-96
    21Kleschyov AL, Oelze M, Daiber A, et al. Does nitric oxide mediate thevasodilator activity of nitroglycerin? Circ Res,2003,93(9):e104-e112
    22Artz JD, Toader V, Zavorin SI, et al. In vitro activation of soluble guanylylcyclase and nitric oxide release: a comparison of NO donors and NOmimetics. Biochemistry,2001,40(31):9256-9264
    23Ogawa Y, Okumura K, Matsui H,O gaw a Y, et al. Relaxant propertiesmediated by nitroglycerin in aortic coarctation hypertensive rats. HeartVessels,2002,17(2):69-73
    24杜淑娴,刘玉清,田蕾,等.健康人乙醛脱氢酶2基因型对5-单硝酸异山梨酯缓释片药代动力学影响的研究.中国临床药理学与治疗,2008,13(8):909-912
    25Wenzel P, Hink U, Oelze M, et al. Number of nitrate groups determinesreactivity and potency of organic nitrates: a proof of concept study in AL-DH-2-/-mice. Br J Pharmacol,2007,150(4):526-533
    26Münzel T, Daiber A, Mülsch A. Explaining the phenomenon of nitratetolerance. Circ Res,2005,97(7):618-628
    27张少华.水蛭胶囊治疗不稳定型心绞痛的临床研究.四川中医,2004,22(4):34-35
    28O'Malley PG, Redberg RF. Risk refinement, reclassification, and treatmentthresholds in primary prevention of cardiovascular disease: incrementalprogress but significant gaps remain. Arch Intern Med,2010,170(17):1602-1603
    29Thadani U. Oral nitrates: more than symptomatic therapy in coronaryartery disease? Cardiovasc Drugs Ther,1997,11Suppl1:213-218
    1Vasiliou V, Nebert DW. Analysis and update of the human aldehydedehydrogenase (ALDH) gene family. Hum Genomics,2005,2(2):138-143
    2Goedde HW, Aqarwal DP. Pharmacogenetics of aldehyde dehydrogenase(ALDH). Pharmacol Ther,1990,45(3):345-371
    3Chen CH, Budas GR, Churchill EN, et al. Activation of aldehydedehydrogenase-2reduces ischemic damage to the heart. Science,2008,321(5895):1493-1495
    4Mukamal KJ, Chen CM, Rao SR, et al. Alcohol consumption and cardiov-ascular mortality among U.S. adults,1987to2002. J Am Coll Cardiol,2010,55(13):1328-1335
    5Li Y, Zhang D, Jin W, etal. Mitochondrial aldehyde dehydrogenase-2(ALDH2) Glu504Lys polymorphism contributes to the variation inefficacy of sublingual nitroglycerin. Journal of Clinical Investigation,2006,116(2):506-511
    6Chen Z, Foster MW, Zhang J, et al. An essential role for mitochondrialaldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad SciU S A,2005,102(34):12159-12164
    7Goedde HW, Aqarwal DP, Harada S, et al. Population genetic studies onaldehyde dehydrogenase isozyme deficiency and alcohol sensitivity. Am JHum Genet,1983,35(4):769-772
    8Li H, Borinskaya S, Yoshimura K,et al. Refined geographic distributionof the oriental ALDH2*504Lys (nee487Lys) variant. Ann Hum Genet,2009,73(Pt3):335-345
    9Zhang M, Shah AM. Role of reactive oxygen species in myocardialremodeling. Curr Heart Fail Rep,2007,4(1):26-30
    10SY, Gomelsky M, Duan J, et al. Overexpression of aldehyde dehydrogena-se-2(ALDH2) transgene prevents acetaldehyde-induced cell injury inhuman umbilical vein endothelial cells: role of ERK and p38mitogen-activated protein kinase. J Biol Chem,2004,279(12):11244-11252
    11Churchill EN, Disatnik MH, Mochly-Rosen D. Time-dependent and ethan-ol-induced cardiac protection from ischemia mediated by mitochondrialtranslocation of varepsilon PKC and activation of aldehyde dehydrogenase2. J Mol Cell Cardiol,2009,46(2):278-284
    12Doser TA, Turdi S, Thomas DP, et al. Transgenic overexpression of aldeh-yde dehydrogenase-2rescues chronic alcohol intake-induced myocardialhypertrophy and contractile dysfunction. Circulation,2009,119(14):1941-1949
    13Budas DR, Disatnik MH, Mochly-Rosen D. Aldehyde dehydrogenase2incardiac protection: a new therapeutic target? Trends Cardiovasc Med,2009,19(5):158-164
    14Zhang Y, Babcock SA, Hu N, et al. Mitochondrial aldehyde dehydrogena-se (ALDH2) protects against streptozotocin-induced diabetic cardiomyop-athy: role of GSK3β and mitochondrial function. BMC Med,2012,10:40
    15孙爱军,王克强,李杰,等.心功能衰竭大鼠模型心肌线粒体蛋白的差异表达分析.中国动脉硬化杂志,2004,12(2):183-185
    16俞佳艳,孙爱军,贾建国,等.转染乙醛脱氢酶2基因对心肌梗死后心衰小鼠心功能的影响.中国临床医学,2008,15(3):277-280
    17王洪巨,康品方,叶红伟,等.激动乙醛脱氢酶2对抗糖尿病大鼠心肌缺血/再灌注损伤的作用.中国应用生理学杂志,2012,28(2):133-137
    18Ma H, Guo R, Yu L, et al. Aldehyde dehydrogenase2(ALDH2) rescuesmyocardial ischaemia/reperfusion injury: role of autophagy paradox andtoxic aldehyde. Eur Heart J,2011,32(8):1025-1038
    19Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: adelay of lethal cell injury in ischemic myocardium. Circulation,1986,74(5):1124-1136
    20Liu GS, Thornton J, Van Winkle DM, et al. Protection against infarctionafforded by preconditioning is mediated by A1adenosine receptors inrabbit heart. Circulation,1991,84(1):350-356
    21Armstrong S, Downey JM, Ganote CE. Preconditioning of isolated rabbitcardiomyocytes: induction by metabolic stress and blockade by theadenosine antagonist SPT and calphostin C, a protein kinase C inhibitor.Cardiovasc Res,1994,28(1):72-77
    22Ytrehus K, Liu Y, Downey JM. Preconditioning protects ischemic rabbitheart by protein kinase C activation. Am J Physiol,1994,266(3Pt2):H1145-1152
    23Churchill EN, Murriel CL, Chen CH, et al. Reperfusion-inducedtranslocation of deltaPKC to cardiac mitochondria prevents pyruvatedehydrogenase reactivation. Circ Res,2005,97(1):78-85
    24Dorn GW2nd, Souroujon MC, Liron T, et al. Sustained in vivo cardiacprotection by a rationally designed peptide that causes epsilon proteinkinase C translocation. Proc Natl Acad Sci U S A,1999,96(22):12798-12803
    25Gray MO, Karliner JS, Mochly-Rosen D. A selective epsilon-proteinkinase C antagonist inhibits protection of cardiac myocytes fromhypoxia-induced cell death.J Biol Chem,1997,272(49):30945-30951
    26Inagaki K, Chen L, Ikeno F, et al. Inhibition of delta-protein kinase Cprotects against reperfusion injury of the ischemic heart in vivo.Circulation,2003,108(19):2304-2307
    27Liu GS, Cohen MV, Mochly-Rosen D, et al. Protein kinase C-epsilon isresponsible for the protection of preconditioning in rabbit cardiomyocytes.J Mol Cell Cardiol,1999,31(10):1937-1948
    28Murriel CL, Churchill E, Inagaki K, et al. Protein kinase Cdelta activationinduces apoptosis in response to cardiac ischemia and reperfusion damage:a mechanism involving BAD and the mitochondria. J Biol Chem,2004,279(46):47985-47991
    29Ping P, Zhang J, Qiu Y, et al. Ischemic preconditioning induces selectivetranslocation of protein kinase C isoforms epsilon and eta in the heart ofconscious rabbits without subcellular redistribution of total protein kinaseC activity. Circ Res,1997,81(3):404-414
    30Saurin AT, Pennington DJ, Raat NJ, et al. Targeted disruption of theprotein kinase C epsilon gene abolishes the infarct size reduction thatfollows ischaemic preconditioning of isolated buffer-perfused mousehearts. Cardiovasc Res,2002,55(3):672-680
    31Baines CP, Song CX, Zheng YT, et al. Protein kinase Cepsilon interactswith and inhibits the permeability transition pore in cardiacmitochondria.Circ Res,2003,92(8):873-880
    32Jab rek M, Costa AD, Burton JR, et al. Mitochondrial PKC epsilon andmitochondrial ATP-sensitive K+channel copurify and coreconstitute toform a functioning signaling module in proteoliposomes. Circ Res,2006,99(8):878-883
    33Bowling N, Huang X, Sandusky GE, et al. Protein kinase C-alpha and-epsilon modulate connexin-43phosphorylation in human heart.J Mol CellCardiol,2001,33(4):789-798
    34Ogbi M, Chew CS, Pohl J, et al. Cytochrome c oxidase subunit IV as amarker of protein kinase Cepsilon function in neonatal cardiac myocytes:implications for cytochrome c oxidase activity. Biochem J,2004,382(Pt3):923-932
    35Perlman DH, Bauer SM, Ashrafian H, et al. Mechanistic insights intonitrite-induced cardioprotection using an integrated metabolomic/proteom-ic approach. Circ Res,2009,104(6):796-804
    36Lagranha CJ, Steenbergen C, Murphy E. Male-female differences in posttranslational modifications of mitochondrial proteins. FASEB J,2009;23:508.1
    37Li SY, Li Q, Shen JJ, et al. Attenuation of acetaldehyde-induced cellinjury by overexpression of aldehyde dehydrogenase-2(ALDH2)transgene in human cardiac myocytes: role of MAP kinase signaling. JMol Cell Cardiol,2006,40(2):283-294
    38孙爱军,邹云增,贾剑国,等.乙醛脱氢酶2对心力衰竭大鼠的心脏保护作用.上海医学,2007,30:58
    39徐丹令,孙爱军,王时俊,等.乙醛脱氢酶2在大鼠心肌缺氧损伤中的抗凋亡作用.中国病理生理杂志,2006,22(4):683-686
    40Arnold WP, Mittal CK, Katsuki S, et al. Nitric oxide activates guanylatecyclase and increases guanosine3':5'-cyclic monophosphate levels invarious tissue preparations. Proc Natl Acad Sci U S A,1977,74(8):3203-3207
    41Gruetter CA, Gruetter DY, Lyon JE, et al. Relationship between cyclicguanosine3':5'-monophosphate formation and relaxation of coronaryarterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite andnitric oxide: effects of methylene blue and methemoglobin. J PharmacolExp Ther,1981,219(1):181-186
    42Moncada S, Palmer RM, Higgs EA. Review Nitric oxide: physiology, pat-hophysiology, and pharmacology. Pharmacol Rev,1991,43(2):109-42
    43Vondriska TM, Zhang J, Song C, et al. Protein kinase C epsilon-Srcmodules direct signal transduction in nitric oxide-induced cardioprotection:complex formation as a means for cardioprotective signaling. Circ Res,2001,88(12):1306-1313
    44Sasaki N, Sato T, Ohler A, et al. Activation of mitochondrial ATP-depend-ent potassium channels by nitric oxide. Circulation,2000,101(4):439-445
    45Gori T, Di Stolfo G, Dragoni S,et al. The mechanism of nitrate-inducedpreconditioning.Clin Hemorheol Microcirc,2008,39(1-4):191-196
    46Chen Z, Zhang J, Stamler JS. Identification of the enzymatic mechanismof nitroglycerin bioactivation. Proc Natl Acad Sci U S A,2002,99(2):8306-8311
    47Wenzel P, Müller J, Zurmeyer S, et al. ALDH-2deficiency increasescardiovascular oxidative stress-evidence for indirect antioxidativeproperties. Biochem Biophys Res Commun,2008,367(1):137-143
    48Esplugues JV, Rocha M, Nu ez C, et al. Complex I dysfunction andtolerance to nitroglycerin: an approach based on mitochondrial-targetedantioxidants. CircRes,2006,99(10):1067-1075
    49Daiber A, Wenzel P, OelzeM, et al. Increased superoxide production innitrate tolerance is associated with NAD(P)H oxidase and aldehydedehydrogenase2downregulation. J Mol Cell Cardiol,2007,42(6):1111-1118
    50Baharvand B, Dehai ME, Rasoulian B, et al. Delayed anti-arrhythmiceffect of nitroglycerin in anesthetized rats: involvement of CGRP, PKCand mK ATP channels. Int J Cardiol2009,135(2):187-192
    51Beretta M, Sottler A, Schmidt K, et al. Partially irreversible inactivation ofmitochondrial aldehyde dehydrogenase by nitroglycerin. J Biol Chem,2008,283(45):30735-30744
    52Guo R, Chen XP, GuoX, et al. Evidence for involvement of calcitoningene-related peptide in nitroglycerin response and association with mitoc-hondrial aldehyde dehydrogenase-2(ALDH2) Glu504Lys polymorphism.J Am Coll Cardiol,2008,52(11):953-960
    53Peng J, Li YJ. New insights into nitroglycerin effects and tolerance: role ofcalcitonin gene-related peptide.Eur J Pharmacol,2008,586(1-3):9-13
    54Chen Z, Stamler JS. Review Bioactivation of nitroglycerin by themitochondrial aldehyde dehydrogenase. Trends Cardiovasc Med,2006,16(8):259-265
    55Sydow K, Daiber A, Oelze M, et al. Central role of mitochondrialaldehyde dehydrogenase and reactive oxygen species in nitroglycerintolerance and cross-tolerance. J Clin Invest,2004,113(3):482-489
    56Hink U, Daiber A, Kayhan N, et al. Oxidative inhibition of themitochondrial aldehyde dehydrogenase promotes nitroglycerin tolerance inhuman blood vessels. J Am Coll Cardiol,2007,50(23):2226-2232
    57Towell J, Garthwaite T, Wang R. Erythrocyte aldehyde dehydrogenaseand disulfiram-like side effects of hypoglycemics and antianginals.Alcohol Clin Exp Res,1985,9(5):438-442
    58Mackenzie IS, Maki-Petaja KM, McEniery CM, et al. Aldehydedehydrogenase2plays a role in the bioactivation of nitroglycerin inhumans. Arterioscler Thromb Vasc Biol,2005,25(9):1891-1895
    59Gori T, Parker JD. Review Nitrate-induced toxicity and preconditioning: arationale for reconsidering the use of these drugs. J Am Coll Cardiol,2008,52(4):251-254
    60Perez-Miller S, Younus H, Vanam R, et al. Alda-1is an agonist andchemical chaperone for the common human aldehyde dehydrogenase2variant. Nat Struct Mol Biol,2010,17(2):159-164
    61Duan J, McFadden GE, Borgerding AJ, et al. Overexpression of alcoholdehydrogenase exacerbates ethanol-induced contractile defect in cardiacmyocytes. Am J Physiol Heart Circ Physiol,2002,282(4): H1216-H1222
    62Mak S, Lehotay DC, Yazdanpanah M, et al. Unsaturated aldehydesincluding4-OH-nonenal are elevated in patients with congestive heartfailure. J Card Fail,2000,6(2):108-114
    63Hintz KK, Relling DP, Saari JT, et al. Cardiac overexpression of alcohol
    dehydrogenase exacerbates cardiac contractile dysfunction, lipid
    peroxidation, and protein damage after chronic ethanol ingestion. Alcohol
    Clin Exp Res,2003,27(7):1090-1098
    1Goedde HW, Aqarwal DP. Pharmacogenetics of aldehyde dehydr-ogenase(ALDH). Pharmacol Ther,1990,45(3):345-371
    2Goedde HW, Aqarwal DP, Harada S, et al. Population genetic studies onaldehyde dehydrogenase isozyme deficiency and alcohol sensitivity. Am JHum Genet,1983,35(4):769-772
    3Li H, Borinskaya S, Yoshimura K,et al. Refined geographic distributionof the oriental ALDH2*504Lys (nee487Lys) variant. Ann Hum Genet,2009,73(Pt3):335-345
    4Chen Z, Foster MW, Zhang J, et al. An essential role for mitochondrialaldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad SciU S A,2005,102(34):12159-12164
    5Oota H, Pakstis AJ, Bonne-Tamir B, et al. The evolution and populationgenetics of the ALDH2locus: random genetic drift, selection, and lowlevels of recombination. Ann Hum Genet,2004,68(Pt2):93-109
    6曹西蓉,吴德生.中国五个民族人群样本中酒精代谢相关酶基因多态型分布比较.卫生研究,2002,31(3):156-159
    7李志祥,谢桂岚. ALDH2基因第12外显子(G/A)多态性在北京汉族人群的检测.中国现代医学杂志,2005,15(3):457-458
    8Muramatsu T, Wang ZC, Fang YR, et al. Alcohol andaldehydedehydrogenase genotypes and drinking behavior of Chineseliving in Shanghai. Hum Genet,1995,96(2):151-154
    9Chen CC, Lu RB, Chen YC, et al. Interaction between the functionalpolymorphisms of the alcohol-metabolism genes in protection againstalcoholism. Am J Hum Genet,1999,65(3):795-807
    10Goedde HW, Agarwal DP, Fritze G, et al. Distribution of ADH2andALDH2genotypes in different populations. Hum Genet,1992,88(3):344-346
    11Boonyaphiphat P, Thongsuksai P, Sriplung H, et al. Lifestyle habits andgenetic susceptibility and the risk of esophageal cancer in the Thaipopulation. Cancer Lett,2002,186(2):193-199
    12Tanaka F, Shiratori Y, Yokosuka O,et al. Polymorphism of alcohol-metabolizing genes affects drinking behavior and alcoholic liver disease inJapanese men. Alcohol Clin Exp Res,1997,21(4):596-601
    13Yu C, Li Y, Chen W, et al. Genotype of ethanol metabolizing enzymegenes by oligonucleotide microarray in alcoholic liver disease in Chinesepeople. Chin Med J (Engl),2002,115(7):1085-1087
    14Mukamal KJ, Conigrave KM, Mittleman MA, et al. Roles of drinking pat-tern and type of alcohol consumed in coronary heart disease in men. NEngl J Med,2003,348(2):109-118
    15Wada M, Daimon M, Emi M, et al. Genetic association between aldehydedehydrogenase2(ALDH2) variation and high-density lipoproteincholesterol (HDL-C) among non-drinkers in two large population samplesin Japan. J Atheroscler Thromb,2008,15(4):179-184
    16Nakamura Y, Amamoto K, Tamaki S, et al. Genetic variation in aldehydedehydrogenase2and the effect of alcohol consumption on cholesterollevels. Atherosclerosis,2002,164(1):171-177
    17Tan A, Sun J, Xia N. A genome-wide association and gene-environmentinteraction study for serum triglycerides levels in a healthy Chinese malepopulation.Hum Mol Genet,2012,21(7):1658-64
    18Kotani K, Sakane N, Yamada T. Association of an aldehydedehydrogenase2(ALDH2) gene polymorphism with hyper-low-densitylipoprotein cholesterolemia in a Japanese population. Ethn Dis,2012,22(3):324-328
    19Narita M, Kitagawa K, Nagai Y et al. Effects of aldehyde dehydrogenasegenotypes on carotid atherosclerosis. Ultrasound Med Biol,2003,29(10):1415-1419
    20孙华林.乙醛脱氢酶2基因多态性与脑梗死患者颈动脉粥样硬化斑块形成的相关性.山东大学学报(医学版),2012,50(7):65-67
    21Wyman RA, Fraizer MC, Keevil JG, et al. Ultrasound-detected carotidplaque as a screening tool for advanced subclinical atherosclerosis. AmHeart J,2005,150(5):1081-1085
    22Xu F, Chen YG, Geng YJ, et al. The polymorphism in acetaldehydedehydrogenase2gene, causing a substitution of Glu>Lys(504), is notassociated with coronary atherosclerosis severity in Han Chinese. TohokuJ Exp Med,2007,213(3):215-220
    23Takagi S, Iwai N, Yamauchi R, et al. Aldehyde dehydrogenase2gene is arisk factor for myocardial infarction in Japanese men. Hypertens Res,2002,25(5):677-681
    24Takeuchi F, Yokota M, Yamamoto K, et al. Genome-wide association stu-dy of coronary artery disease in the Japanese. Eur J Hum Genet,2012,20(3):333-340
    25Jo SA, Kim EK, Park MH, et al. A Glu487Lys polymorphism in the genefor mitochondrial aldehyde dehydrogenase2is associated with myocardialinfarction in elderly Korean men. Clin Chim Acta,2007,382(1-2):43-47
    26Xu F, Chen YG, Xue L, et al. Role of aldehyde dehydrogenase2Glu504lys polymorphism in acute coronary syndrome. J Cell Mol Med,2011,15(9):1955-1962
    27Guo YJ, Chen L, Bai YP, et al. The ALDH2Glu504Lys polymorphism isassociated with coronary artery disease in Han Chinese: Relation withendothelial ADMA levels.Atherosclerosis,2010,211(2):545-550
    28孙爱军,王克强,李杰,等.心功能衰竭大鼠模型心肌线粒体蛋白的差异表达分析.中国动脉硬化杂志,2004,12(2):183-185
    29Doser TA, Turdi S, Thomas DP, et al. Transgenic overexpression ofaldehyde dehydrogenase-2rescues chronic alcohol intake-inducedmyocardial hypertrophy and contractile dysfunction. Circulation,2009,119(14):1941-1949
    30Peng LM, Chen XP, Sun J, et al. Influence of ALDH2Glu504Lyspolymorphism on nitroglycerin response in chronic heart failure andinvolvement of Calcitonin Gene Related Peptide (CGRP). Int J ClinPharmacol Ther,2012,50(10):701-711
    31Saito K, Yokoyama T, Yoshiike N, et al. Do the ethanol metabolizingenzymes modify the relationship between alcohol consumption and bloodpressure? J Hypertens,2003,21(6):1097-1105
    32Chen L, Davey Smith G, Harbord RM,et al. Alcohol intake and bloodpressure: a systematic review implementing a Mendelian randomizationapproach. PLoS Med,2008,5(3):e52
    33J Minami J, Todoroki M, Ishimitsu T, et al. Effects of alcohol intake onambulatory blood pressure, heart rate, and heart rate variability in Japanesemen with different ALDH2genotypes. Hum Hypertens,2002,16(5):345-351
    34Takagi S, Baba S, Iwai N, et al. The aldehyde dehydrogenase2gene is arisk factor for hypertension in Japanese but does not alter the sensitivity topressor effects of alcohol: the Suita study. Hypertens Res,2001,24(4):365-370
    35Hasi T, Hao L, Yang L, Su XL. Acetaldehyde dehydrogenase2SNP rs671and susceptibility to essential hypertension in Mongolians: a case controlstudy. Genet Mol Res,2011,10(1):537-543
    36Wang Y, Zhang Y, Zhang J, et al. Association of a functionalsingle-nucleotide polymorphism in the ALDH2gene with essentialhypertension depends on drinking behavior in a Chinese Han population. JHum Hypertens,2012, May3[Epub ahead of print]
    37Hui P, Nakayama T, Morita A, et al. Common single nucleotidepolymorphisms in Japanese patients with essential hypertension: aldehydedehydrogenase2gene as a risk factor independent of alcohol consumption.Hypertens Res,2007,30(7):585-592
    38Esplugues JV, Rocha M, Nu ez C, et al. Complex I dysfunction andtolerance to nitroglycerin: an approach based on mitochondrial-targetedantioxidants. Circ Res,2006,99(10):1067-1075
    39Li Y, Zhang D, Jin W, et al. Mitochondrial aldehyde dehydrogenase-2(ALDH2) Glu504Lys polymorphism contributes to the variation inefficacy of sublingual nitroglycerin. J Clin Invest,2006,116(2):506-11
    40张鹤,陈玉国,徐峰,等.乙醛脱氢酶2基因多态与硝酸甘油疗效相关性研究.中华内科杂志,2007,46(8):629-632
    41赵吉,孙爱军,邹云增,等. ALDH2基因多态性与稳定型心绞痛患者硝酸甘油有效性关联的实验研究.中国分子心脏病学杂志,2010,10(2):92-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700