H9N2亚型禽流感病毒气溶胶发生与传染机制及其感染SPF鸡的特点
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类所认识的气源性传播的病毒性畜禽传染病如新城疫(Newcastle disease, ND)、禽流感(Avian Influenza, AI)、口蹄疫(Foot-and-Mouth disease, FMD)、猪繁殖障碍与呼吸综合征(Porcine reproductive and respiratory syndrome, PRRS)、鸡传染性支气管炎(Infectious bronchitis)等达到20多种。AI是危害最严重的家禽传染病之一,世界动物卫生组织(World Organisation for Animal Health, OIE)将其定为法定报告类疫病。人们普遍认为AI可以经过直接接触和包括气溶胶(或大液滴)或暴露于病毒污染物的间接接触两种途径传播。然而,禽流感病毒(Avian Influenza Virus, AIV)气溶胶的发生、传播与感染机制不详。因此,本课题建立了AIV气溶胶发生及传染的实验模型,动态检测了实验鸡AIV气溶胶的形成时间、浓度及气溶胶对健康鸡只的感染情况;对AIV经不同途径对SPF鸡的感染剂量进行了对比研究;进一步对AIV气溶胶感染SPF鸡后,在实验鸡体内的分布进行了动态观察,并分析了AIV感染对SPF鸡免疫功能的影响;在此基础上,收集生产鸡舍中的空气,应用荧光RT-PCR对AIV气溶胶进行了检测。本研究阐明了禽流感病毒气溶胶(AIV-Aerosol)的发生、传染过程与机制,揭示了AIV气溶胶的传染规律,对于认识像ND、FMD等病毒性气源性呼吸道传染病的传播感染机制,带来有益的启示。
     本研究分为4部分:
     1气载H9N2亚型禽流感病毒气溶胶的发生及其传播特性
     本研究建立了H9N2亚型禽流感病毒(AIV)气溶胶的传染模型,通过观察实验鸡对该病毒经直接接触及气溶胶传染的过程,以探讨AIV气溶胶的发生与传染机制,以及实验动物机体免疫应答状况。实验共进行两个重复:实验1(T1)和实验2(T2)。SPF鸡随机分为3组,每组15只:攻毒组(G1)、接触感染组(G2)和气溶胶感染组(G3),其中G1、G2饲养在隔离器A中,G3饲养在隔离器B中。G1的SPF鸡经点眼、滴鼻接种AIV,G2、G3的SPF鸡不接种病毒,分别经直接接触或气溶胶暴露感染AIV。定期用AGI-30收集隔离器A中的气体样品,测定其中的AIV气溶胶浓度;收集实验鸡的口咽和泄殖腔棉拭子样品,检测棉拭子中的AIV,确定排毒情况;收集实验鸡血液样品,检测抗体滴度。结果显示,T1和T2分别在攻毒后第3天和第2天检测到AIV气溶胶,其浓度在第7天达到高峰,分别为4800 PFU/m3空气和7200 PFU/m3空气;T1G1和T2G1组鸡分别在攻毒后第3天、第2天检测到排毒;G2组最早可在第4天检测到排毒,组内所有实验鸡均可测到排毒;G3组最早可在第7天检测到排毒,仅有部分实验鸡可测到排毒(T1G3:87%,T2G3:80%);G1组分别在攻毒后第5天和第4天开始检测到抗体,并在第21天和第14天达到高峰,峰值分别为7.07、7.20。这表明SPF鸡人工接种感染AIV后,可通过气管和泄殖腔排出病毒;进而引起饲料和饮水的污染,传播病毒;感染鸡排出的病毒能形成气溶胶,并随着空气流通传播。因此看出,除了经由污染物引起的直接接触传染外,即使彼此间没有直接接触,同一鸡舍或者相邻鸡舍的鸡只也可以通过气溶胶互相传染禽流感。
     2 H9N2亚型禽流感病毒不同感染途径感染剂量的测量
     本实验对AIV经不同途径对SPF鸡的感染剂量进行了对比研究。经呼吸道(分别通过人工定量发生AIV气溶胶和滴鼻感染SPF鸡)及消化道(喂服)定量感染AIV,通过检测鸡的特异性抗体判定鸡是否发生感染,计算半数感染剂量(ID50)。结果表明AIV气溶胶感染的ID50为212 TCID50,滴鼻感染ID50为398 TCID50,消化道感染的ID50为23988 TCID50。这说明了AIV对SPF鸡的感染力因感染途径的不同而有差异,气溶胶感染力最强,滴鼻途径次之,消化道感染最弱。
     3 H9N2亚型禽流感病毒气溶胶感染对SPF鸡免疫功能的影响及组织病理学观察
     用H9N2 AIV经气溶胶途径感染4周龄SPF鸡,对多个器官的病理变化进行了动态观察,并测量了免疫器官指数及体重的变化。结果发现,胸腺、法氏囊、脾脏的器官指数均出现一个上升、下降、再上升的过程。并且,从第5天开始,胸腺指数显著低于对照组(p<0.05),其他器官指数与对照组相比差异不显著(p>0.05)。剖检可见自第2天开始心、肝、肺、肾、胰腺、胸腺、法氏囊、脾等器官即出现不同程度的充血、肿胀;第5天前后开始萎缩,有的出现坏死灶,肾小管充满白色尿酸盐沉淀;之后逐渐恢复。病理切片显示心、肺、胰腺等出现炎性细胞浸润,肺、胰腺、胸腺、法氏囊、脾脏、肝脏等有出血、淋巴细胞减少、坏死、崩解等变化。ND和IBD疫苗免疫后,抗体水平较低,与对照组相比差异极显著(p<0.01)。这说明H9N2亚型AIV气溶胶感染可导致多器官尤其是免疫器官的损害,进而在一定程度上导致免疫抑制。
     4鸡舍环境H9亚型AIV气溶胶的检测
     用AGI-30空气微生物取样器收集山东省6个鸡场的舍内空气样品,同时采集鸡的气管和泄殖腔棉拭子,应用荧光RT-PCR对空气样品及棉拭子中的AIV进行了检测。6个被检鸡舍中,A、C、D和E4个鸡舍检测到气载H9亚型AIV,鸡舍B和F中未检查到病毒。所有被检鸡只的咽喉和泄殖腔棉拭子样品中均未检出该病毒。结果表明,在流行过H9亚型AIV的鸡舍内存在该病毒的气溶胶,这将对人和动物的健康造成危害,应该引起足够的重视。
Animal airborne transmission viral diseases ever known are more than 20, such as Newcastle disease (ND), Avian Influenza (AI) and Foot-and-mouth disease (FMD), Porcine reproductive and respiratory syndrome (PRRS) and so on. AI is included in the World Organization (OIE) for Animal Health list of notifiable diseases. Direct contact and indirect contact—including aerosols or droplets and contaminants—are two important routes through which AI spread. However, the occurrence and transmission mechanisms of AIV aerosol remained unknown, and lack of experimental testify. In this study, an infection model was established to determine the process of direct contact and aerosol infection of specific pathogen free (SPF) chickens after inoculation. We have not only established the time of aerosol occurrence but also determined the aerosol concentrations, dynamic changes and their relationship with virus shedding. Infection doses of AIV through different routes for SPF chickens were quantified and compared. Lesions of SPF chickens infected with AIV aerosol and effection on immune function were monitored dynamically. Furthermore, air samples from chicken farms were collected and airborne AIV were detected by fluorescent RT-PCR.
     Not only were these results important in better understanding the transmission mechanism of AI, but also had implications in controlling ND, FMD and other contagious diseases.
     This study consists of four parts:
     1 The occurrence and transmission characteristics of airborne H9N2 avian influenza virus
     To better understand the transmission route of H9N2 avian influenza virus (AIV), an infection model of H9N2 subtype AIV was established and two duplicate trials (T1 and T2) were conducted to observe the process of aerosol infection and direct contact in SPF chickens. Fifteen chickens (inoculation group, G1) were inoculated with H9N2 AIV and housed together with another 15 chickens (direct contact group, G2) in the same positive-negative-pressure isolator (A). Fifteen chickens (aerosol challenged group, G3) were bred in another isolator (B) which was connected with A. The SPF chickens of G1 were inoculated with AIV ocularly and nasally, and the SPF chickens of G2 and G3 were not inoculated with virus, but infected through direct contact and aerosols, respectively. Air samples in isolator A were collected with AGI-30 for the detection of aerosol forming. The seroconversion was assessed by the hemagglutination inhibition (HI) test and viral shedding was detected by RT-PCR and HI-Test. AIV aerosols were initially detected in chickens of T1 and T2 at day 3 and 2 post inoculation (dpi), respectively, reaching their peak concentrations of 7,200 PFU/m3 air and 4,800 PFU/m3 air at 7 dpi, respectively. AIV shedding was detected in chickens of T1G1 and T2G1 at 3 and 2 dpi, respectively. Virus shedding was detected in all chickens of G2, but only in 80-87% chickens of G3. Antibodies were initially detected at 5 and 4 dpi in chickens of T1G1 and T2G1, respectively, reaching their peak levels of 7.07 and 7.20 at 21 and 14 dpi, respectively. The results showed that after being infected with AIV, SPF chickens could excrete viruses via trachea and cloaca, thus leading to contamination of feedstuff and drinking water, as well as viral transmission; infected chickens may excrete viruses to form aerosols which may be transmitted by air flow. Therefore, it is obvious that in addition to direct contact infection due to contaminants, chickens in the same or adjacent henhouses could also be infected mutually with AI, despite no direct contact.
     2 Quantification and comparison of infection doses of H9N2 subtype avian influenza virus through different routes for SPF chickens
     In this study, infection doses of H9N2 subtype avian influenza virus through different routes for SPF chickens were quantified and compared. SPF chickens were randomly divided into 3 groups:aerosol infection group, intranasal infection group and gastrointestinal tract infection group. Each chicken was inoculated with the same volume of different dilution of AIV. Infection was determined by detecting of the specific antibody to AIV. Infection dose 50 percent (ID50) were determined by the method of Reed-Muench. The results showed that ID50 of aerosol infection was 212 TCID50, of intranasal route was 398 TCID50, and of gastrointestinal tract infection was 23988 TCID50. It indicated that the efficiency was different when SPF chickens infected with AIV through different routes, aerosol infection was stronger than that of intranasal route, and the gastrointestinal tract infection was the weakest.
     3 Impact on immunologic function of SPF chicken experimentally infected with H9N2 AIV aerosol
     The pathological changes of SPF chickens infected with H9N2 AIV aerosol were observed dynamically, and immune organ index and weight were measured. The results showed that the thymus index was significantly lower than the control group (p<0.05) since 5 dpi, but the bursa and spleen index showed no significant (p>0.05). At 2 dpi, histopathological changes of heart, liver, lung, kidney, pancreas, thymus, bursa and spleen showed hyperemia, hemorrhage and tumefaction. Atrophy of the thymus, bursa and spleen was detected at 5 dpi, and renal tubular filled with white urate deposition, then gradually recover. Pathology showed heart, lung and pancreas appeared inflammatory cell infiltration, and lung, pancreas, thymus, bursa, spleen, liver showed hemorrhage, lymphocytes decreased, necrosis and/or collapse. Antibodies reactions to ND and IBD vaccines were significantly lower compared with the control group (p<0.01). This showed that the H9N2 subtype AIV infection could cause multiple organs damages, in particular the immune organs, and thus led to immunosuppression to some extent.
     4 Detection of airborne H9 subtype avian influenza virus in chicken houses
     Air samples from 6 chicken farms of Shandong Province were collected by AGI-30 air sampler, and oropharyngeal and cloacal swabs were sampled simultaneously. Fifteen air samples were collected in each chicken house. Fluorescent RT-PCR was used for the detection of AIV in air and swab samples. Airborne H9 AIV was detected in four (A, B, C and E) out of 6 farms, and no AIV was detected in swabs. The results showed that airborne H9 AIV was detectable in farms after an outbreak. The AIV aerosol would do great harm to human and animal health and should be paid more attention to.
引文
柴同杰,柴家前,Wolfgang Mueller.牛舍空气微生物及向环境传播的研究[J].中国预防兽医学报,1999,21(4):311~313.
    柴同杰,牛钟相,姜世金等.动物舍空气微生物含量的研究[J].中国兽医科技,1999,29(3):26~27.
    柴同杰,赵云玲,刘辉等.畜禽舍微生物气溶胶含量及其空气动力学研究[J].中国兽医杂志,2001,37(3):9~11.
    柴同杰,赵云玲,刘文波等.鸡舍环境耐药细菌气溶胶及其向环境传播的研究[J].中国预防兽医学报,2003,25(3):209~214.
    柴同杰,王友信,田颖.兔舍中气载内毒素与气载革兰氏阴性菌检测[J].中国畜牧杂志.2006,42(3):47~49.
    车风翔.空气生物学研究现状和进展[J].环境科学,1986,(7):85.
    车凤翔.病毒气溶胶检测的进展和评论[J].中国卫生检验杂志,1992,2(5):259~263.
    车凤翔,孟令英,陈振生等.肾综合征出血热病毒气溶胶动物实验感染研究[J].解放军预防医学杂志,1993,1:26~31.
    车凤翔.生物气溶胶与人体疾病[J].中国卫生检验杂志,1997,7(4):252~256.
    车风翔,于玺华.空气微生物采检理论及其技术应用[M].北京:中国大百科全书出版社,1998,1,15.
    车风翔,李劲松,柴同杰.空气生物学原理与应用[M].科学出版社,2004,163,312~314,319,314,321,323~333,326~388,372~385,684~685.
    陈伯伦,张泽纪,陈伟斌.鸡A型禽流感病毒的分离与血清型初步鉴定[J].中国兽医杂志,1994,22:3~5.
    陈德蕙,张贺秋,王国华.电镜在病毒感染诊断中的应用[J].电子显微学报,1997,16(5):549~568.
    陈凤梅,吴时友,尹燕博等.鸡呼吸道传染病基因芯片诊断方法的建立[J].畜牧兽医学报,2005,36(12):1358~1362.
    陈吉祥,李广林,薛飞群等.禽流感HA基因疫苗脂质体的制备及其理化性质[J].中国兽医学报,1999,19(3):230~232.
    陈化兰,于康震,田国斌等.DN免疫诱导鸡对禽流感病毒的免疫保护反应[J].中国农业科学,1998,31(5):63~68.
    陈思怀,乔宪凤,魏庆信等.流感分子生物学诊断技术研究进展[J].饲料工业,2005,26(24):54~57.
    陈思怀,乔宪凤,华文君等.多重RT- PCR快速检测禽流感病毒的研究[J].湖北农业科学,2006,45(1):20~23.
    陈少渠,苗珍芳,李佃场等.PCR技术及其在禽流感诊断中的应用[J].河南畜牧兽医,2005,26(7):8~10.
    陈义平,吴力力,万洪全等.实验性感染H9亚型禽流感病毒对鸡的免疫机能及免疫器官的影响[J].中国兽医学报,2002,22(2):153~154.
    程安春,汪铭书,窦文波等.禽流感病毒致病性的分子基础和公共卫生意义[J].中国家禽,2004,26(9):53~56.
    段会勇,王磊,柴同杰.兔舍内气载需氧菌和气载葡萄球菌的检测[J].家畜生态学报,2005,4:96~99.
    弗克斯HA.气溶胶力学[M].科技出版社,北京,1960:5~60.
    弗里德兰德SK.烟、尘、霾[M].科技出版社,北京,1983:1~23,27~52,96~128.
    付朝阳,冯菊艳,唐秀英等.H9亚型禽流感油乳剂灭活苗免疫、免疫后攻毒及人工感染鸡抗体监测[J].中国预防兽医学报,2000,22(5):143~146.
    甘孟候.禽流感[M].北京:中国农业出版社,2002,1~10.
    甘孟候.全球禽流感的流行形势[J].中国预防兽医学报,2004,26(6):468~471.
    高璐,唐伟,胡仁莉等.不同接种途径对H9亚型禽流感病毒在SPF鸡的致病性[J].中国人兽共患病学报,2006,22(8):716~719.
    高璐,胡仁莉,陈祥等.SPF鸡人工感染禽源大肠杆菌、H9亚型禽流感病毒后的体液免疫应答和死亡率分析[J].畜牧兽医学报,2006,37(9):899~902.
    宫爱艳,吴胜昔,胡仁健等.荧光RT-PCR与常规RT-PCR检测禽流感病毒比较研究[J].重庆工学院学报,2006,20(11):8~10.
    谷长勤,罗玲,胡薛英等.H9N2亚型禽流感病毒诱导蛋鸡免疫器官细胞凋亡的动态变化[J].中国兽医学报,2008,28(1):12~14.
    郭元吉,赵惠芬,王敏等.流感病毒相变的发现及其意义.中华实验和临床病毒学杂志,1996,10(2):101~103.
    郭元吉,李建国,程小雯等.禽H9N2亚型流感病毒能感染人的发现[J].中华实验和临床病毒学杂志,1999,13:105~108.
    郭元吉,谢健屏,王敏等.从我国人群中再次分离到H9N2亚型流感[J].中华实验和临床病毒学杂志,2000,14:209~212.
    黄水洪,崔小兰.禽流感抗体的间接ELISA检测[J].当代畜牧,2005(12):10~12.
    金元昌,李景鹏,张龙等.禽流感病毒分子生物学研究进展[J].动物医学进展,2003,24(1):12~15.
    李海燕,于康震.间接酶联免疫吸附试验检测禽流感抗体的最佳工作条件[J].中国畜禽传染病,1998,20(4):233~235。
    李海燕,辛晓光,田国斌等.禽流感抗体斑点-ELISA诊断技术的研究[J].中国预防兽医学报,1999,21(5):321~325。
    李海燕,于康震,辛晓光.禽流感病毒重组核蛋白ELISA诊断技术的研究[J].中国预防兽医学报,2000,22(3):182~185。
    李劲松,刘敏霞,鹿建春等.EHFV气溶胶感染乳小鼠抗原在体内的动态分布[J].解放军预防医学杂志,1993,6:14~17.
    李劲扮,遇秀玲,鹿建春等.肾综合征出血热病毒气溶胶感染乳小鼠脑的研究[J].中国公共卫生学报,1994,4:197~199.
    李劲松,鹿建春,刘敏霞等.肾综合征出血热病毒气溶胶感染乳小鼠抗原定位和病理的研究[J].中华实验和临床病毒学杂志,1995,3:239~242.
    李劲松,鹿建春,车凤翔等.汉坦病毒气溶胶感染实验动物的特征和抗体反应[J].中国人兽共患病杂志,1998,5:3~6.
    李劲松,鹿建春,车凤翔等.汉坦病毒空气传播感染的实验室和野外采样研究[J].中国病毒学,2001,2:29~32.
    李静萍,盖晋宏,魏锁成等.H9N2亚型禽流感病毒对鸭免疫器官的组织学影响[J].西北民族大学学报(自然科学版),2008,29(3):56-58.
    李培进,张传本,刁天喜等.生物传感器及其在军事医学中的应用[J].人民军医,2002,5(5):249~251.
    刘凤芝,柴同杰,王海荣等.绿色荧光蛋白标记大肠杆菌气溶胶的发生及其传播模式[J].畜牧兽医学报,2009,40(6):886~891.
    刘红旗,张评浒,刘秀梵等.封闭式饲养鸡场H9N2亚型禽流感病毒HA基因在5年内 的遗传变异[J].微生物学报,2003,43(6):706~711.
    刘明,于康震,张云等.流感病毒血凝素基因在昆虫细胞中的表达[J].中国预防兽医学报,2000,22(增刊).
    柳洋,王玉林,鲁恩洁等.2005年广州市职业人群H5N1、H9N2血清学监测[J].华南预防医学,2007,33(3):27~28.
    陆承平等.兽医微生物学[M].第4版.中国农业出版社,2007,318~319.
    鹿建春,车凤翔,蔡增林等.流行性出血热鼠间气溶胶传播的实验研究[J].解放军预防医学杂志,1993,4:5~8.
    罗兆庄,王以银,刘延芳等.气溶胶在实验动物间传播流行性出血热的作用[J];安徽医学,1991,5:9~11.
    饶吉航,冉智光,苏承忠等.鹌鹑H9亚型禽流感[J].中国兽医杂志,2004,40(2):56.
    马鸣潇,金宁一等.检测禽流感病毒RT-PCR一步法的建立及H5、H9亚型的鉴定[J].中国生物制品学杂志,2005,18(5):415~417.
    马伟,高娟,梁玉玲等.肾综合征出血热病毒经气溶胶感染NIH系裸鼠实验研究[J].济宁医学院学报,2000,1:43,69
    石火英,刘秀梵.利用反向遗传技术研究H9N2亚型AIV传播途径的分子机制[J].微生物学报,2006,46(1):48~53.
    石火英,陈素娟,高崧等.H9N2亚型禽流感病毒传播途径特性的比较及其表面基因序列分析[J].中国兽医学报,2007,27(1):26~30.
    唐秀英,田国斌,于康震等.禽流感油乳剂灭活苗研究[J].中国预防兽医学报,1999,21(6):401~405.
    王秀荣,邓国华,于康震等.在DNA芯片平台上探测AIV不同亚型cDNA[J].中国农业科学,2005,38(2):394~398.
    王雅玲,柴同杰,吕国忠等.养殖环境真菌气溶胶的研究[J].家畜生态学报,2005,26(6):51~56.
    汪晓辉,扬瑞馥,张朝隆等.风疹病毒气溶胶的逆转录-半套式PCR检测[J].中国公共卫生学报,1996,15(1):10~12.
    韦平,秦爱建.重要动物病毒分子生物学[M].科学出版社,2008,4~5.
    武志强.禽流感的流行现状、诊断与预防[J].韶关学院学报(自然科学版),2003,24(6):117~121.
    许峰.全球高致病性禽流感的发病历史及流行特点[J].上海畜牧兽医通讯,2004,6:38.
    徐潜,范钦颖,段宁等.医院SARS重症监护病区空气传播途径的研究[J].中华医院感染学杂志,2005,15(12):1380~1382.
    薛景山.禽流感及其研究动态[J].中国兽医科技,1998,28(4):12~16.
    姚美玲,张彬,柴同杰.鸡兔舍耐药大肠杆菌气溶胶向环境扩散的研究[J].西北农林科技大学学报(自然科学版),2007,35(8):60~64.
    杨汉春.动物免疫学[M].中国农业大学出版社,2003,第二版,347~348.
    杨松涛,高玉伟,王承宇.虎源H5N1亚型禽流感病毒感染小鼠模型的建立[J].中国病毒学,2006,21(4):353~357.
    殷大奎等.口岸传染病控制[M].北京医科大学出版社,2000.
    殷震,刘景华.动物病毒学[M].北京科学出版社:1985,第二版,222~224,242~244,329~330,731~734.
    于玺华,车凤翔.现代空气微生物学及采检鉴技术[M].北京:军事医学科学出版社,1998:146.
    于玺华.空气微生物学及研究进展[J].洁净与空调技术,2005,4:29~33.
    余滨.禽流感的流行状况与研究进展[J].湖北预防医学杂志,2004,15(3):29~32.
    张家祝,陆永昌.禽流感与人类健康[J].检验检疫科学,2004,14(1):57~60.
    张朝隆,陈振生,李军保等.肾综合征出血热病毒气溶胶的生物稳定性实验研究[J].解放军预防医学杂志,1995,3:169~173.
    张朝隆,张松乐,李军保等.肾综合征出血热病毒气溶胶的物理稳定性实验研究[J].解放军预防医学杂志,1995,3:174~178.
    张心如,杜干英,张炜.空气卫生与禽的呼吸道疾病[J].四川畜牧兽医,2001,28(4):44.
    张勇,任战军,张淑侠等.非洲鸵鸟感染H9亚型禽流感病毒的诊断及防治[J].养禽与禽病防治.2008,6:42~43.
    张云,李越希,陶开华等.大白鼠吸入EHFV气溶胶后病毒在各脏器的分布[J].中国人兽共患病杂志,1993,1:122~125.
    朱士俊.现代医院感染学[M].人民军医出版社,1997:22-67.
    朱玉芝,杨明,苏扬.流感病毒快速检测分离鉴定新技术的应用[J].中国公共卫生管理,2006,22(3):233~234.
    Agranovski I, Myojo T, Braddock RD. Removal of aerosols by bubbling through porous media [J]. Aerosol Sci Tech,1999,31:249~257.
    Agranovski I, Myojo T, Braddock RD. Comparative study of the performance of nine filters utilized in filtration of aerosols by bubbling [J]. Aerosol Sci Tech,2001,35:852~859
    Agranovski I, Agranovski V, Grinshpun S, et al. Collection of airborne microorganisms into liquid by bubbling through porous medium [J]. Aerosol Sci Tech,2002,36:502~509.
    Agranovski I, Agranovski V, Reponen T, et al. Development and evaluation of a new personal sampler for viable airborne microorganisms [J]. Atmos Environ,2002,36:889~898.
    Agranovski I, Safatov A, Pyankov O, et al. Monitoring of viable airborne SARS virus in ambient air [J]. Atmos Environ,2004,38:3879~3884.
    Amaral Doel CM, Gloster J, Valarcher JF. Airborne transmission of foot-and-mouth disease in pigs:Evaluation and optimisation of instrumentation and techniques [J]. Vet J,2009,179(2): 219~224.
    Amigot Lazaro JA, Diez Ticio Ferrer T, et al. An aerobiological study in the rural areas of Aragon (Spain) with a high population of pigs [J]. Grana,2000,39(5),259~265.
    Alexander DJ. Avian influenza:recent developments [J]. Vet Bull,1982,52:341~359.
    Alexander DJ. The epidemiology and control of avian influenza and Newcastle disease [J]. Journal of Comp Pathol,1995,112:105~126.
    Alexander DJ. A review of avian influenza in different bird species [J]. Vet Microbiol,2000, 74:3~13.
    Alford RH, Kasel JA, Gerone PJ, et al. Human influenza resulting from aerosol inhalation [J]. Proc Soc Exp Biol Med,1966,122:800~804.
    Alvarez AJ, Buttner MP and Stetzenbach LD. PCR for Bioaerosol Monitoring:Sensitivity and Environmental Interference [J]. Appl Environ Microb,1995,61(10):3639~3644.
    Barbazan P, Thitithanyanont A, Misse D, et al. Detection of H5N1 Avian Influenza Virus from Mosquitoes Collected in an Infected Poultry Farm in Thailand [J]. Vector Borne Zoonotic Dis,2008,8(1):105~109.
    Brachmann PS, Ehrlich R, Eichenwald HF, et al. Standard sampler for assay of airborne microorganisms [J]. Science,1964,144:1295.
    Bridges CB, Kuehnert MJ, Hall CB. Transmission of Influenza:implications for control in health care settings [J]. Clin Infect Dis,2003,37:1094~1101.
    Brockmeier SL and Lager KM. Experimental airborne transmission of porcine reproductive and respiratory syndrome virus and Bordetella bronchiseptica [J]. Vet Microbiol,2002,89, 267~275.
    Brown IH, Banks J, Manvell RJ, et al. Recent epidemiology and ecology of influenza A viruses in avian species in Europe and the Middle East [J]. Dev Biol,2006,124:45~50.
    Brugh M. Highly pathogenic virus recovered from chickens infected with mildly pathogenic 1986 isolates of H5N2 avian influenz virus [J]. Avian Dis,1988,32(4):695~703.
    Butt KM, Smith GJ, Chen H, et al. Human Infection with an Avian H9N2 Influenza A Virus in Hong Kong in 2003 [J]. J Clin Microbiol,2005,43:5760~5767.
    Cameron KR, Gregory V, Banks J, et al. H9N2 subtype influenza A viruses in poultry in Pakistan are closely related to the H9N2 viruses responsible for human infection in Hong Kong [J]. Virol,2000,276:36~41.
    Cappucci DT. Isolation of avian influenza virus (subtype H5N2) from chicken eggs during a natural outbreak [J]. Avian Dis,1985,29:1195~1200.
    Carlen E, Lansfors B. Duck production in the Mekong Delta of Vietnam. A survey with emphasis on the development and the sustainability. Minor Field Studies No.209. Swedish University of Agricultural Sciences. International Office. Uppsala, November 2002.
    Chai T, Muller W, Zucker BA. Investigations on airborne microorganisms in animal housing. 1. Airborne anaerobic bacteria in a calf house with special regard to Clostridium perfringens [J]. Berliner und Munchener Tierarztliche Wochenschrift,1997,110(1):1~4.
    Chai TJ. Vorkommen von luftgetragenen Keimen in Rinderstaellen und der Stallumgebung unter besonderer Beruecksichtigung von Clostridium perfringens [J]. Juli, Journal-Nr.2184 the free university Berlin,1998:58~59.
    Chambers TM, Kawaoka Y, Webster RG. Protection of chickens from lethal influenza infection by vaccinia-expressed hemagglutinin [J]. Virol,1988,167(2):414~421.
    Chang CW, Chung H, Huang CF, et al. Exposure of workers to airborne mictoorganisms in open-air swine houses [J]. Applied and Environmental Microbiology,2001,67(1):155~ 161.
    Charnley J. Infection of the wounds [J]. Bri J Surgery,1969,56:641.
    Choi YK, Ozaki H, Webby RJ, et al. Continuing evolution of H9N2 influenza viruses in southeastern China [J]. J Virol,2004,78:8609~8614.
    Cong YL, Pu J, Liu QF, et al. Antigenic and genetic characterization of H9N2 swine influenza viruses in China [J]. J Gen Virol,2007,88:2035~2041.
    Cristiani DC, Wang XR, Pan LD et al. Longitudinal changes in pulmonary function and respiratory symptoms in cotton textile workers:a 15-yr follow-up study [J]. Am J Resp Crit Care,2001,163:847~853.
    Crowe CK, Harris DLH, Elliott LP, et al. A possible relationship between low facility dust and endotoxin levels and improved growth rates in pigs reared by IsoweanSM. Swine Health and Production,1996,4(5):231~236.
    Culliton BJ. Emerging Viruses, Emerging Threat [J]. Science,1990,247:279~280.
    Dewulf J, Laevens H, Koenen F, et al. Airborne transmission of classical swine fever virus under experimental conditions [J]. Vet Rec,2000,147:735~738.
    Diane LL, Naomi DS, Martha WM, et al. Coodministration of DNA encoding IL-6 and hemagglutin confers protection from influenza virus challenge in mice [J]. Virol,1998, (4): 1704~1708.
    Douglas RGJ. Influenza in man, In Kilbourne ED (ed), The influenza viruses and influenza. Academic Press, Inc, New York, NY.1975:375~447.
    Duan HY, Chai TJ, Wang YX, et al. Concentration of airborne endotoxins and airborne bacteria in Chinese rabbit houses [J]. Berl Muench Tieraeztlich Wochenschr,2006,119, Heft 1/2:40~44.
    Duan HY, Chai TJ, Cai YM et al. Transmission identification of Escherichia coli aerosol in chicken houses to their environments using ERIC-PCR. Sci China,2008 (2):164~173.
    Duan HY, Chai TJ, Liu JZ, et al. Source Identification of Airborne Escherichia Coli of Swine House Surroundings using ERIC-PCR and REP-PCR. Eviron Res,2009,109:511~ 517.
    Duc Dodon M, Gazzolo L, Quash GA, et al. Secretion of immunoglobulins by human lymphocytes after infection with influenza virus [J]. J Gen Virol,1982,63:441~450.
    Dutkiewicz J, Pomorski ZJH. Airborne microorganisms and endotoxin in animal houses [J]. Grana,1994,33:2,85~90.
    Dutkiewicz J, Krysinska-Traczyk E, Skorskal C, et al. Exposure of agricultural workers to airborne microorganisms and endotoxin during handling of various vegetable products. Aerobiologia,2000,16:193~198.
    Echavarria M, Kolavic SA, Cersovsky SY, et al. Detection of Adenoviruses (AdV) in Culture-Negative Environmental Samples by PCR during an AdV-Associated Respiratory Disease Outbreak [J]. J Clin Microbiol,2000,38(8):2982~2984.
    Edmonds RL. Aerobiology [M]. Dowden, Hutchinson & Ross, inc. Stroudsburg Pennsylvania, 1981:11~19.
    Giese M, Harder TC, Teifke JP, et al. Experimental Infection and Natural Contact Exposure of Dogs with Avian Infl uenza Virus (H5N1) [J]. Emerg Infect Dis,2008,14(2):308~310.
    Gilbert M, Xiao X, Chaitaweesub P, et al. Avian influenza, domestic ducks and rice agriculture in Thailand [J]. Agric Ecosyst Environ,2007,119:409~415.
    Gross PA. Death from nosocomial infection experience a university hospital and a community hospital [J]. Am J Med,1980,68:219.
    Guan Y, Shortridge KF, Krauss S, et al. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? [J]. Proc Natl Acad Sci,1999,96:9363~9367.
    Guo YJ, Krauss S, Senne DA, et al. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia[J]. Virol,2000,267:279~288.
    Hang J, Zhou Wei, Wang X et al. Microsomal epoxide hydrolase, endotoxin and lung function decline in cotton textile workers [J]. Am J Resp Crit Care,2005,171:165~170.
    Hemmes JH, Winkler KC, Kool SM. Virus survival as a seasonal factor in influenza and poliomyelitis [J].Nature,1960,188:430~431.
    Hemmes JH, Winkler K, Kool SM. Virus survival as a seasonal factor in influenza and poliomyelitis.Antonie Van Leeuwenhoek,1962,28:221~233.
    Henle W, Henle G, Stoler J, et al. Experimental exposure of human subjects to viruses of influenza [J]. J Immunol,1945,52:145~165.
    Hermann JR, Hoff SJ, Yoon KJ, et al. Optimization of a Sampling System for Recovery and Detection of Airborne Porcine Reproductive and Respiratory Syndrome Virus and Swine Influenza Virus [J]. Appl Environ Microbiol,2006,72(7):4811~4818.
    Hers JF and Winkler KC. Airborne transmission and airborne infection [M]. Oosthock Publishing Company, Utrecht, The Netherland,1973:445.
    Hinshaw VS. Water-borne transmission of avian influenza viruses [J]. Intervirol,1979,11: 66~68.
    Hogan CJ, Kettleson EM, Lee MH, et al. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J Appl Microbiol,2005, 99:1422~1434.
    Homme PJ, Easterday BC. Avian influenza virus infections. Ⅳ. Response of pheasants, ducks and geese to influenza A/turkey/Wisconsin/1966 virus [J]. Avian Dis,1970,14:285~290.
    Holt P S, Latimer J M. Stimulatory effect of avian influenza virus on chicken lymphocytes [J]. Avian Dis,1989,33:743~749.
    Holt P S. Enhancement of chicken lymphocyte activation and lymphok ine release by avian influenza virus [J]. Dev Comp Immunol,1990,14:447~455.
    Hu WQ, Bai BK, Hu ZH, et al. Development and Evaluation of a Multitarget Real-Time Taqman Reverse Transcription-PCR Assay for Detection of the Severe Acute Respiratory Syndrome-Associated Coronavirus and Surveillance for an Apparently Related Coronavirus Found in Masked Palm Civets [J]. J Clin Microbiol,2000,43(5):2041~2046.
    Hugh-Jones M, Allan WH, Dark FA, et al. The evidence for the airborne spread of Newcastle disease [J]. J Hyg 1973; 71(2):325~339.
    Hulse-Post DJ, Sturm-Ramirez KM, Humber J, et al. Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia [J]. Proc Natl Acad Sci,2005,102(30):10682~10687.
    Janice MR, Kirsten JF, Juergen S, et al. Protection against a lethal avian influenza A virus in a mammalian system [J]. J virol,1999,73(2):1453~1459.
    Jones AM, Harrison RM. The effects of meteorological factors on atmospheric bioaerosol concentrations-a review [J]. Sci Total Environ,2004,326:151~180.
    Katzen F, Becker A, Veronica M, et al. New mobilizable vectors suitable for gene replacement in gram negative bacteria and their use in mapping of the 3'end of the Xanthomonas campestris pv. campestris gum operon [J]. Appl Environ Microbiol,1999,65(1):278~282.
    Kawaoka Y, Nestorowicz A, Alexander DJ, et al. Molecular allalyses of the hemagglutinin genes of H5 influenza virses:origin of a virulent turkey strain [J]. Virol,1987,158:218~ 227.
    Kennedy FS, Zhou NN, Cuan YL, et al. Charaeterization of avian H5N1 influenza viruses from poultry in HongKong [J].virol,1998,252:331~342.
    Khalenkov A, Laver WG, Webster RG. Detection and isolation of H5N1 influenza virus from large volumes of natural water [J]. J Virol Methods,2008,149:180~183.
    Kida H, Yanagawa R and Matsuoka Y. Duck influenza lacking evidence of disease signs and immune response [J]. Infect Immun,1980,30(2):547~553.
    Kodihalli S, Sivanandan V, Nagaraja K V, et al. A type-specific avian influenza virus subunit vaccine for turkeys:induction of protective immuniry to challenge infection [J]. Vaccine, 1994,12(5):1467~1472.
    Kristensen CS, Botner A, Takai H, et al. Experimental airborne transmission of PRRS virus [J]. Vet Microbiol,2004,99(3-4):197~202.
    Kuiken T, Rimmelzwaan Q van Riel D, et al. Avian H5N1 Influenza in Cats [J]. Science, 2004,306:241.
    Kung NY, Morris RS, Perkins NR, et al. Risk for infection with highly pathogenic influenza A virus (H5N1) in chickens, Hong Kong,2002 [J]. Emerg Infect Dis,2007,13:412~418.
    Landman WJ, Schrier CC. Avian influenza-Eradication from commercial poultry is still not in sight [J]. Tijdschrift voor Diergeneeskunde,2004,129:782~796.
    Laudert E, Sivanandan V, Halvorson D. Effect of an H5N1 avian influenza virus infection on the immune system of mallard ducks [J]. Avian Dis,37:845~853.
    Lee CW, Song CS, Lee YJ, et al. Sequence analysis of the hemagglutinin gene of H9N2 Korean avian influenza viruses and assessment of the pathogenic potential of isolate MS96 [J]. Avian Dis,2000,44:527~535.
    Lee YJ, Shin JY, Song MS, et al. Continuing evolution of H9 influenza viruses in Korean poultry[J]. Virol 2006,359:313~323.
    Leung YH, Zhang LJ, Chow CK, et al. Poultry drinking water used for avian influenza surveillance[J]. Emerg Infect Dis,2007,13(9):1380~1382.
    Li C, Yu K, Tian G, et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China[J]. Virol,2005,40:70~83.
    Li KS, Xu KM, Peiris JS, et al. Characterization of H9 subtype influenza viruses from the ducks of southern China:a candidate for the next influenza pandemic in humans? [J]. J Virol,2003,77:6988~6994.
    Li X, Chai T, Wang Z, et al. Occurrence and transmission of the newcastle disease virus aerosol originating from infected chickens under experimental conditions [J]. Vet Microbiol,2009,136(3-4):226~232.
    Li X, Qiu Y, Yu A, et al. Degenerate primers based RT-PCR for rapid detection and differentiation of airborne chicken Newcastle disease virus in chicken houses [J]. J Virol Met,2009,158:1-5.
    Lin XJ, Willeke K, Ulevicius V, et al. Effect of sampling time on the collection efficiency of all-glass impinger [J]. Am Ind Hyg Associat J,1997,58:480~488.
    Lin XJ, Reponen TA, Willeke K, et al. Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid [J]. Atmos Environ,1999,33:4291~4298.
    Lin YP, Shaw M, Gregory VK, et al. Avian-to-human transmission of H9N2 subtype influenza A viruses:Relationship between H9N2 and H5N1 human isolates [J]. Proc Natl Acad Sci, 2000,97:9654-9658.
    Liu H, Liu X, Cheng J, et al. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996-2001 [J]. Avian Dis,2003,47:116~127.
    Lowen AC, Mubareka S, Tumpey TM, et al. The guinea pig as a transmission model for human influenza viruses [J]. Proc Natl Acad Sci,2006,103 (26):9988~9992.
    Lu H, Castro AE, Pennick K, et al. Survival of avian influenza virus H7N2 in SPF chickens and their environments [J]. Avian Dis,2003,47:1015~1021.
    Makarova NV, Kaverin NV, Kauss S, et al. Transmission of Eurasian avian H2 influenza virus to shorebirds in North America [J]. J Gen Virol,1999,80:3167~3171.
    Markwell DD and Shortridge KF. Possible waterborne transmission and maintenance of influenza viruses in domestic ducks [J]. Appl Environ Microbiol,1982,43(1):110~115.
    Mars MH, de Jong MC, van Maanen C, et al. Airborne transmission of bovine herpesvirus 1 infections in calves under field conditions [J]. Vet Microbiol,2000,76:1~13.
    Matthes S. Art und zusammensetzung der luftverunreinigungen in der nutztierhaltung und ihre wirkung in der stallumgebung [J]. Dtsch Tieraeztl Wschr,1979,36:262~265.
    McCluskey R, Sandin R, Greene J. Detection of airborne cytomegalovirus in hospital room of immuncompromised patients [J]. J Virol Methods,1996,56(1):115~118.
    Mo IP, Brugh M, Fletcher OJ, et al.Comparative pathology of chickens experimentally inoculated with avian influenza viruses of low and high pathogenicity [J]. Avian Dis,1997, 41(1):125~136.
    Moser MR, Bender TR, Margolis HS, et al. Outbreak of influenza aboard a commercial airliner [J]. Am J Epidemiol,1979,110:1~6.
    Mubareka S, Lowen AC, Steel J, et al. Transmission of Influenza Virus via Aerosols and Fomites in the Guinea Pig Model [J]. J Infecti Dis,2009,199(6):858~865.
    MuellerW and Wieser P. Dust and microbial emissions from animal production. In:Strauch D (Ed):Animal production and environmental health [M]. Elsevier sci pub, Amsterdam, Oxford,47~89.
    Myatt TA, Johnston SL, Rudnick S, et al. Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay [J]. BMC Pub Heal, 2003,3(5):1~7.
    Naeem K, Ullah A, Manvell RJ, et al. Avian influenza A subtype H9N2 in poultry in Pakistan [J].Vet Rec,1999,145:560.
    Newman J, Halvorson D, Karunakaran D. Complications assocated with avian influenza infections. In:Proceedings of the First International Symposium on Avian Influenza. US Animal Health Association, Richmond, VA.1981.
    Nili H, Asasi K. Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran [J]. Avian Pathol,2002,31:247~252.
    Normile D. Infectious diseases. Ducks may magnify threat of avian flu virus [J]. Science, 2004,306(5698):953.
    OIE,2008. http://ww.oie.int/eng/normes/mmanual/2008/pdf/2.03.04_AI.pdf.
    OIE. Manual of standards for Diagnostic Tests and Vaccines for Terrestrial Animals 2008 [M]. Paris, France,2008,465~481.
    Ong WT, Omar AR, Ideris A, et al. Development of a multiplex real-time PCR assay using SYBR Green 1 chemistry for simultaneous detection and subtyping of H9N2 influenza virus type A [J]. J Virol Methods,2007,144:57~64.
    Peiris M, Yune KY, Leung CW, et al. Human infection with influenza H9N2 [J]. Virus Res, 1999,354(9182):916.
    Peiris JS, Guan Y, Markwell D, et al. Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China:potential for genetic reassortment? [J]. J Virol,2001,75:9679~9686.
    Peiris JS, de Jong MD, Guan Y. Avian influenza virus (H5N1):a threat to human health [J]. Clin Microbiol Rev,2007,20(2):243~267.
    Pereda AJ, Uhart M, Perez AA, et al. Avian influenza virus isolated in wild waterfowl in Argentina:Evidence of a potentially unique phylogenetic lineage in South America [J]. Virol,2008,378(2):363~370.
    Perez DR, Lim W, Seiler JP, et al. Role of quail in the interspecies transmission of H9 influenza A viruses:molecular changes on HA that correspond to adaptation from ducks to chickens [J]. J Virol,2003,77:3148~3156.
    Perez DR, Webby RJ, Hoffmann E, et al. Land-based birds as potential disseminators of avian mammalian reassortant influenza A viruses [J]. Avian Dis,2003,47:1114~1117.
    Perk S, Panshin A, Shihmanter E, et al. Ecology and molecular epidemiology of H9N2 avian influenza viruses isolated in Israel during 2000-2004 epizootic [J]. Dev Biol (Basel),2006, 124:201~209.
    Perroncito E. Epizoozia tifoide nei gallinacei [J]. Ann Acad Agric,1878,21:87.
    Robinson HL, Hunt LA, Webster RG, et al. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA [J]. Vaccnie, 1993,11(9):957~960.
    Ross MA, Curits L, Scheff PA, et al. Association of asthma symptoms and severity with indoor bioaerosolse. Allergy,2000,55(8):705~711.
    Sawyer MH, Chamberlin CJ, Wu YN, et al. Detection of varicella-zoster virus DNA in air samples from hospital rooms [J]. J Infect Dis,1994,169(1):91~94.
    Senne DA, Panigrahy B, Kawaoka Y, et al. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses:amino acid sequence at the HA cleavage site as a marker of pathogenicity potential [J]. Avian Dis,1996,40:425~37.
    Schafer W. Sero-immunologic studies on incomplete forms of the virus of classical fowl plague (German) [J]. Arch Exp Vet Med,1955,9:218~230.
    Schwarte LH and Mathews J. Aerosol properties of lyophilized hog cholera virus. Vet Med, 1954,49:233~234.
    Sharp GB, Kawaoka Y, Wright SM, et al. Wild ducks are the reservoir for only a limited number of influenza A subtypes [J]. Epidemiol Infect,1993,110:161~176.
    Shi WF, Gibbs MJ, Zhang YZ, et al. Genetic analysis of four porcine avian influenza viruses isolated from Shandong, China [J]. Arch Virol,2008,153:211~217.
    Shortridge KF, Zhou NN, Guan Y, et al. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong [J]. Virol,1998,252:331~342.
    Snyder AP, Maswadeh WM, Tripathi A, et al. Detection of gram-negative Erwinia herbicola outdoor aerosols with pyrolysis--gas chromatography/ion-mobility spectrometry [J]. Field Analytical Chemistry and Technology.2000,4(2-3):111~126.
    Songserm T, Amonsin A, Jam-on R, et al. Fatal Avian Influenza A H5N1 in a Dog [J]. Emerg Infect Dis,2006,12(11):1744-1747.
    Sturm-Ramirez KM, Hulse-Post DJ, Govorkova EA, et al. Are Ducks Contributing to the Endemicity of Highly Pathogenic H5N1 Influenza Virus in Asia? [J]. J Virol,2005,79(17): 11269-11279.
    Sutmoller P, McVicar JW, Cottral GE. The Epizootiologieal Importance of Foot-and-Mouth disease carriers I. Experimentally produced foot-and-mouth disease carriers in susceptible and immune cattle [J]. Archiv fur die gesamte Virusforschung,1968,23:227~235.
    Swayne DE, Radin MJ, Hoepf TM, et al. Acute renal failure as the cause of death in chickens following intravenous inoculation with avian influenza virus A/ Chicken/ Alabama/ 7395/ 75(H4N8) [J]. Avian Dis,1994,38(1):151~157.
    Swayne D E, Beck J R, Mickle T R. Efficacy of recombinant fowl poxvirus vaccine in protecting chickens against a highly pathogenic Mexican origin H5N2 avian influenza virus [J]. Avian Dis,1997,41(4):910~922.
    Takizawa T, Matsukawa S. Induction of programmed cell death (apoptosis) by influenza virus infection in tissue culture cells [J]. J Gen Virol,1993,74:2347~2355.
    Tellier R. Review of aerosol transmission of influenza A virus [J]. Emerg Infect Dis,2006,12: 1657~1662.
    Tellier R. Aerosol transmission of influenza A virus:a review of new studies [J]. Journol of the Royal Society Interface,2009,6 Suppl 6:S783~790.
    Trincado C, Dee S, Jacobson L, et al. Attempts to transmit porcine reproductive and respiratory syndrome virus by aerosols under controlled field conditions [J]. Vet Rec,2004, 154 (10):294~297.
    Tseng CC, Li CS. Collection efficiencies of aerosol samplers for virus-containing aerosols [J]. J Aerosol Sci,2005,36:593~607.
    Van Campen H, Easterday BC, Hinshaw VS. Destruction of lymphocytes by a virulent influenza A vires [J]. J Gen Virol,1989,70:467~472.
    Wang YL, Chai TJ, Lu GZ, et al. Simultaneous detection of airborne Aflatoxin, Ochratoxin and Zearalenone in a poultry house by immunoaffinity clean-up and high-performance liquid chromatography [J]. Environ Res,2008,107:139~144.
    Webster RG and Laver WG. Antigenic variations of influenza viruses, In:Kilbourne ED (ed), The influenza viruses and influenza. Academic Press, Inc, New York,1975:209~314.
    Webster RG, Geraci JR, Petursson G, et al. Conjunctivitis in human beings caused by influenza A virus of seals [J]. N Engl J Med,1981,304:911.
    Webster RG, Hinshaw VS, Bean WJ, et al. Characterization of an influenza A virus from seals [J]. Virol,1981,113:712~724.
    Webster R G. Influenza virus:transmission between species and relevance to emergence of the next human pandemic [J]. Arch Virol Suppl,1997,13:105~113.
    Webster RG, Guan Y, Peiris M, et al. Characterization of H5N1 influenza viruses that continue to circulate in geese in southeastern China [J]. J Virol,2002,76:118~126.
    Webster RG. Multiple genotypes of nonpathogenic H6N2 influenza viruses isolated from chickens in California [J]. Avian Dis,2003,47:905~910.
    Weesendorp E, Wil JML, Stegeman A,et al. Detection and quantification of classical swine fever virus in air samples originating from infected pigs and experimentally produced aerosols [J]. Vet Microbiol,2007,127(1-2):50~62.
    Wood GW, Banks J, Strong I, et al. An avian influenza virus of H10 subtype that is highly pathogenic for chickens but lacks multiple basic amino acids at the haemagglutinin cleavage site [J]. Avian Pathol,1996,25:799~806.
    Xing Z, Cardona CJ, Li J, et al. Modulation of the immune responses in chickens by low pathogenicity avian influenza virus H9N2 [J]. J Gen Virol,2008,89:1288~1299.
    Xu C, Fan W, Wei R, et al. Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus [J]. Microbes Infect,2004,6:919~925.
    Xu KM, Li KS, Smith GJD, et al. Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China,2000 to 2005 [J]. J Virol,2007,81:2635~2645.
    Xu KM, Smith GJ, Bahl J, et al. The genesis and evolution of H9N2 influenza viruses in poultry from southern China,2000 to 2005 [J]. J Virol,2007,81:10389~10401.
    Yaling Wang, Tongjie Chai, Guozhong Lu, et al. Simultaneous Detection of Airborne Aflatoxin, Ochratoxin and Zearalenone in a Poultry House by Immunoaffinity Clean up and High-Performance Liquid Chromatography [J]. Environ Res,2008,107:139~144.
    Yen HL, Cheng MC, Liu JL, et al. Influenza surveillance in poultry market and its inter-species transmission in Taiwan. International Congress Series,2001,1219:201~211.
    Miao ZM, Chai TJ, Qi Ch, et al. Composition and variability of airborne fungi in an enclosed rabbit house in China [J]. Aerobiologia,2010,26:135~140.
    Zhong ZB, Chai TJ, Duan HY, et al. REP-PCR tracking of the origin and spread of airborne Staphylococcus aureus in and around chicken house [J]. Indoor Air,2009,19:511~516.
    Zucker BA, Trojan S, and Muller W. Airborne gram-negative bacterial flora in animal houses [J]. J Vet Med B Infect Dis Vet Public Health,2000,47:37~46.
    Zucher B A, Muller W. Airborne microorganisms in animal's stables.3. Relationship between inhaled endotoxins, dust and airborne bacteria in a poultry housing unit [J]. Berliner und Munchener Tierarztliche Wochenschrift,2000,113(7/8):279~283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700