荷电液体雾化的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕荷电液体雾化过程进行了系统而深入的理论和试验研究,研究内容包括荷电机理、荷电射流雾化机理、双流体喷嘴雾化特性、液滴电荷衰减规律,液滴破碎,并在此基础上研制开发了高压静电喷洒灭蝗车。本文的研究工作得到了国家发展和改革委员会高新技术产业化项目的资助。
     1、系统地研究了荷电机理,研究了电导率、电压、液滴粒径等参数对荷质比的影响。对针电极、环电极诱导电场进行了数值模拟,并以此为依据设计了针—环组合电极,并对电极电场、荷电液滴群空间电荷诱导电场进行了分析,得出了目标物表面感应电荷分布规律。
     2、建立了接触式充电的荷电射流雾化试验系统,通过流量特性试验发现,荷电毛细管流量仅与压强有关,与电压无关,并结合双电层模型进行了理论分析。研究了不同流量、电压下的雾化模式,着重分析了锥—射流模式下液体流动特征,分析了电导率、粘度、电压等参数对射流破碎长度的影响。根据静电理论建立了作用在液体上的静电应力张力,从受力平衡角度分析了液锥形状及其影响因素,研究发现流量越高,液锥锥角越小,电极电压越高,液锥锥角越大,并与其他研究者的实验拍摄的图像进行了对比验证。
     3、以线性不稳定性理论为基础,根据静电理论、连续性方程以及欧拉运动微分方程建立了小扰动下荷电射流雾化的数学模型,推导了色散方程,为荷电射流雾化的深入研究提供了理论基础。
     4、设计了两种新型的双流体喷嘴,1号双流体喷嘴气液直接混合,2号双流体喷嘴先将气体分成多股小径气流,之后再与液体混合。安装了双流体喷嘴雾化试验系统,进行了流量特性、雾化特性试验,考察了高压静电场对液滴粒径、液滴速度分布特性的影响。试验结果显示,气液直接混合的双流体喷嘴具有更宽的流量调节范围,雾化均匀性更好;两种喷嘴外部流场中,轴向速度、径向速度分布规律相同,轴向速度在轴心处最大,沿径向逐渐减小,而径向速度在轴心处为0,沿径向逐渐增加。
     5、首次结合荷电液滴的库仑分裂特性、电荷衰减以及蒸发过程,分析了液滴与周围环境气体间的传热传质,输运过程中液滴带电量的衰减规律,建立了气动力、静电力和表面张力共同作用下的荷电液滴破碎数学模型。研究表明,气液相对速度、液滴温度的增加,使荷电液滴破碎的临界荷质比降低。蒸发作用下液滴粒径下降,对于电荷衰减缓慢的液体,荷质比明显增加,一旦达到临界荷质比,液滴就开始破碎,实现二次雾化。对气流作用下的荷电液滴破碎进行了数值模拟,结果表明,随着We数的增加,依次出现袋形破碎、剪切破碎以及爆炸破碎。
     6、在以上研究的基础上,整合了荷电雾化技术、双流体雾化技术、轴流风送技术,研制开发了高压静电喷洒灭蝗车,进行了系统的整车性能试验和实地灭蝗试验。试验结果表明,高压静电灭蝗车的雾滴粒径与沉积分布均呈现双峰特性,荷电喷雾的灭蝗效果远远高于传统喷雾,药液种类、喷量、电极电压等参数对杀灭效果有很大影响;喂毒性药剂的灭蝗效果比触杀性药剂好,当喷量为1.0L/min时蝗虫杀灭率可达93%以上。高压静电喷洒灭蝗车的成功开发,为大型地面植保机械的设计与改进提供了基础。
Based on series fundamental experiments and theoretical analyses, the charged atomization is studied systematically and comprehensively in this thesis. The research involves charge mechanism, charged atomization mechanism, atomization characteristics of two-fluid spray nozzle, charge decay and droplet breakup. On the foundation of the research, high voltage electrostatic spraying locust-killing machine is developed. The research work is supported by high and new technology industrialization project from national development and reform commission.
     1. Charge mechanism is studied systematically and the impact of conductivity, voltage, droplet and viscosity on the charge-mass ratio is analyzed. Base on the simulation of electrostatic field induced by needle electrode and ring electrode, a new needles and ring combined electrode is designed. By studying the electrostatic field of combined electrode and space charge of droplets, the distribution of the inductive charge on the objects surface is presented.
     2. An experimental system of electrostatic atomization with contacted charging method is established. The flux characteristics and atomization model with different flux and voltage are studied. The flow structure of cone-jet model, and the influencing factors of jet break length, such as conductivity, voltage and viscosity, are investigated. Cone shape and its influencing factor are analyzed theoretically by getting electrostatic stress tensor according to electrostatic theory. The result indicated that lower voltage and higher voltage would make the cone angle greater. The analysis is validated by comparing with other researcher's picture of cone jet.
     3. Based on linear unsteady theory, electrostatic theory, continuity equation and Euler differential equation, mathematic model of charged jet is established. By instability analysis, the dispersion equation is obtained.
     4. Two new two-fluid spray nozzles with different mixing model are designed. In the one nozzle, gas and liquid mixed directly, and in the other, gas is divided into many sections first, and then mixed with liquid. The flux characteristics, atomization characteristics, droplet velocity distribution and droplet diameter distribution are researched by experiment. The result shows that two-fluid nozzle in which gas and liquid mixed directly has bigger flux adjustable range and more uniform droplet diameter. The two nozzles share the same velocity distribution characteristics. The axial velocity is fastest in axle center, and gets slower in radial direction. The radial velocity is zero in axle center, and gets faster in radial direction. These works give a deep insight on two-fluid atomization mechanism.
     5. The droplet breakup caused by electrostatic force, air force and interfacial force is analyzed by comprehensive study on charged droplet coulombic fission, charge decay and droplet evaporation process for the first time, and the mathematic model of charged droplet breakup is established. The research indicates that large gas-liquid relative velocity and high temperature make critical charge-mass ration of charged droplet smaller. For some liquid such as diesel, droplet diameter gets smaller during evaporation, while charge decay very slowly, and then the charge-mass ratio turns higher. Once the charge-mass ration reach the critical, droplet breaks. The simulation on charged droplet breakup in high velocity gas flow indicates that with increasing of We, bag breakup, shear breakup and explosion breakup in turn.
     6. A high voltage electrostatic spraying locust-killing machine is developed by integrating electrostatic atomization technology, two-fluid atomization technology and axial gas flow assisted transport technology. By the performance experiments and locust killing experiments of the machine, the best locust killing pesticide and the most economic dosage is obtained. The results show droplet diameter distribution and deposition distribution with two peaks. The best locust-killing effect of the machine can reach 93% when the flux is 1.0L/min. The successful development of high voltage electrostatic spraying locust-killing machine gives the foundation to the design and improvement of good-sized plant protecting machine.
引文
[1]农业统计年鉴 北京:中国农业出版社,2004.
    [2]J.E.Jansmat西欧四国的植物保护现状及展望.国外农学—植物保护,1994(2):38-44.
    [3]王贞涛,闻建龙,王晓英,罗惕乾.高压静电液体雾化技术[J].高电压技术,2008,34(5):1067-1072.
    [4]A.M.Ganan-Calvo,J.Davila and A.Barrero,Current and droplet size in the electrospraying of liquids[J].Scaling laws,Journal of Aerosol Science 1997(28):249-275.
    [5]B.Legrand,A.E.Ashcroft,L.Buchaillot and S.Arscott,SOI-based nanoelectrospray emitter tips for mass spectrometry:A coupled MEMS and microfluidic design[J],Journal of Micromechanics and Microengineering 2000(17):509-514.
    [6]M.Sato,H.Takahashi,M.Awazu and T.Ohshima.Production of ultra-uniformly-sized silica particles by applying ac superimposed an dc voltage[J].Journal of Electrostatic,1999(46):171-176.
    [7]Myung Seob Khil,Hak Yong Kim,Min Sub Kim,Seong Yoon Park,Douk-Rae Lee.Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning[J].Polymer,2004(45):295-301.
    [8]M.Cloupeau and B.Prunet-Foch.Electrohydrodynamic spraying functioning modes:A critical review[J].Journal of Aerosol Science,1994(25):1021-1036.
    [9]A.Gomez and K.Tang,Charge and fission of droplets in electrostatic sprays[J],Physics of Fluids 1994(6):404-414.
    [10]叶齐政,孙敏.电磁场[M].武汉:华中科技大学出版社,2008.
    [11]赞恩(Zahn M).电磁场理论解题方法[M].北京:人民邮电出版社,1987.
    [12]蔡圣善,朱来云.经典电动力学[M].上海:复旦大学出版社,1985.
    [13]金晗辉.荷电两相湍流理论在病虫害防治技术中的应用研究[D].镇江:江苏理工大学,1999.
    [14]陈志刚,杨超珍,孙英琨,储金宇.荷电喷雾电晕电极诱导电场数值计算与分析[J].排灌机械,2007,25(4):57-60.
    [15]杨超珍,赵伟敏,叶五梅,姚剑鹏.等离子体射流雾滴的荷电特性研究[J].高电压技术,2007,33(2):62-65.
    [16]闻建龙,王军锋,王泽,罗惕乾.燃油荷电喷雾燃烧的冷态试验研究[J].江苏理工大学学报(自然科学版),2001,22(6):10-13.
    [17]Jawork,A Krupa.Jet and drops formation in electro-hydrodynamic spraying of liquids[J].A systematic approach.Experiments in Fluids,1999,27:43-52.
    [18]陈效鹏,董绍彤,程久生等.电雾化装置及雾化模式研究[J].实验力学,2000,15(1):97-103.
    [19]叶中元,A.Gomez.大流量时多股射流静电雾化研究[J].工程热物理学报,1996,17(1):59-63.
    [20]Marie-Helene Duby,Weiwei Deng,Kyoungtae Kim,Tommaso Gomez,Alessandro Gomez.Stabilization of monodisperse electrosprays in the multi-jet mode via electric field enhancement[J].Aerosol Science,2006(37):306-322.
    [21]Peter D.Noymer and Michael Garel.Stability and atomization characteristics of electrohydrodynamic jets in the cone-jet and multi-jet modes[J].J.Aerosol Sci,2000,31(10):1165-1172
    [22]M.Cloupeau and B.Prunet-Foch,Electrostatic spraying of liquids in cone-jet mode[J],Journal of Electrostatics,1989,22:135-159.
    [23]R.P.A.Hartman,J.P.Borra,D.J.Brunner,et al.The evolution of electrohydrodynamic sprays produced in the cone-jet model,a physical model[J].Journal of Electrostatics,1999,47:143-170.
    [24]R.P.A.Hartman,D.J.Brunner,D.M.A.Camelot,J.C.M.Marijnissen et al.Jet breakup in electrohydrodynamic atomization in the cone-jet mode[J].J.Aerosol Sci,2000,31(1):65-95.
    [25]龚景松,傅维镳.旋转型气-液雾化喷嘴流量特性的实验研究[J].热能动力工程,2004,19(4):376-379.
    [26]李伟锋,刘海峰,曹显奎,等.液体射流直径对大液气质量比双通道气流式喷嘴雾化性能的影响[J].华东理工大学学报,2006,32(5):572-575.
    [27]张力,李午申,蒲舸.烟气净化双流体喷嘴雾化特性实验[J].环境工程,2006,24(2):40-43.
    [28]Li J,Lefebwe A H.Effervescent atomization for small gas turbines.American sodivty of Mechanical Engineers,1994,94-GT-495:1-6
    [29]郑捷庆,罗惕乾,张军,陈汇龙.气力式雾化喷嘴最佳气耗率的试验[J].农业机械学报,2007,38(10):195-200.
    [30]ME Ferreira,JCF Teixeira,CJ Bates,PJ Bowen.Detailed Investigation of the Influence of Fluid Viscosity on the Performance Characteristics of plain-orifice effervescent atomizers[J].Atomization and sprays,2001,11(2):107-124.
    [31]梁晓燕.气泡雾化喷嘴的试验研究及数值模拟[D].南京:东南大学,2005.
    [32]曹建明.喷雾学[M].机械工业出版社,2005.
    [33]ANTIPAS G.S.E.Modeling of the breakup mechanism in gas atomization of liquid metals.Part 1:The surface wave formation model[J].Computational Materials Science,2006,35:416-422.
    [34]林玉静,杨延相,郗大光,杜青.圆环旋转液体射流稳定性的研究[J].工程热物理学报, 2001,24(4):519-522.
    [35]杜青,刘宁,杨延相,郗大光.林玉静;史绍熙.受激液体射流的非轴对称模式[J].燃烧科学与技术,2002,8(2):181-184.
    [36]杜青,史绍熙,刘宁等.液体燃料圆射流最不稳定频率的理论分析(1)——液体燃料圆射流的最不稳定频率及无量纲数的影响[J].内燃机学报,2000(3):283-287.
    [37]杜青,史绍熙,刘宁等.液体燃料圆射流最不稳定频率的理论分析(2)——圆射流参数对最不稳定频率的影响及试验观察[J].内燃机学报,2000(3):288-292.
    [38]杜青,刘宁,杨延相等.受激液体燃料圆射流表面波规律初探[J].内燃机学报,2001(3):511-516.
    [39]魏建勤,傅维标.柴油压力喷射破碎特性试验研究[J].燃烧科学与技术,1999,(1):27-31.
    [40]Fang Li,Xie-Yuan Yin,Xie-Zhen Yin.Linear instability analysis of an electrified coaxial jet[J].PhysicsS of Fluid,2005(17).
    [41]Gomez A,Tang A.Atomization and dispersion of quasi-monodisperse electrostatic sprays of heptane.Proceedings of the 5th International Conference on Liquid Atomization and Spray Systems.Gaithersburg,USA,1998.
    [42]Fujing Wang,Robert Martinuzzi.Experimental study of particle trajectory in electrostatics powder coating process[J].Powder Technology,2005,150(1):20-29.
    [43]Shrimpton J S,Yule A J.Droplet size and velocity measurements in an electrostatically produced hydrocarbon spray[J].Journal of Fluids Engineering,Transactions of the ASME,1998,120(3):580-585.
    [44]Jeong Heon Kim,Tsuyoshi Nakajima.Aerodynamic influence on droplet atomization in an electrostatic spray[J].JSME International Journal,2000,42(2):224-229.
    [45]Shrimpton J S,Yule A J.Atomization,combustion and control of charged hydrocarbon sprays for application in combustion systems[J].Experiments in Fluids,1999,26(5):460-469.
    [46]C.H.Lee,Rolf D.Reitz.An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J].International Journal of Multiphase Flow,2000,26:229-244
    [47]Rabin E.Displacement and shattering of propellant droplets.TR 1969:60-75
    [48]Kauffman C W.Shock wave ignition of liquid fuel drops.AIAA J,1971,9:880-885
    [49]Krauss W E,et al.Deformation fragmentation of water drops due to shock wave impact.AIAA 1971:71-392
    [50]M.Arai,K.Amagai.Surface wave transition before breakup on a laminar liquid jet.International Journal of Heat and Fluid Flow 1999,20:507-512
    [51]O'Rourke P J,Amsden A A.The TAB method for numberical calculation of spray droplet breakup.SAE872089
    [52]Liu A B et al.Modeling the effects of drop drag and breakup of fuel sprays[C].SAE930072
    [53]R.D.Reitz.Modeling atomization processes in hing pressure vaporazing sprays[J].Atomization and Spray Technology,1987(3):309-337.
    [54]P.Berthoumieu,H.Carentz,P.Villedieu.Contribution to droplet breakup analysis[J].International Journal of Heat and Fluid Flow,1999,20(5):492-498
    [55]H.Teng,C.M.Kinoshia,S.M.Masutani.Prediction of droplet size from the breakup of cylindrical liquid jets[J].Int.J.Multiphase,1995,21(1):129-136.
    [56]郑捷庆,罗惕乾,张军,陈汇龙.气力式雾化喷嘴最佳气耗率的试验[J].农业机械学报,2007,38(10):195-198.
    [57]Setiawan,E.R.,Heister,S.D.Nonlinear modeling of an infinite electrified jet[J].Journal of Electrostatics,1997,42(3):243-257.
    [58]于水,李理光,胡宗杰,邓俊,栗工.静电喷雾液滴破碎的理论边界条件研究[J].内燃机学报,2005,23(3):239-244.
    [59]S.N.Jayashighe,M.J.Edirisinghe.Effect of viscosity on the size of relics produced by electrostatic atomization.Aerosol Science,2000,33:1379-1388.
    [60]袁晓林,袁惠新.旋流场内液滴破碎与临界入口雷诺数的确定[J].江南大学学报(自然科学版),2004,3(1):59-61.
    [61]陈斌,郭烈锦,张西民,高晖.喷嘴雾化特性实验研究[J].工程热物理学报,2001,22(2):237-240.
    [62]胡春波,王坤,曾卓雄,李强,蔡体敏.液滴破碎模糊计算研究[J].西北工业大学学报,2003,21(5):536-539.
    [63]H.Barrow,C.W.Pope.Droplet evaporation with reference to the effectiveness of water-mist cooling[J].Applied Energy,2007(84):404-412.
    [64]Rafik Belarbi,Cristian Ghiaus,Francis Allard.Modeling of water spray evaporation:Application to passive cooling of buildings[J].Solar Energy,2006,80(12):1540-1552.
    [65]Hongsuk Kim,Nakwon Sung.The effect of ambient pressure on the evaporation of a single droplet and a spray[J].Combustion and Flame,2003,135(3):261-270.
    [66]Gabriel Nii Laryea,Soo-Young No.Development of electrostatic pressure-swirl nozzle for agricultural applications[J].Journal of Electrostatics,2003,57(2):129-142.
    [67]汤伯敏,梁建,杨德水,林光武,张二路.塑料温室内的雾滴沉积分布研究[J].农业机械学报,2004,35(3):72-75.
    [68]李炬,何雄奎,仲崇山,于辉,李杨.荷电雾滴沉积效果的多因子响应面模型[J].高电压技术,2007,33(2):32-36.
    [69]Hidemasa Takana,Kazuhiro Ogawa,Tetsuo Shoji,Hideya Nishiyama.Computational simulation of cold spray process assisted by electrostatic force[J].Powder Technology,2008,185(2):116-123.
    [70]S.Zhao,G.S.P.Castle,K.Adamiak.The effect of space charge on the performance of an electrostatic induction charging spray nozzle[J].Journal of Electrostatics,2005,63(3-4):261-272.
    [71]孙明礼.Ansys 10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [72]阎昭文.ANSYS 10.0工程电磁分析技术与实例详解[M].北京:水利水电出版社,2006.
    [73]翟允,夏茂辉,李俊贤.无网格伽辽金法在静电场中的应用[J].河南科技大学学报(自然科学版,2008,29(3):91-94.
    [74]刘群英.空间静电场分布的计算机仿真[J].重庆工学院学报,2005,19-8:83-92.
    [75]王军锋.荷电喷雾燃烧的基础研究——燃油静电喷雾及荷电两相湍流射流的研究[D].江苏大学博士学位论文,2002.
    [76]杨超珍,吴春笃,陈翠英.环形电极感应充电机理及其应用研究[J].排灌机械,2006,24(1):22-26.
    [77]G.N.Laryea,S.Y No.Development of electrostatic pressure-swirl nozzle for agricultural applications[J].Journal of Electrostatics,2003,57(2):129-142.
    [78]杨超珍.农用喷雾机器人基础技术研究[D].江苏大学博士学位论文,2005.
    [79]Jae-Duk Moon,Dong-Hyeon Lee,Tae-Gyoung Kang,Kwang-Seok Yon.A capacitive type of electrostatic spraying nozzle[J].Journal of Electrostatics,2003,57(3-4):363-379.
    [80]陈志刚,孙英琨,储金宇,吴春笃.网状目标法测量雾滴或粉尘荷质比的精度分析[J].排灌机械,2006,24(4):40-43.
    [81]张宝峰,张连洪,李双义.法拉第杯直接测量颗粒荷电量的屏蔽问题[J].物理测试,2003(3):15-17.
    [82]许传龙,杨道业,汤光华等.加压密相气力输送煤粉颗粒荷电特性研究[J].工程热物理学报,2007,28(4):611-614.
    [83]依成武,蔡灏兢,路淼等.电除尘器中粉尘预荷电的试验研究[J].安徽农业科学,2007(4):1249-1250.
    [84]Eric K.Anderson,Antonio P.Carlucci,Arturo De Risi,Dimitrios C.Kyritsis.Synopsis of experimentally determined effects of electrostatic charge on gasoline sprays[J].Energy Conversion and Management,2007,48(11):2762-2768.
    [85]于辉,何雄奎,仲崇山等.在静电喷雾中喷液雾化特性对荷质比的影响[J].安徽农业科学,2007,35(15):4706-4707.
    [86]Osamu Yogi,Tomonori Kawakami,Akira Mizuno.Properties of droplet formation made by cone jet using a novel capillary with an external electrode[J].Journal of Electrostatics,2006,64(7-9):634-638.
    [87]郑捷庆,张军,刘勇,罗惕乾.高压静电雾化雾滴粒径双峰分布概率密度模型[J].高电压技术,2007,33(10):88-91.
    [88]张军,闻建龙,王军锋,等.不同雾化模式下静电雾化的雾滴特性[J].江苏大学学报(自然科学版),2006,27(2):105-108.
    [89]张军,闻建龙,王军锋,等.毛细管2环电极下的静电雾化模式的研究[J].农业机械学报,2006,37(6):124-127.
    [90]陆承祖,王克起.静电原理及防灾tM].天津:天津大学出版社,1991.
    [91]白少先,黄平,孟永钢,温诗铸.双电层对水润滑特性影响的实验研究(英文)[J].工程设计学报,2007,14(3):253-260.
    [92]白少先,孟永钢,温诗铸,黄平.外加电场作用下双电层电粘度对水润滑特性的影响[J].润滑与密封,2006,10:1-3.
    [93]德鲁·迈尔斯著.表面、界面和胶体[M].北京:化学工业出版社材料科学与工程出版中心,2005.
    [94]D.Burgreen,F.R.Nakache.Electrokinetic flow in ultrafine capillary slits[J].J.PhysicalChemistry,1964,68:1084-1091.
    [95]Yang C,Li D Q,MASLIYAH J H.Modeling forced liquid convection in rectangular micro-channels with electrokinetic effects[J].Heat Mass Transfer,1998,41:4229-4249.
    [96]Ren C L,Li D Q.electroviscous effect on pressure-driven flow of dilute electrolyte solution in small micro-channels[J].Journal of Colloid and Interface Science,2004,274:319-330.
    [97]Ren C L,Li D Q.Improved understanding of the effect of electrical double layler on pressure-driven flow in micro-channels[J].AnalyticaChimica Acta,2005,531:15-23.
    [98]龚磊,吴健康.微通道液体流动双电层阻力效应[J].应用数学和力学,2006,27(10):1219-1225.
    [99]白少先,黄平.双电层电粘度对润滑性能的影响研究[J].摩擦学学报,2004,24(2):168-171.
    [100]周光埛,严宗毅,许世雄等.流体力学[M],北京:高等教育出版社,2003.
    [101]Alfonso M.Ganan-Calvo,Carlos Pantano,Antonio Barrero.The equilibrium shapes of liquid menisci emitting liquid and charges in steady cone-jet mode[J].Journal of Aerosol Science,1996,27(1):187-188.
    [102]P.G.德拉津,W.H.雷德.流体动力稳定性[M].北京:宇航出版社,1990.
    [103]庄礼贤,尹协远,马晖扬.流体力学[M].合肥:中国科学技术大学出版社,1997.
    [104]W.O.H.Mayer,R.Branam.Atomization characteristics on the surface of a round liquid jet[J].Experiments in Fluids,2004,36:528-539.
    [105]M.Arai,K.Amagai.Surface wave transition before breakup on a laminar liquid jet[J].International Journal of Heat and Fluid Flow,1999.20(5):507-512.
    [106]严春吉,解茂昭,殷佩海.粘性气体中粘性液体射流分裂与雾化机理研究[J].空气动力学学报,2004,22(4):422-425.
    [107]严春吉,解茂昭.气流旋转对液体射流分裂与雾化的影响[J].大连海事大学学报,2007, 22(4):422-425.
    [108]马峥,周哲玮.气流雾化问题中的流动稳定性研究[J].应用数学和力学,1999,20(10):991-996.
    [109]杜青,刘宁,王青,郭津,李志锐.气体旋转运动对环膜液体射流不稳定性影响的研究(英文)[J].内燃机学报,2007,25(2):130-136.
    [110]Kun LIU,De-jun SUN,Xie-yuan YIN.Instability of Gas/Liquid Coaxial Jet[J].Journal of Hydrodynamics,Volume 19,Issue 5,October 2007,Pages 542-550.
    [111]严春吉,解茂昭.液体射流扰动控制方程边界条件及稳定性分析[J].工程数学学报,2008,25(3):563-566.
    [112]魏明锐,刘斐,文华,刘永长,张煜盛.蒸发液体射流表面三维不稳定色散方程的建立[J].内燃机学报,2005,23(5):430-435.
    [113]何勇灵;史绍熙;郗大光;刘宁;秦建荣;杜青.蒸发粘性液体射流不稳定性理论分析[J].洛阳工学院学报,1999,20(3):77-80.
    [114]P.K.Senecal,D.P.Schmidt,I.Nouar,C.J.Rutland,R.D.Reitz,M.L.Corradini.Modeling high-speed viscous liquid sheet atomization[J].International Journal of Multiphase Flow,1999(25):1073-1097.
    [115]陈才生.数学物理方程[M].南京:东南大学出版社,2002.
    [116]Abd Elmonem Khalil Elcoot.Nonlinear instability of charged liquid jets Effect of interfacial charge relaxation[J].Physica A:Statistical Mechanics and its Applications,2007,375(2):411-428.
    [117]Yusry O.El-Dib,Osama E.Abd El-Latif.Nonlinear surface wave instability for electrified Kelvin fluids[J].Journal of Colloid and Interface Science,2005,285(2):744-759.
    [118]任惠芳,韩学孟,王玉顺.气力式静电喷头雾化特性的研究[J].山西农业大学学报:自然科学版,2003,23(2):148-151.
    [119]王晓英,罗惕乾,沙毅,王正,高正平.双流体喷嘴荷电雾化特性[J].江苏大学学报(自然科学版),2007,28(4):328-331.
    [120]Hai-Feng Liu,Wei-Feng Li,Xin Gong,et al.Effect of liquid jet diameter on performance of coaxial two-fluid airblast atomizers[J].Chemical Engineering and Processing,2006,45(4):240-245.
    [121]Hankwon Chang,Jin-Ho Park,Hee Dong Jang.Flame synthesis of silica nanoparticles by adopting two-fluid nozzle spray[J].Colloids and Surfaces,2008,313-314:140-144.
    [123]Sovani S D,Sojka P E,Lefebvre A H.Effervescent atomization[J].Progress in Energy and Combustion Science,2001,27(2):483-521.
    [124]刘联胜,吴晋湘,韩振兴,等.内超声气泡雾化喷嘴实验研究[J].燃烧科学与技术,2002,8(2):155-158.
    [125]卢平,梁晓燕,章名耀.双流体喷嘴雾化特性的试验研究[J].南京师范大学学报(工程技术版),2008,8(1):34-37.
    [126]刘联胜,吴晋湘,杨华,韩振兴,于新凯.气泡雾化喷嘴颗粒平均直径经验公式的拟合[J].燃烧科学与技术,2002,8(5):464-467.
    [127]魏琪,岑旗钢.喷嘴雾化特性的PDPA实验研究进展[J].排灌机械,2003,21(4):27-30。
    [128]沈熊,魏乃龙,彭涛.应用激光相位—多普勒系统测量雾化液滴颗粒和流动特性[J].流体力学试验与测量,2000,14(2):54-60.
    [129]肖进,乔信起,黄震,方俊华.燃油溶气喷雾速度和粒度的PDA测试研究[J].科学通报,2004,49(7):618-622.
    [130]刘联胜,杨华,衡国辉,杜聪,张财红.气液质量流量比对气泡雾化喷嘴燃烧特性的影响[J].燃烧科学与技术,2007,13(1):10-14.
    [131]S.Edward Law.Agricultural electrostatic spray application:a review of significant research and development during the 20th century[J].Journal of Electrostatics,2001,51-52:25-42.
    [132]Hideo Watanabe、Tatsushi Matsuyama,Hideo Yamamoto.Experimental study on electrostatic atomization of highly viscous liquids[J].Journal of Electrostatics,2003(57):183-197.
    [133]H.Barrow,C.W.Pobe.Droplet evaporation with reference to the effectiveness of water-mist cooling[J].Applied Energy,2007,84:404-412.
    [134]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [135]刘勋儒,王志峰.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.166-192.
    [136]J.Barata.Modelling of biofuel droplets dispersion and evaporation[J].Renewable Energy,2008,33(4):769-779.
    [137]László E.Kollár,Masoud Farzaneh.Modeling the evolution of droplet size distribution in two-phase flows[J].International Journal of Multiphase Flow,2007,33(11):1255-1270.
    [138]万金庆,李瑞阳,郁鸿凌,黄烜,董伟.外加电场强化苯自然对流和沸腾换热的试验研究[J].太阳能学报,2005,26(2):277-280.
    [139]罗小平,高贵良,方振鑫.高压电场强化空气对流传热实验及其数值模拟[J].化学工程,2008,36(5):12-15.
    [140]王发刚,李瑞阳,郁鸿凌,刘永启,柳玉英.电场强化乙醚自然对流和池沸腾换热[J].化工学报,2005,56(11),2082-2085.
    [141]李瑞阳,施伯红,郁鸿凌,陈之航.EHD强化水平管外沸腾传热的试验研究[J].工程热物理学报,2000,21(1):97-100.
    [142]刘铭,王发刚.电场强化自然对流换热的相关问题研究[J].山东理工大学学报(自然科学版,2008,22(1):95-102.
    [143]董超,李瑞阳,黄烜,郁鸿凌,陈之航.EHD强化传热研究中的重要问题——电场特性 的影响规律[J].能源研究与信息,2001,17(1):36-43.
    [144]G.Aguilar,B.Majaron,W.Verkruysse,Y.Zhou,J.S.Nelson,E.J.Lavemia.Theoretical and experimental analysis of droplet diameter,temperature,and evaporation rate evolution in cryogenic sprays[J].International Journal of Heat and Mass Transfer,2001,44(17):3201-3211
    [145]Elyssa F.Crafton,W.Z.Black.Heat transfer and evaporation rates of small liquid droplets on heated horizontal surfaces[J].International Journal of Heat and Mass Transfer,2004,47(6-7):1187-1200.
    [146]何勇灵;史绍熙;郗大光;刘宁;秦建荣;杜青.加热条件下柴油喷雾射流不稳定性分析和实验[J].洛阳工学院学报,1999,20(4):41-44.
    [147]Matthew E Thomas,Roberto Disalvo.Electrostatic atomization Insertion into compression ignition engines[J].SAE Paper 2002-01-3053,2002.
    [148]A.Gomez,K.Tang.On the structure of an electrostatic spray of monodispers droplets[J].Phys.Fluids,1994,6:2317-2332.
    [149]A.Gomez,K.Tang.Cgarged and fission of Droplet in electrostatic sprays[J].Phys.Fluids,1994:6:404-414.
    [150]J.F.Wang,J.L.Wen,T.Q.Luo.Experimental Investigation on turbulent flow of electro-spray by PIV.Optical Techonology and Image Processing for Fluids and Solids Diagnostics.SPIE,2002.
    [151]刘秀娟,周宏平,郑加强.农药雾滴飘移控制技术研究进展[J].农业工程学报,2005,21(1):186-190.
    [152]曾爱军,何雄奎,陈青云,A.Herb st,刘亚佳.典型液力喷头在风洞环境中的飘移特性试验与评价[J].农业工程学报,,2005,21(10):78-81.
    [153]Tsay J,Fox R D,Ozkan H E,et al.Evaluation of a pneumatic-shielded spraying system by CFD simulation[J].Transactions of the ASAE,2002,45(1):47-54.
    [154]Lindsey F Gaunt,John F Hughes,Neale M Harrison.Electrostatic deposition of charged insecticide sprays on electrically isolated insects[J].Journal of Electrostatics,2003,57(1):35-47.
    [155]高良润,冼福生.静电喷雾理论及其测试技术的研究[J].江苏大学学报(自然科学版),1986,7(2):12-14.
    [156]何雄奎,严苛荣,储金宇,等.果园自动对靶静电喷雾机设计与试验研究[J].农业工程学报,2003,19(6):78-80.
    [157]舒朝然,詹敏,盛茂领,陈国发,林强.果树树冠静电喷雾的空间电荷效应分析[J].沈阳农业大学学报,200,38(1):59-64.
    [158]赞恩.电磁场理论解题方法[M].北京:人民邮电大学,1987.
    [159]S.Edward Law,Harald Scherm.Electrostatic application of a plant-disease biocontrol agent for prevention of fungal infection through the stigmatic surfaces of blueberry flowers[J].Journal of Electrostatics,2005,63(5):399-408.
    [160]Moon J D,Lee D H,Kang T G,et al.A capacitive type electrostatic spraying nozzle[J].Journal of Electrostatics,2003,57:363-379.
    [161]余泳昌,王保华,史景钊,等.手动喷雾器组合充电式静电喷雾装置的雾化效果试验[J].农业工程学报,2005,21(2):85-88.
    [162]Kirk M W,Hoffmann W C,Carlton J B.Aerial electrostatic spray system performance[J].Transactions of the ASAE,2001,44(5):1089-1092.
    [163]Thomas M W,Harrison S K,Franklin R H,et al.Optimizing postemergence herbicide deposition and efficacy through application variables in no-till systems[J].Weed science,2000,48(6):761-768.
    [164]何雄奎,曾爱军,何娟.果园喷雾机风速对雾滴的沉积分布影响研究[J].农业工程学报,2002,18(4):75-77.
    [165]Derksen R C,Krause C R,Fox R D,et al.Spray delivery to nursery trees by air curtain and axial fan orchard sprayers[J].Journal of Environmental Horticulture,2004,22(1):17-22.
    [166]Derksen R C,Krause C R,Fox R D,et al.The effect of application variables on spray retention,coverage,and ground losses in nursery tree applications[J].Journal of Environmental Horticulture,2006,24(1):45-52.
    [167]刘青,史建新,陈发,等.草原灭蝗超低量喷雾机的研制与发展[J].新疆农机化,2003(1):54-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700