苯酚降解嗜盐菌的筛选及分子生物学鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高盐度苯酚废水污染环境且难以处理,是当前我国环境科学与环境工程领域的研究热点与难点,本项研究通过分离驯化苯酚降解嗜盐菌,通过对其进行分子生物学鉴定,明确其所属物种,在高盐度条件下对它们降解苯酚的性能分别进行了研究,然后对嗜盐组合菌群处理苯酚废水性能做了研究,最后对比了不同方法处理高盐度苯酚废水效果,所得到的嗜盐菌,试验技术,试验数据等可为工厂化处理高盐度苯酚废水提供微生物资源与技术支持。
     本文在较系统地综述了国内外高盐度苯酚废水研究进展基础上,在下列四个方面进行了系统研究,并取得了一些相关成果:
     1.盐田苯酚降解嗜盐菌HBCC-2和HBCC-3的筛选及分子生物学鉴定
     从连云港台南盐田卤水样品中分离到两株极端嗜盐菌,编号分别为HBCC-2和HBCC-3。采用分子生物学方法对HBCC-2和HBCC-3的16S rRNA基因序列分析,并在此基础上初步确定HBCC-2属于Halorubrum, HBCC-3为Alkalibacillus salilacus。通过苯酚长期驯化嗜盐菌HBCC-2和HBCC-3后,在好氧条件下研究了HBCC-2和HBCC-3的苯酚降解效率,结果表明NaCl与KCl浓度分别为50g/L,100g/L,150g/L,200g/L与250g/L的条件下,HBCC-3的苯酚降解效率均高于HBCC-2。
     2.焦化厂活性污泥苯酚降解嗜盐菌JHCFS1-JHCFS4的筛选及分子生物学鉴定
     从正在运行的焦化厂活性污泥中分离筛选到四株苯酚降解中度嗜盐菌,编号分别为JHCFS1,JHCFS2,JHCFS3与JHCFS4。采用分子生物学方法对它们的16S rRNA基因序列进行了分析,初步鉴定四株菌分别为Bacillus simplex,Bacillus cereus,Bacillus pumilus与Bacillus cibi。四株菌在好氧条件下以苯酚为唯一碳源生长时,最大耐受NaCl浓度为30g/L,此时JHCFS2的降解效率最高,达到了83%,JHCFS4的降解效率最低,仅为47.20%;它们对KCl的最大耐受浓度为30g/L,此时JHCFS2的降解效率最高,达到了99%,JHCFS4的降解效率最低,仅为48%。
     3.焦化废水污染土壤苯酚降解嗜盐菌CC2的筛选及分子生物学鉴定
     从废弃焦化厂焦化废水污染土壤中分离筛选到一株苯酚降解中度嗜盐菌,编号为CC2。采用分子生物学方法对它的16S rRNA基因序列分析进行了分析,初步鉴定该菌株为Alcaligenes faecalis。采用引物Ph1和Ph2对其苯酚羟化酶基因进行了PCR扩增,经克隆后测出其序列长度为642bp(GenBank收录号:FJ226422),经BlastP在线比较,推断其苯酚羟化酶与固氮粪产碱菌(Alcaligenes faecalis) (ABG91754)高度同源,相似性为99%。在好氧条件下CC2能以苯酚为唯一碳源生长,最大耐受NaCl,KCl的浓度均为30g/L,苯酚降解率分别为75%与92.4%。
     4.嗜盐组合菌群处理高盐度苯酚废水研究
     在NaCl浓度为100g/L,苯酚废水CODcr为1255.26mg/L的条件下,采用正交试验方法,比较了7株嗜盐菌的不同配比组合处理效果,试验结果表明HBCC-2∶HBCC-3∶CC2∶JHCFS1∶JHCFS2∶JHCFS3∶JHCFS4的最佳组合配比为1∶2∶2∶2∶2∶2∶2。实验室条件下模拟SBR反应器处理装置,采用海藻酸钠+活性炭包埋最佳嗜盐组合菌群固定后处理高盐度苯酚废水效果最好,在NaCl,KCl浓度分别为100g/L,苯酚废水处理24h后CODcr由1255.26mg/L分别降为80.42mg/L,69.8 mg/L。
     上述工作为高盐度苯酚废水的生物处理提供了理论基础与技术参考。该论文有图70幅,表10个,参考文献162篇。
The study on the treatment problem of phenol wastewater under high salinity condition is the present focus on environmental science and engineering fields in China.Isolation and screening of halophilic microbial strains , determination of their taxonomic status using molecular biological techniques,phenol-degrading efficiency of these microbial strains, combined microbial consortium and compared of the treatment performance using different treatment methods were made.They offered the microbial strains,data support ,experiment techniques and scientific guidance for the treatment of high salinity phenol wastewater in industry.
     Systematically summarized the development of research at home and abroad on high-salinity wastewater containing phenol,this paper focused on the following four research works:
     1. Screening and molecular biological identification of phenol-degrading halophilies from salt ponds
     Halophilies were isolated from salt ponds of Lianyungang Tai Nai District,and two halophilic microbial strains designated HBCC-2 and HBCC-3 were screened respectively. HBCC-2 and HBCC-3 were identified according to the biochemical and physical characteristics ,16S rRNA gene of the two microbial strains were sequenced and analyzed. They could use phenol as sole carbon source afer being acclimated for about three years by phenol ,and the efficiency of phenol treatment of HBCC-3 was better than HBCC-2.
     2. Screening and molecular biological identification of phenol-degrading halophilies from activated sludge
     Four middle halophilic microbial strains were isolated from activated sludge of a operating coking plant, respectively.They were designated as JHCFS1, JHCFS2, JHCFS3 and JHCFS4 respectively. JHCFS1, JHCFS2, JHCFS3 and JHCFS4 were identified according to the biochemical and physical characteristics and 16S rRNA gene of the four microbial strains were sequenced and analyzed. The efficiency of phenol treatment were tested by them when NaCl and KCl concentration were 30g/L respectively. The result illustrated the best treatment performance of wastewater was used of JHCFS2 and the worse treatment performance of wastewater was used of JHCFS4.
     3. Screening and molecular biological identification of phenol-degrading halophilies from soil polluted by coking wastewater
     One halophilic and phenol-degrading microbial strain designated as CC2 was isolated from polluted soil of a abandoned coking plant.16S rRNA gene of CC2 was sequenced and analyzed, it was identified according to its biochemical and physical characteristics.The phenol hydroxylase gene of CC2 was detected directly using the pair of primers Ph1 and Ph2.The phenol degradation characteristics of CC2 was tested,the resulted showed CC2 could use phenol as a sole carbon source when NaCl and KCl concentration were 30g/L for its growth, respectively,
     4. Research on high salinity phenol wastewater treatment performance by halophilic consortium
     The treatment performance of high-salinity phenol wastewater was investigated and compared by halophilic microbial consortium consisting of different mixture ratio of seven phenol-degrading halophilies at a orbital shaker. Based on the best treatment efficiency of phenol by combined microbial consortium , the treatment performance by four different methods, including suspension of microorganisms,absorption of activated carbon,embedding immobilization by sodium alginate, embedding immobilization by sodium alginate and active carbon simulating SBR reactor equipment were investigated repectively,the result showed embedding immobilization by sodium alginate and active carbon was best one among the four methods.
引文
[1]邹小玲,丁丽丽,赵明宇,等.高盐度废水生物处理研究[J].工业水处理, 2008, 28(9):1-4.
    [2]张勇,祁恩成,张守诚,等.黄姜一皂素废水综合处理技术的探讨[J].环境科学与技术,2004,27(8):124-125.
    [3]刘锋,吴建华,马向华,等.上流式厌氧生物滤池处理高含盐废水的试验研究[J].苏州科技学院学报(工程技术版),2003,16(2):34-35.
    [4]王晓霞,吴生,乌锡康.铁炭-生化法处理高含盐染料废水的研究[J].环境化学,2002,21(6):594-598.
    [5]马国斌,储金宇,张波.活性污泥法+接触氧化法工艺处理高盐度环氧丙烷生产废水的试验研究[J].四川环境,2004,23(6):1-3.
    [6] Ludzack F.J.,Noran D.K.Tolerance of high salinities by conventional wastewater treatment processes[J].J.Water Pollut. Control Fed.,1965,37(10):1404-1416.
    [7] Boushy A.R.Ei,Klaassen G.J.,Ketelaars E.H.Biological conversion of poultry and animal waste to a feedstuff for poultry[J]. World's Poultry Science Journal,1985,41:133-145.
    [8] Woolard C.R.,Irvine R.L.Treatment of hypersaline wastewater in the sequencing batch reactor[J].Water Research,1995,29(4):1159-1168.
    [9]冯叶成,占新民,文湘华,等.活性污泥处理系统耐含盐废水冲击负荷性能[J].环境科学,2000,21(l):106-108.
    [10]刘正.高含盐废水生物处理技术探讨[J].给水排水,2001,27(11):54-56.
    [11]崔有为,王淑莹,宋学起.NaCl盐度对活性污泥处理系统的影响[J].环境工程,2004,22(l):19-21.
    [12]崔有为,张国辉,计立平,等.海水冲厕污水生物处理可行性研究[J].工业水处理,2003,12(2):33-36.
    [13]康群,马文臣,许建民,等.高盐浓度对工业废水生化处理的影响研究[J].环境污染治理技术与设备,2005,6(8):42-45.
    [14] Dincer A. R.,Kargi F.Performance of rotating biological disc system treating saline wastewater[J].Process Biochemistry,2001,36(8-9):901-906.
    [15] An L.,Gu G. W. The treatment of saline wastewater using a two-stage contact oxidation method[J].Wat.Sci.Tech.,1993,28(7):31-37.
    [16]石建敏,黄新文,林春绵,等.无机盐对生物接触氧化处理法的影响[J].浙江工业大学学报,2003,31(l):97-100.
    [17]马国斌,储金宇,张波.活性污泥法+接触氧化法工艺处理高盐度环氧丙烷生产废水的试验研究[J].四川环境,2004,23(6):l-3.
    [18]张延青,谢经良,沈晓南.海水利用后排水对城市污水处理厂生物处理的影响[J].城市环境与城市生态,2003,6(6):126-127.
    [19] Kargi F.,Uygur A.Effect of liquid phase aerationon performance of rotating biodisc contactor treating saline wastewater[J].Environ.Technol.,1997,18(6):623-630.
    [20] Kargi F. Empirical models for biological treatment of saline wastewater in rotating biodisc contactor[J].Process Biochemistry,2002,38(3):399-404.
    [21] Kargi F.,Dincer A.R.Enhancement of biological treatment performance of saline wastewater by halophilic bacteria[J].Bioprocess and Biosystem Engineering.,1996,15(1):51-58.
    [22] Kargi F.,Dincer A.R.Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation[J].Enzyme and Microbial Technology,1996,19(7):529-537.
    [23] Kargi F.,Dincer A.R.Saline wastewater treatment by halophile-supplemented activated sludge culture in an aerated rotating biodisc contactor[J].Enzyme and Microbial Technology, 1998, 22(6):427-433.
    [24]信欣,王焰新,叶芝祥,等.生物强化技术处理高盐有机废水[J].水处理技术,2008,34(8):66-69.
    [25] Goude R.,Renaud S.,Bonnassie S.,et al.Glutamine,glutamate,andα-glucosylglycerate are the major osmotic solutes accumulated by Erwinia chrysanthemi Strain 3937[J].Appl. Environ. Microbiol.,2004,70(11):6535-6541.
    [26] Dagmar K.,Ece K.,Kathryn J. P. Role for glycine betaine transport in vibrio cholerae osmoadaptation and biofilm formation within microbial communities [J].Appl.Environ. Microbiol., 2005,71(7):3840-3847.
    [27] Ventosa A.,Nieto J. J.,Oren A.Biology of moderately halophilic aerobic bacteria[J]. Microbiol.Mol.Biol.Rev.,1998,62(2):504-544.
    [28] Mukhopadhyay A.,He Z.L.,Alm E.J.,et al.Salt stress in desulf vibrio vulgaris hilden borough:an integrated genomics approach[J].J.Bateriol.,2006,188:4068-4078.
    [29] Vargas C.,Jebbar M.,Carrasco R.,et al.Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobaeter salexigens[J].J.Appl.Microbiol.,2006, 100(1):98-107.
    [30] Peyton B. M.,Wilson T.,Yonge D.R.Kinetics of phenol biodegradation in high solutions[J].Water Research,2002,36(19):4811-4820.
    [31]魏呐,王祥河,李风凯,等.复合高效微生物处理高含盐石油开采废水.城市环境与城市生态,2003,16(6):10-13.
    [32]顾立锋,何健,张瑞福,等.一株耐盐苯酚降解酵母菌的分离及降解特性研究[J].土壤学报,2004,41:756-760.
    [33] Woolard C. R,lrvine R.L.Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria[J].Water.Env.Res.,1994,66(3):230-235.
    [34] Woolard C.R.,lrvine R.L.Treatment of hypersaline wastewater in the sequencing batch reaetor[J].Water.Researeh.,1995,29(4):1159-1168.
    [35] Leita A.L., Duarte M.P., Santos O.J.Degradation of phenol by a halotolerant strain of Penicillium chrysogenum[J].International Biodeterioration & Biodegradation . 2007,59(3):220–225.
    [36] García M.T.,Gallego V.,Ventosa A. Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium[J]. Int.J.Syst.Evol. Microbiol. 2005,55(5): 1789-1795.
    [37] García M.T.,Ventosa A.,Mellado E.Catabolic versatility of aromatic compound-degrading halophilic bacteria[J].FEMS Microbiol.Ecol.,2005,54(1):97-109.
    [38] Oie C.S.,Albaugh C.E.,Peyton B.M.Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism[J]. Water. Res.,2007, 41(6):1235-1242.
    [39] Mu?oz J.A., Pérez-Esteban B., Esteban M.,et al.Growth of moderately halophilic bacteria isolated from sea water using phenol as the sole carbon source[J].Folia-Microbiol-(Praha), 2001,46(4):297-302.
    [40]金相灿主编.有机化合物污染化学[M].北京:清华大学出版社,1990:250-265.
    [41]莫里森R.T.,博伊德R.N.有机化学(第二版)[M].北京:高等教育出版社,1990:824-827.
    [42]朱利中.西湖底泥对水中苯胺、苯酚的吸附性能及机理[J].环境科学,2000, 21(2):28-31.
    [43] Wei G.H., Yu J.F., Zhu Y.H.Characterization of phenol degradation by Rhizobium sp. CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region[J]. Journal of Hazardous Materials.2008,151(1):111-117.
    [44] Annadurai G., Ling L.Y., Lee J.F. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida[J].Journal of Hazardous Materials.2008,151(1):171-178.
    [45] Muhammad Afzal , Samina Iqbal, Sakandar Rauf. Characteristics of phenol biodegradation insaline solutions by monocultures of Pseudomonas aeruginosa and Pseudomonas pseudomallei[J].Journal of Hazardous Materials,2007,149:60-66.
    [46] Santo P.M., S′a-Correia I.Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1[J].Journal of Biotechnology,2007,131(4):371-378.
    [47] Jiang Y., Wen J.P., Bai J. ,et al.Biodegradation of phenol at high initial concentration by Alcaligenes faecalis[J].Journal of Hazardous Materials.2007,147(1-2):672-676.
    [48] Yang C.F., Lee C.M.Enrichment, isolation, and characterization of phenol-degrading Pseudomonas resinovorans strain P-1 and Brevibacillus sp. strain P-6[J].International Biodeterioration & Biodegradation,2007,59(3):206-210.
    [49] Kobayashi F., Daidai M.,Suzuki N.et al.Degradation of phenol in seawater using a novel microorganism isolated from the intestine of Aplysia kurodai[J].International Biodeterioration & Biodegradation,2007,59(3):252-254.
    [50] Stoilova I., Krastanov A., Yanakieva I.,et al.Biodegradation of mixed phenolic compounds by Aspergillus awamori NRRL 3112[J].International Biodeterioration & Biodegradation, 2007, 60(4):342-346.
    [51] Stoilova I. , Krastanov A., Stanchev V.Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells[J].Enzyme and Microbial Technology,2006,39(5):1036-1041.
    [52] Khaled M. Khleifat . Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions.[J]Process Biochemistry,2006,41(9):2010-2016.
    [53] Ballesteros Martin M.M., Sanchez Perez J.A., Acien Fernandez K.G.,et al.A kinetics study on the biodegradation of synthetic wastewater simulating effluent from an advanced oxidation process using Pseudomonas putida CECT 324[J].Journal of Hazardous Materials,2008,151(2-3):1780-1788.
    [54] Tepe O., Dursun A.Y.Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized Ralstonia eutropha in a packed bed reactor[J].Journal of Hazardous Materials,2008,151(1):9-16.
    [55] Galíndez-Mayer J., Ramón-Gallegos J., Ruiz-Ordaz N.,et al.Phenol and 4-chlorophenol biodegradation by yeast Candida tropicalis in a fluidized bed reactor[J].Biochemical Engineering Journal,2008,38(2):147-157.
    [56] Shetty K.V., Ramanjaneyulu R., Srinikethan G.Biological phenol removal using immobilized cells in a pulsed plate bioreactor:Effect of dilution rate and influent phenol concentration[J].Journal of Hazardous Materials,2007,149(2):452-459.
    [57] Marrot B., Barrios-Martinez A., Moulin P.,et al.Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor[J].Biochemical Engineering Journal,2006,30(2):174-183.
    [58] Saravanan P., Pakshirajan K., Prabirkumar Saha.Biodegradation of phenol and m-cresol in a batch and fed batch operated internal loop airlift bioreactor by indigenous mixed microbial culture predominantly Pseudomonas sp.[J].Bioresource Technology, 2008,99(18):8553-8558.
    [59] Bai J., Wen J.P., Li H.M.,et al. Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis[J]. Process Biochemistry , 2007,42(4):510-517.
    [60] Feng W., Wen J.P., Liu C.Y.,et al.Modeling of local dynamic behavior of phenol degradation in an internal loop airlift bioreactor by yeast Candida tropicalis[J]. Biotechnology and Bioengineering , 2007,97(2):251-264.
    [61] Juang, R.S., Tsai, S.Y.Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate[J].Biochemical Engineering Journal , 2006,31(2):133-140.
    [62] Kumar, A., Kumar, S., Kumar, S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194[J]. Biochemical Engineering Journal , 2005,22(2):151-159.
    [63] Ryan, D.R., Leukes, W.D., Burton, S.G. Fungal bioremediation of phenolic wastewaters in an airlift reactor[J]. Biotechnology Progress , 2005,21(4):1068-1074.
    [64] Chen B.Y., You J.W., Hsieh Y.T.,et al.Feasibility study of exponential feeding strategy in fed-batch cultures for phenol degradation using Cupriavidus taiwanensis[J].Biochemical Engineering Journal, 2008,41(2):175-180.
    [65] Chen B.Y., Chen W.M., Chang J.S.Optimal biostimulation strategy for phenol degradation with indigenous rhizobium Ralstonia taiwanensis[J]. J. Hazard. Mater. 2007,139 (2):232-237.
    [66] Wang Y., Tian Y., Han B., et al.Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12[J]. J Environ Sci.(China), 2007,19(2):222-225.
    [67] Adav S.S., Chen M.Y., Lee D.J.,et al.Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis[J]. Biotechnol.Bioeng.,2007,96(5):844-852.
    [68] Liu Y.J., Zhang, A.N. Wang X.C.Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03[J].Biochemical Engineering Journal, 2009,44(2-3):187-192.
    [69] Bayramoglu G., Gursel I., Tunali Y.,et al.Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets[J].Bioresource Technology 2009,100(10):2685-2691.
    [70] Cordova-Rosa S.M., Dams R.I., Cordova-Rosa E.V.,et al.Remediation of phenol-contaminatedsoil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant[J].Journal of Hazardous Materials, 2009,164(1):61-66.
    [71] Arutchelvan V. , Kanakasabai V., Elangovan R., et al.Kinetics of high strength phenol degradation using Bacillus brevis[J].Journal of Hazardous Materials, 2006 ,129 (1-3): 216-222.
    [72] Juang R.S., Chung T.P., Wang M.L.,et al.Experimental observations on the effect of added dispersing agent on phenol biodegradation in a microporous membrane bioreactor[J].Journal of Hazardous Materials , 2008,151(2-3):746-752
    [73] Saravanan P., Pakshirajan K., Saha P. Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor[J].Bioresource Technology, 2008,99(1):205-209.
    [74] Bajaj M., Gallert C., Winter J.Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor[J].Bioresource Technology, 2008,99(17):8376-8381.
    [75] Ramakrishnan A., Kumar Gupta S.Effect of hydraulic retention time on the biodegradation of complex phenolic mixture from simulated coal wastewater in hybrid UASB reactors[J].Journal of Hazardous Materials, 2008,153(1-2):843-851.
    [76] Latha S.,Mahadevan A.Role of rhizobia in the degradation of aromatic substances[J].World Journal of Microbiology and Biotechnology,1997,13(6):601-607.
    [77]徐玉泉.醋酸不动杆菌pheaA2:的16S rDNA测序及其苯酚降解特性研究[J].高技术通讯,2000,10(3):12-14.
    [78] Ng L.C.,ShinglerV.,SzeC.C..,et al.Cloning and sequences of the first eight genes of the chromosomally encoded(methyl)phenol degradation pathway from Pseudomonas putida P35X[J].Gene,1994,151(1-2):29-36.
    [79] Shingler V., Franklin F.C.,Tsuda M.,et al.Molecular analysis of a plasmid-encoded phenol hydroxylase from pseudomonas CF600[J].J.Gen.Microbiol.,1989,135(5):1083-1092.
    [80] Neidle E.L.,OmstonJ.N.Cloning and expression of Acinetobacter calcoaceticus catechol l,2- dioxygenase structural gene catA in Escheichia coli[J].J.Bacteriol.,1986,168(2):815- 820.
    [81] Hino, S., Watanabe, K., Takahashi, N. Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties[J]. Microbiology 1998,144:1765-1772.
    [82] Polymenakou Paraskevi N., Stephanou Euripides G.Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad[J]. Biodegradation 2005,16(5): 403-413.
    [83] Shingler V., Powlowski J., Marklund U.Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomnas sp strain CF600[J].J.Bacteriol.,1992,174(3):711-724.
    [84] Latha S.,Mahadevan A. Role of rhizobia in the degradation of aromatic substances [J] . World Journal of Microbiology& Biotechnology,1997,13 (6) :601-607.
    [85] Juni E.Genetics and phsiologigy of Acinetobacter[J] . Annu.Rev.Microbiol,1978,32: 349-371.
    [86] Fernandez S., Shingler V., Lorenzo V.D.Cross-regulation by XylR and DmpR activators of Pseudomnas putida suggests that transcriptional control of biodegradative operons evolves independently of catabolic genes[J].J.Bacteriol.,1994,176 (16) : 5052-5058.
    [87] Pollissi A.,Harayama S. In vivo reactivation of catechol 2 ,3dioxygenase mediated by a chloroplast-type ferredoxin : a Bacterial strategy to expand the substrate specificity of aromatic degradative pathways[J] .EMBO. J.,1993,12(8) :3339-3347.
    [88] Ehrt S., Schirmer F., Hillen W. Genetic organization ,nucleotide sequence and regulation of genes encoding phenol hydrolase and catechol 1,2-dioxygenase in Aci netobacter calcoaceticus NCIB8250[J] . Mol.Microbiol.,1995,18 (1):13-20.
    [89] Herrmann H. , Müller C. , Schmidt I. Localization and organization of phenol degradation genes of Pseudomonas putida[J] . Mol. Gen. Genet., 1995,247(2):240-246.
    [90] Nordlund I. , Powlowski J . , Shingler V. Complete nucleotide sequence and polypeptide analysis of muticomponent phenol hydroxylase from Pseudomonas sp. Strain CF600[J] . J. Bacteriol.,1990,172(12):6826-6833.
    [91] Hino S.,Watanabe K.,Takahashi N.Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exibits novel kinetic properties[J] . Microbiology ,1998(144):1765-1772.
    [92] Selvaratnam S.,Schoedel B.A., Mcfarland B.L.,et al.Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol-degrading sequencing batch reactor[J]. Appl.Environ.Microbiol.,1995 ,61(11):3981-3985.
    [93] Chae J.C., Kim E., Bini E., Zylstra G.J. Comparative analysis of the catechol 2,3-dioxygenase gene locus in thermoacidophilic archaeon Sulfolobus solfataricus strain 98/2[J]. Biochemical and Biophysical Research Communications ,2007,357(3):815-819.
    [94] Leahy J.G.,Batchelor P.J.,Morcomb S.M.Evolution of the soluble diiron monooxygenases[J]. FEMS Microbiol.Rev.,2003, 27(4):449-479.
    [95] Zhang X.L., Gao P.P., Chao Q.F.,et al.Microdiversity of phenol hydroxylase genes among phenol degrading isolates of Alcaligenes sp. from an activated sludge system[J]. FEMS Microbiol.Lett., 2004,237(2):369-375.
    [96] Shinoda Y., Sakai Y., UéM.,et al.Isolation and characterization of a new denitrifying spirillum capable of anaerobic degradation of phenol[J].Appl.Environ.Microbiol., 2000, 66 (4):1286-1291.
    [97] Paula M. S.,Young L.Y. Isolation and characterization of phenol-degrading denitrifyingbacteria[J]. Appl.Environ.Microbiol.,1998,64(7):2432-2438.
    [98] Dassarma S.,Kennedy S.P.,Berquist.B.et al.Genomic perspective on the photobiology of Halobacterium species NRC-1,a phototrophic,phototactic,and UV-tolerant haloarcheon[J]. Photosynthesis Research, 2001,70(1):3-17.
    [99]沈萍,陈娅静.盐生盐杆菌的质粒及其物理图谱[J].遗传学报,1994,21(5):409-416.
    [100] Kubo M., Hiroe J., Murakami M., et al..Treatment of hypersaline-containing wastewater with salt-tolerant microorganisms, Journal of Bioscience and Bioengineering [J]. 2001,91(2):222-224.
    [101] Peyton B.M., Wilson T., Yonge D. R.Kinetics of phenol biodegradation in high salt solutions [J]. Water Research,2002, 36(19): 4811-4820.
    [102]许学伟,吴敏,黄伟达.阿尔金山盐湖极端嗜盐古生菌的分离及16S rDNA序列分析[J].浙江大学学报(工学版),2004,38(4):508-512.
    [103]许学伟,吴敏,迪丽拜尔·托乎提.新疆艾比湖和伊吾湖可培养嗜盐古菌多样性[J].生物多样性,2006,14(4):359-362.
    [104]崔恒林,杨勇,迪丽拜尔·托乎提.新疆两盐湖可培养嗜盐古菌多样性研究[J].微生物学报,2006,46(2):171-176.
    [105]徐金贵.极端嗜盐菌的研究[D].西北大学,2002,13.
    [106]刘安双,张朝阳.红色嗜盐菌优良菌株26-101的初步研究[J].海湖盐与化工, 2000, 29(2):14-17.
    [107]张薇,胡跃高,张力群,等.中度嗜盐菌DTY1的鉴定及其耐盐机制的初步分析.2006,46 (6):956-960.
    [108] Ventosa A., Gutiérrez M.C., Kamekura M., et al.Taxonomic study of Halorubrum distributum and proposal of Halorubrum terrestre sp.nov [J]. Int.J.Syst.Evol. Microbiol..2004,54:389-392
    [109] Martin F. P., Colleen M.C. Bias in template to product ratios in multitemplate PCR[J]. Appl.Environ.Microbiol.,1998, 64 (10) :3724-3730.
    [110] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. J Mol Evol ,1980 ,16(2):111-120.
    [111] Saitou N. ,Nei M.The neighbor-joining method : a new method for reconstructing phylogenetic tree [J]. Mol.Biol.Evol.,1987,4:406-425
    [112] Felsenstein J . Confidence limits on phylogenies : An approach using the bootstap[J]. Evolution ,1985 ,39(4) :783-791.
    [113] Grant W.D., Kamekura M., Mcgenity T.J., et al . Class III.Halobacteria class. nov. In : DR Boone, RW Castenholz and GM Garrity, Bergey's manual of systematic bacteriology, 2nd [M].New York,:Springer, 2001:294-301.
    [114]王振雄,徐毅,周培瑾.嗜盐古生菌新种的系统分类学研究.微生物学报[J], 2000,40(2):115-120.
    [115]周德庆主编.微生物学实验教程(第二版)[M].北京:高等教育出版社,2006:292-293.
    [116]马海娟,李光明,张亚雷,等.产碱菌株F-3-4对苯酚降解特性的研究[J].环境科学与技术,2008,31(8):4-7.
    [117] Bastos A.E.R., Moon D.H.,Rossi A.,et al.Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples[J]. Arch. Mrcorbiol., 2000, 174(5): 346-352
    [118]Semple K.T., Cain R.B.Biodegradation of phenols by the alga Ochromonas danica[J ].App1. Environ.Microbio1.,1996 ,62 (4) :l265-l273.
    [119]周治,杨柳燕.高效降解苯酚的酵母菌筛选及其降解特性研究[J] .南京大学学报, 2001,37(6):724-729.
    [120] Staib C., Lant P.Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater. Biochem. Eng. J. 2007,34 (2), 122-130.
    [121]钱弈忠,张鹏,谭天伟.假单胞菌降解含苯酚废水试验[J].过程工程学报,2001,1(4): 439-441.
    [122]马海娟,李光明,张亚雷,等.产碱菌株F-3-4对苯酚降解特性的研究[J].环境科学与技术,2008,31(8):4-7.
    [123]胡忠,奕瑞,徐艳,等.海洋苯酚降解菌Candida sp. P5的分离鉴定及其降解特性[J].应用与环境生物学报,2007,13(2):243-247.
    [124]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:180-181.
    [125]尹萍,杨彦希,杨惠芳.麦芽糖假丝酵母10-4降解酚类化合物的研究[J].环境科学, 1997,18(1):10-13.
    [126] Paula M.van Schie?, Yong L.Y. Isolation and chracterization of phenol-degradation denitrifying bacteria [J].Appl.Environ.Microbiol.,1998,64 (7):2432-2438.
    [127] Shinoda Y., Sakai Y., UéM.,Hiraishi A., Kato N.. Isolation and characterization of a new denitrifying spirillum capable of anaerobic degradation of phenol[J]. Appl. Environ. Microbiol., 2000, 66 (4):1286-1291.
    [128] Vanschie P.M., Young L.Y.Isolation and characterization of phenol-degrading denitrifying bacteria[J]. Appl. Environ. Microbiol., 1998, 64 (7) :2432-2438.
    [129] Mrozik A., Piotrowska-Seget Z., ?abu?ek S. FAMEs profiles of phenol-degrading Pseudomonas stutzeri introduced into soil[J]. International Biodeterioration & Biodegradation, 2008,62(3):319–324.
    [130] Kim Y., Ayoubi P., Harker A. R.Constitutive expression of the cloned phenol hydroxylase gene (s) from Alcaligenes eutrophus JMP134 and concomitant trichloroethylene oxidation [J].Appl.Environ.Microbiol.,1996,62(9):3227-3233.
    [131] Zhang X.L., Gao P.P., Chao Q.F., et al.Microdiversity of phenol hydroxylase genes among phenol-degrading isolates of Alcaligenes sp. from an activated sludge system[J]. FEMS Microbiol.Lett., 2004, 237 (2) : 369-375.
    [132] Leahy J.G., Batchelor P.J.,Morcomb S.M.Evolution of the soluble diironmonooxygenases[J]. FEMS Microbiol. Rev., 2003, 27 (4) : 449-479.
    [133]徐玉泉,方宣钧,陈明,等.采用苯酚羟化酶基因特异引物检测苯酚降解菌[J].微生物学报,2001,41(3):298-303.
    [134] Prpich G.P., Daugulis A.J.Enhanced biodegradation of phenol by a microbial consortium in a solid–liquid two phase partitioning bioreactor[J]. Biodegradation, 2005,16(4):329-339.
    [135] Chen K.C., Lin Y.H., Chen W.H., et al.Degradation of phenol by PAA-immobilized Candida tropicalis[J]. Enzyme Microb. Technol., 2002,31(4):490-497.
    [136] Chung T.P., Tseng H.Y. , Juang R.S.Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems[J]. Process Biochem., 2003,38(10):1497-1507.
    [137] Mordocco A., Kuek C., Jenkins R.Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida[J]. Enzyme Microb.Tech., 1999,25(6):530-536.
    [138] Spigno G., Zilli M. , Nicolella C.Mathematical modeling and simulation of phenol degradation in biofilters[J]. Biochem. Eng. J., 2004,19(3):267-275.
    [139] Kumar A., Kumar S. ,Kumar, S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194[J]. Biochem. Eng. J., 2005,22(2):151–159.
    [140] Feitkenhauer H., Schnicke S., Müller R. , et al.Kinetic parameters of continuous cultures of Bacillus thermoleovorans sp. A2 degrading phenol at 65°C[J]. J.Biotechnol., 2003, 103(2):129–135.
    [141] Tsai S.Y., Juang R.S.Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365[J]. J. Hazard. Mater. ,2006:138(1):125–132.
    [142] Beshay U., Abd-El-Haleem D., Moawad H., et al.Phenol biodegradation by free and immobilized Acinetobacter[J]. Biotechnol. Lett., 2002,24(15):1295–1297.
    [143] Tepe O., Dursun A.Y.Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized Ralstonia eutropha in a packed bed reactor[J]. J. Hazard. Mater.,2008,151(1):9-16.
    [144]林永波,张宁.包埋碳纳米管海藻酸钠凝胶球吸附苯酚的研究[J].环境工程学报, 2009,3(2):289-292.
    [145]吴慧英,施周,陈积义,等.活性炭-微波辐射法去除苯酚的机理研究[J].环境工程学报, 2009,3(1):67-71.
    [146] Ryan D.R., Leukes W.D., Burton, S.G.Fungal bioremediation of phenolic wastewaters in an airlift reactor[J]. Biotechnology Progress, 2005,21(4):1068-1074.
    [147] Jing B., Wen J.P., Li H.M., et al.Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process Biochemistry [J], 2007,42(4):510–517.
    [148] Chern J. M. ,Chien Y. W.Adsorption of nitrophenol onto activated carbon : isotherms and breakthrough curves [J] . Water Research ,2002,36:647-655.
    [149] Al-Harazin I.M., Nakhla G.F. , Farooq S.Start-up of sequencing batch reactors for toxic wastewater treatment[J].J. Environ. Sci. Health, 1991, A26:673–687.
    [150] Papadimitriou C.A. , Samaras P., Sakellaropoulos G.P.Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors[J].Bioresource Technology,2009,100(1):31-37.
    [151] Diamadopoulos E., Samaras P., Dabou X., et al.Combined treatment of landfill leachate and domestic sewage in a sequencing batch reactor[J]. Water Sci. Tech.,1997,36:61-68.
    [152]国家环境保护总局,《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002:210-213.
    [153]信欣,王焰新,叶芝祥,等.一株耐盐废水降解菌株的分离与特性[J].环境科学与技术, 2009,32(5):17-20.
    [154]刘秀华,李捍东,王刚,等.嗜盐菌降解三聚氯氰废水特性[J].环境科学研究,2009, 22(5):526-530.
    [155] Melo J.S., Kholi S., Patwardhan A.W.,et al. Effect of oxygen transfer limitations in phenol biodegradation[J], Process Biochem.,2005, 40:625-628.
    [156] Banerjee G.Treatment of phenolic wastewater in RBC reactor[J], Wat. Res., 1997,31: 705-714.
    [157] Nuhoglu A., Yalcin B.Modelling of phenol removal in a batch reactor[J].Process Biochem., 2005,40:1233-1239.
    [158] Peyton B.M., Wilson T., Yonge D.R.Kinetic of phenol biodegradation in high salt solutions [J].Water Res., 2002,36:4811-4820.
    [159] Al-Harazin, I.M., Nakhla G.F., Farooq S.Start-up of sequencing batch reactors for toxic wastewater treatment[J].J.Environ.Sci.Health,1991,A26:673-687.
    [160] Hirata A., Meuita A.A., Osawa M.,et al.Effects of oxygen supply condition and specific biofilm interfacial area on phenol removal rate in a three-phase fluidized bed bioreactor[J],Can. J. Chem.Eng., 2000,78:95-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700