焦化废水活性污泥中功能微生物的强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了快速、准确地从焦化废水活性污泥中筛选一些功能微生物和一些能激活活性污泥中的功能微生物的激活剂;同时为了探索焦化废水活性污泥中功能微生物对废水生物处理的强化作用。研究通过以下两种种新途径即PCR-DGGE作辅助筛选手段、改进后BIOLOG微平板分别对功能微生物和一些能激活活性污泥中的功能微生物的激活剂进行筛选和研究:
     1.通过苯酚富集后平板分离常规筛选法和通过牛肉膏蛋白胨固体培养基、高氏1号固体培养基、完全固体培养基(TYG culture medium)TYG直接平板分离并通过PCR-DGGE从理论上鉴定。结果筛选到两株A1、C1为原生境中主要功能微生物;两株B1、D1为原生境中非主要功能微生物;5株A、B、C、D、F1为原生境中非功能微生物。后经检测结果表明:在活性污泥中分别投加目标功能菌A1、B1、C1、D1、E1进行强化时,系统内COD为600 mg/L的焦化废水分别经40 h、48 h、32 h、40 h、48 h的曝气,COD分别降至128 mg/L、160 mg/L、118 mg/L、156 mg/L、170 mg/L后稳定。当在活性污泥中分别投加目标非功能菌F1、A、B、C、D进行强化时,焦化废水分别经56 h曝气,COD分别降至218 mg/L、216 mg/L、215 mg/L、219 mg/L、217 mg/L后稳定,该结果与对照组降解实验结果基本一致。结果表明:活性污泥中主要功能菌的投加,对活性污泥生物处理的强化效果最为明显;非主要功能菌的投加对废水生物处理起强化效果不佳,不如主要功能菌对活性污泥的强化效果明显。非功能菌的投加对废水生物处理基本无任何强化作用。因此,通过PCR-DGGE作筛选功能微生物辅助手段是一种新的有效的筛选方法,该方法可从PCR-DGGE的图谱上直接预先判断出从原活性污泥生境中筛选到的微生物是否为原活性污泥生境中的功能微生物,避免常规方法筛选到的非主要功能微生物甚至非功能微生物。
     2.研究通过改进后的BIOLOG微平板技术从微生物生长繁殖所须的生长因子(氨基酸,碱基)、维生素、大量元素、微量元素中进行筛选。结果筛选到6种焦化废水活性污泥激活剂。后经PCR-DGGE和分子进化树对被激活剂激活后的微生物功能菌进行分析得知γ-Ami,VB12,L-Pro,DL-Ala激活剂极可能分别对活性污泥中Rhodococcus erythropolis,Alcaligenes faecalis,Uncultured Pseudomonas sp.,Pseudomonas sp.苯酚降解功能菌有激活作用;而激活剂A、L-His激活剂极可能分别对活性污泥中Micrococcus Sp.,Uncultured Bacillus sp.非苯酚降解功能菌有激活作用。结果表明:Biolog微平板筛选法简单、方便、占用空间小、耗材少,是多种待筛选的目标物有效的高通量筛选方法。稀土盐是焦化废水活性污泥一特殊激活剂。研究通过PCR-DGGE,构建系统发育树,对不同剂量的稀土盐氯化镧(LaCl_3·3H_2O)对焦化废水活性污泥在TYG培养基中生长进行分子生态学研究以及其生物多样性分析。结果表明低剂量浓度5 mg/L和10 mg/L LaCl_3·3H_2O对焦化废水活性污泥在TYG培养基中生长有一定刺激作用,生物多样性比对照组多;高剂量浓度200 mg/L和400 mg/L LaCl_3·3H_2O对焦化废水活性污泥在TYG培养基中生长有一定抑制作用,生物多样性比对照组少。低剂量浓度5 mg/L和10 mg/L LaCl_3·3H_2O极可能刺激较有代表的微生物类群为未培养微生物Uncultured Pseudomonas sp.(AB076873)、Uncultured Bacillus sp.(EF072899)、Uncultured bacterium clone SR40(DQ298294)及可培养微生物类群bacterium rj11。
To screen some functional microbes from coking wastewater activated sludge and to screen some activator that the functional microbes in coking wastewater activated sludge could be activated by those activators, at the same time for the sake of researching the functional microorganisms strengthen effect in the coking wastewater activated sludge, three approachs have been used to screen and study as follow:
     Firstly,Four domainent bacteria strains A, B, C, D has been isolated after enriched from the enrichment environment. And six domainent bacteria strains A1, B1, C1, D1, E1, F1 has been isolated by TYG, Gao1 or Beef-cream peptone medium but not enriched from the enrichment environment. Ten strains A, B, C, D A1, B1, C1, D1, E1, F1 has been identify by PCR-DGGE in theory. Two strains A1and C1 are dominent functional microorganism, three strains B1, D1and E1 are non-dominent functional microorganism and five strains F1, A, B, C, D, is non- functional microorganism. As it shows from experiment result that strengthened with dominent functional microorganism A1 in activated sludge, the COD of coking wastewater decreases to 128 mg/L after 40 hours of aeration and it go stable; In the same way, strengthened with functional microorganism B1, C1, D1, E1 the COD decreases to 160 mg/L, 118 mg/L, 156 mg/L, 170 mg/L after 48 h, 32 h, 40 h , 48 h of aeration and they go stable respectively; strengthened with non-functional microorganism F1, A, B, C, D the COD decreases to 218 mg/L , 216 mg/L ,215 mg/L ,219 mg/L 217 mg/L after 56 hours of aeration and they go stable respectively, basically the same with the COD when no candidates bacteria are present in the activated sludge, which decreases to 220 mg/L after 56 h of aeration and it go stable. Conclusions: The presence of dominant functional microbes in activated sludge is the key factor in strengthening its capability of biological treatment; and the significance of the presence of non-dominant ones is second compared with dominant ones; the presence of non-functional microbes shows no effects. This study suggests that PCR-DGGE is effective as a new supplementary means of screening functional microbes from activated sludge. More importantly, the profile of PCR-DGGE allows the researchers to be conscious of whether the screened microbes are functional ones in the habitat of original activated sludge in advance, so that the non-functional microbes and functional ones can be identified clearly.
     Seeondly,This study employed the BIOLOG micro-plate technique to screen out the activators from growth factors (amino acids, bases), vitamins, macroelements, trace elements, which are the necessities of microorganism reproduction. Six sorts of coking wastewater activated sludge activators were screened out. PCR-DGGE and molecular phylogenetic tree were used for the analysis of microorganism functional bacteria that have been already activated by the screened activators. The analysis suggests that it is possibly for activatorsγ-Ami,VB12,L-Pro,DL-Ala to respectively activate phenol degradation functional bacteria Rhodococcus erythropolis,Alcaligenes faecalis,Uncultured Pseudomonas sp.,Pseudomonas sp. in activated sludge; and it is possibly for activators A and L-His to respectively activate non-phenol degradation functional bacteria Micrococcus Sp.,Uncultured Bacillus sp in activated sludge. The research results suggest also that Biolog micro-plate screening program is characterized by simplicity, convenience, small space and less materials. Especially, multiple objects to be screened can be placed into only one micro-plate to perform high throughout screening simultaneously.
     The rare-earth salt is a special activator of activated sludge. It is not need the BIOLOG micro-plate technique to screen out. In this study,PCR-DGGE, built phylogenetic tree has been used in this study to analyze its biological diversity and to make molecular ecology study on the effects of rare-earth salt lanthanum chloride (LaCl_3·3H_2O) on the growth of some coking wastewater activated sludge microorganisms in TGY culture. It shows that at low dose of 5mg/L and 10mg/L, LaCl_3·3H_2O could stimulate the growth of coking wastewater activated sludge in TYG culture medium to some extent, and its diversity was more than the control group; at high dose of 200mg/L and 400mg/L, LaCl_3·3H_2O could inhibit the growth of coking wastewater activated sludge in TGY culture medium to some extent, and its diversity was less than control group. At the low dose of 5mg/L and 10mg/L, LaCl_3·3H_2O could stimulate the more representative microorganism groups, non-culturable microorganism group Uncultured Pseudomonas sp., Uncultured Bacillus sp. and Uncultured bacterium clone SR40 and culturable microorganism group Bacterium rJ11..
引文
[1]博士论文献]冯赛.水力条件对活性污泥处理系统的影响.河海大学博士学位论文, 2007,15-18
    [2]顾夏声,李献文,竺建荣编.水处理微生物学.[M].北京:中国建筑工业出版社,1998
    [3] .张胜华主编.水处理微生物学.[M」.北京二中国化学工业出版社,2005
    [4].郭劲松,黄天寅,龙腾锐.生物脱氮除磷工艺中的微生物及其相互关系.[Jl.环境污染治理技术与设备,2000.1(1):8-15
    [5]李探微,彭永臻,朱晓.活性污泥中原生动物的特征和作用.[J1.给水排水,2001,27(4):24-27
    [6] Bayly R.C,Duncan A,May J.W., et.al. Microbiological and genetic aspects of the synthesis of polyphosphate by species of acinetobacter. Water Science and Technolgy. 1990,23:747-754
    [7]. Hiraishia A., Masamune K., Kitamura H., Characterization of the bacterial population anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles. Applied and environmental microbiology,1992,55(4):897-901
    [8] Eikeloom D.H., Filamentous organism observed in activated sludge [.i]. Water Research, 1975, 9(4):365-388
    [9] Dabert P., Flcurat-Lessard A, Mounier E. Monitoring of the microbial community of sequencing batch reactor bioaugmented to improve it sphophorus. [J]. Water Science and Technolgy, 2001. 39(3):1-8.
    [10]陈声贵,许木启,曹宏等.活性污泥运转效能的生物检测IJI.应用与环境生物学报,2002,8〔4):438-442.
    [11] Borja R., Sanchez E., Weiland P. Influence of ammonia concentration on thermophilic anacrobic digestion of cattle manure in Upflow anmrobic sludge blankct(UASB) reactors [J].Process Biochcmistw. 1996,31(5):477-483
    [12]杨洋,左剑恶,沈平等.温度、Pll值和有机物对yuan氧氨氧化污泥活性的影响.环境科学,2006,27(4):691-695
    [13].吴成强,杨敏张星.低温生物膜和活性污泥的生物活性比较.[J]应用与环境生物学报,2004 ,l0(5):647-650
    [14].Jorgensen P.E. Estimatioln of Viable Biomass in wastewater and Activated sludge by Determination of ATP,Oxygen Utilization Rate and FDA Hydrolysis. Water Research, l992,26(11):1495-1501
    [15].何仕均,王建龙,赵漩.氨氮对厌氧颗粒污泥产甲烷活性的影响.清华大学学报(自然科学版),2005,45(9):1294-1296
    [16].尹军,谭学军,任南琪.用TTC与lNT电子传递体系活性表征重金属对污泥活性的影响.环境科学,2005,26(l):56-62
    [17].谭学军,尹军,王建辉. SBR工艺系统中污泥的TTC一ETS活性变化.[J].中国给水排水,2006,22(l):41-49
    [18].Lopez J.M,Koopman B,Bitton G .INTdehydrogenase test for activated sludge Proeess control.[Jl] Biotechnology and Bioengineering,1986,28(9):1080-1085,
    [19].Jerry Y,Huang C. Oxygen Uptake Rates for Determing Micrbial Activety and Application.[J」.Water Research,1985,19(2):373-381
    [20]杨朝晖.基于分子生态学技术的环境微生物群落结构与功能的研究.湖南大学博士学位论文, 2007,1-2
    [21] AmannRl,LudwigW,SehleiferKH. Phylogenetic identification and in situ Detection of individual microbial cells without cultivation.Microbiology and Molecular Biology Reviews,1995,59(l):143-169
    [22]陈承利,廖敏,曾路生.污染土壤微生物群落结构多样性及功能多样性测定方法[J].生态学报,2006,26(10):3404-3412
    [23] Bruns A,Nübel U,Cypionka H,et al . Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton[J]. Appl. Environ. Microbiol.,2003,69:1980 - 1989
    [24] Atlas R M. Principles of microbiology[M]. Bosten:McGraw–Hill1995,525 - 528
    [25]朱海霞,陈林海,张大伟,等.活性污泥微生物菌群研究方法进展[J].生态学报,2007,27(1):314-322
    [26]罗海峰,齐鸿雁,薛凯,等. PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23 (8):1570-1575.
    [27] Griffiths B S,Kuan H L,Ritz K,et al. The relationship between microbial community structure and functional stability,tested experimentally in an upland pasture soil[J]. Microbial Ecology,2004,(47):104–113
    [28] Tsai Shu-Hsien,Selvam Ammaiyappan,Yang Shang-Shyng. Microbial diversity of topographical gradient profiles in Fushan forest soils of Taiwan [J]. Ecol. Res.,2007,22(5):112-118.
    [29] Zhang H X,Wang X Y,Qi H Y. Development in research methods of microbial ecology[J]. Acta Ecologica Sinica,2003,23(5):988-995.
    [30] Tiquia S M,Ichida J M,Keener H M,et al. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes[J]. Appl. Microbiol. Biotechnol.,2005,67:412–419
    [31] Lara D Sette,Karen C,Simioni M,et al. Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin[J]. Antonie van Leeuwenhoek,2007,91:253–266
    [32] Sergio E Morales1,Paula J Mouser,Naomi Ward,et al. Comparison of bacterial communities in new england sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP) [J]. Microbial Ecology,2006,52:34–44
    [33] Hu H Y,Tong Z H. Bacterial quinone profile for the study of microbial community structure in environmental samp les[J]. Microbiology,2002,29(4):95- 98.
    [34] Hiraishi A,Miyakoda H,Lim B R,et al. Toward the bioremediation of dioxin-polluted soil:structural and functional analyses of in situ microbial populations by quinone profiling and culture-dependent methods[J]. Appl. Microbiol. Biotechnol.,2001,57:248–256
    [35] Yu Hongyan,Zeng Guangming,Huang Hongli,et al. Microbial community succession and lignocellulose degradation during agricultural waste composting[J]. Biodegradation,2007,18:112-120
    [36]Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review[J]. Biol. Fertil. Soils,1999,29:111-129.
    [37] John J Kelly,Max M Hggblom,Robert L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicatedby analysis of microbial community phospholipid fatty acid profiles[J]. Biol. Fertil. Soils,2003,38:65-71
    [38] Makoto Kimura,Susumu Asakawa,et al. Comparison of community structures of microbiota at main habitats in rice field ecosystems based on phospholipids fatty acid analysis[J]. Biol. Fertil. Soils,2006,43:20-29.
    [39] AmannR. , FuchsB.M. , Behrens5.(2001)The identifieation of microorganisms by fluoreseence In situ hybridization.Curr.OPin.Bioteeh.12:231-236
    [40] KhammarN.,MalhautierL.,DegrangeV,LensiR.,GodonJ.J.,FanloJ.L.(2005)Link between Spatial strueture of mierobial communities and degradation of a complex mixture of volatile organic compounds(VOCs) in Peat biofilters.J.APPI.Mierobiol.98:476-490.
    [41] MoterA.GobelU.B.(2000)Fluoreseence in situ hybridization(FISH) for direct visualization of microorganisms.J.Mierobiol.Methods.41:85-112.
    [42] Van Limbergen H,Verstraete W. Bioaugmentation in activated sludge:current features and future perspectives [J]. Appl.Microbiol. Biotechnol.,1998,(50):16-23.
    [43]Hisashi Satoh,Satoshi Okabe,Yuki Yamaguchi,et al. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode [J]. Water Research,2003,(37):2206-2216.
    [44]杨居川,杨健.生物强化技术在废水处理中的研究进展[J].中国资源综合利用,2006,24(10):24-26
    [45]王建芳,赵庆良,林佶侃,金文标生物强化技术及其在废水生物处理中的应用。《环境工程学报》,2007,1(9):40-45
    [46] Top E . M. , Sp ringael D. , Boon N. Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters . FEMS Microbiol . Ecol . , 2002,42: 199~208
    [47] van derMeer J . R. , Ravatn R. , Sentchil o V. The clc element of Pseudom onas sp. strain B13 and othermobile degradative elements employing phage-like integrases . Arch .Microbiol . , 2001, 175: 79~85
    [48] TsudaM. , Tan H. M. , NishiA. , et al . Mobile catabolic genes in bacteria . J . Biosci . Bioeng . , 1999, 87: 401~410
    [49] Sp ringael D. , Peys K . , Ryngaert A. , et al . Community shifts in seeded 3-chl or obenzoate degrading membrane biofilm reactor : Indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria . Environ . Microbiol . , 2002, 4: 70~80
    [50] Mancini P . , Fertels S., Nave D., et al . Mobilization of plasmid pHS V106 from Escherichia coli HB101 on a laboratory scale waste treatment facility . Appl . Environ . Microbiol . , 1987, 53: 665~671
    [51]徐军祥,杨翔华,姚秀清,许谦,佟明友,张全.生物强化技术处理难降解有机污染物的研究进展.化工环保, 2007, 27(2):129-134
    [52]朱永光,杨柳,张火云等.微生物菌剂的研究与开发现状.四川环境, 2004, 23 (3) : 5~8
    [53]程晓如,陈永祥,孙迎霞. EM菌强化SBR脱氮除磷的试验研究.重庆环境科学, 2002, 24 (5) : 55~57
    [54]宓益磊,樊金红,马鲁铭.电生物强化技术在水处理中的应用.术,2009,35(1):34-38
    [55] Y H D Chang, A J Grodzinsky, D I C Wang. Augmentation of mass transfer through electrical means for hydrogel-entrapped coli cultivation [J]. Biotechnol Bioeng,1995,48 (2):149-157.
    [56]王耀发,叶士景,陈家森,等.低频电磁场对细胞生物效应的研究[J].中华物理医学与康复杂志,1998,20(2): 78-80.
    [57]S Nakasono, N Matsumoto, H Saiki. Electrochemical cultivation of ferrooxidans by potential control [J].Bioelectrochem Bioenerg.,1997,43(1): 61-66.
    [58] Y Sakakibara, K Araki, T Tanaka, Denitrification and neutralization with an electrochemical and biological reactor [J]. Wat Sci Tech.,1994,30(6): 151-155.
    [59]金玉洁.基因工程菌对偶氮染料脱色研究.大连理工大学硕士论文.2005,6:56-61
    [60]高瑾.染料工业废水生物处理及其强化技术研究.南京理工大学硕士学位论文.2003,3:24-53
    [61]李环.组合式工艺处理煤气废水的小试研究.哈尔滨工业大学硕士学位论文.2003,3:26-42
    [62] C.YYoung. The Use of Enzymes and Biocatalytic Additives for Wastewater Treatment Process.Water Pollut Control Fed High Lights.1976,(13):
    [63]赵立军低温污水生物强化处理技术应用研究哈尔滨工业大学博士论文2007,3-15
    [64] J. G Steirt, R. L. Grauford. Catabolism of Pentachlorphenol by a Flat Cobacterium sp. Biochembiophys Biochembiology Res. Commun. 1986,141:825
    [65] Gregory,B. Kelvin. Bioaugmentation of Fe(0) for The Remediation of Chlorinated Aliphatic Hydrocarbons. Environ. Eng. Sci. 2000, 17(3):169-181
    [66] J. W. Grave, T. W. Joyce. A Critical Review of The Ability of Biological Treatment Systems to Remove Chlorinated Organics Discharged by The Paper Industry. Water S. A. 1994, 20:155-160
    [67] R.E.Speece.Anaerobic Biotechnology for Industrial Wastewater. Tennessee:Arche Press Pub. 1996:123-134
    [68]帖靖玺.生物强化技术处理焦化废水中难降解有机物及其相关性分析.西安建筑科技大学硕士毕业论文.2003,4:32-43
    [69]雷萍,郭爱莲.焦化废水降解的生物强化条件研究.西北大学学报. 2000,30(6):511-513
    [70] W. H. Eschenfeldt, Y Zhang, H. Samaha, et a1.,App1. Environ Mibrobiol, 2003,69(10): 5992-5999
    [71] C. Campo, E. F. Liama, J. L. Bermudez, et al. Methodologies for the Stereo Selective Synthesis of Adrenergicp-Blockers: an Overview. Biocataly and Biotransformation, 2001,19(3):163-180
    [72]赵环,傅大放,曾苏.硝基芳香烃废水处理技术研究进展.环境污染治理技术与设备.2002,3(5):31-35
    [73] D. Mantzavinos, D. M. Burrows, Wi11eyR, et al. Chemical Treatment of Ananionic Surfactant Wastewater: Electrospray-MS Studies of Intermediates and Effecton Aerobic Biodegradability. Water Research, 2001,35(14):3337-3344
    [74] E. M. TOP, D. Springael. The Role of Mobile Genetic Elements in Bacterial Adaptation to Xenobiotic Organic Compounds. Current Opinion in Biotecnology,2003,(14):262-269
    [75] M. Betsy, T. Jeffrey, P. W. Lawrence, et al. Complete Nucleotide Sequence andOrganization of the Atrazine Catabolic Plasmid p-ADP-1 from Pseudomonas sp.Strain ADP. J Bacterial. 2001, 183(19):5684-5697
    [76] D. Hoffmann, S. Kleinsteuber, R. H. Muller, et al. Tianspcson Encoding the Complete 2,4-Dichlorophenoxyacetic Acid Degradation Pathway in the Alkalitolerant Strain Delftia Acidowrans P4a. Microbilogy. 2003,(149):25452556
    [77]全向春.生物强化技术及其在废水治理中的应用.环境科学研究.1999,12 (3):2227
    [78] B. R. Zaidi N. K. Mehta. Biotechnol. Lett. 1996, 18(5): 565-570
    [79]全向春,施汉昌.4-氯酚存在对生物强化系统降解2,4一二氯酚的影响研究.环境科学学报.2003,23(1):69-73
    [80] M.Ronald, Atlas. Petroleum Biodegradation and Oil Spill Bioremediation. Marine Pollution Bulletin.1995,(31):178-182
    [81] Zhang Miao, J. S. Michael. Biostability and Microbiologyical Quality. J. AWWA. 2002,94(9):112-122
    [82]王凯军,Last A. R. M., Van der G. Let tinga.水解与颗粒污泥膨胀床串联工艺处理城市污水.中国给水排水, 1999, 15(8): 19-23.
    [83]邹茂荣,李长青,张苇.涡凹气浮(CAF)在石化废水处理中的应用.工业用水与废水.2000,31(4):34-35
    [84]唐光临,徐楚韶,董凌燕,陈建凯,毕敏.铁屑法与瓦斯泥+铁屑法预处理焦化废水.重庆大学学报(自然科学版), 2001, 24(6): 85-87.
    [85]汪海峰,张东曙,李皓.HCR处理石化废水的试验研究.工业用水与废水.2002,33(3):54-56
    [86]易辰俞,戴友芝,贺嵩邡.内电解法预处理甲基氯化物生产废水的研究. 2002年,环境污染与防治, 24(4): 213-215.
    [87]凌文华,肖炎初.上流式厌氧污泥反应器在石化高浓度废水预处理中的应用.上海化Z.2003,(8):7-10
    [88]吴慧芳,孔火良,王世和,陈卫.微电解与Fenton试剂预处理农药废水的试验研究.环境污染治理技术与设备, 2003, 4(2):18-21.
    [89]郑国华,朱志彬.乌兰林格膨润土去除石化废水中COD的应用研究非金属矿.2003,26(14):44-45
    [90]夏晓武,孙世群.臭氧预处理农药废水的研究.合肥工业大学学报(自然科学版),2005, 28(3):270-273.
    [91]侯浩波,李进平,甘金华.氧化絮凝复合床预处理印染废水的试验研究.环境科学与技术, 2006,29(4):86-89.
    [92]陈壁波.高锰酸钾预处理对废纸造纸厂废水混凝沉淀处理的作用.纸和造纸,2009,28(6):50-52.
    [93] Christian Kennes, Ramon Mendez, M. Juan, et al. Methanogenic Degradation of p-cresol in Batch and in Continuous UASB Reactors. Wat. Res. 1997,31(7):1549-1554
    [94]包焕忠,曹国强,王丽.高效生物强化技术处理焦化废水的中试研究.环境工程,2009,27(2):42-45
    [95]王一平,张金利,宋宽秀,王恩祥.活性污泥法处理染料废水的研究.环境工程, 1999, 17(3): 7-10.
    [96]杨宏建,染津,刘涛.高效菌在石化废水处理中的应用污染防治技术.污染防治技术.2000,13(1):37-40
    [97]张家亮,唐屹.活性污泥法生物接触氧化法串联工艺处理综合化工废水.中国氛碱, 2001, 7:35-37.
    [98]金志刚,周琪,屈计宁.三槽式氧化沟工艺用于石化类废水生物脱氮的探讨.湘潭大学自然科学学报.2001,23(3):59-64
    [99]任刚,李玉华.厌氧—间歇式活性污泥法处理油脂有机废水.中国给水排水, 2002, 18(11):73-74.
    [100]屈计宁,何群彪,张东曙.利用高效好氧生物反应器处理石化废水的中试研究.化学世界.2002,增刊:126-129
    [101]周富春,孙雪松.完全混合式活性污泥法处理生活污水试验研究.水处理技术,2009, 35(6):50-52.
    [102]黄广萍.生物接触氧化法处理石化废水.石油化工环境保护.1999:20-23
    [103]董良飞,张志杰,关卫省.膜生物法处理工业废水.长安大学学报(自然科学版), 2005, 25(2):102-105.
    [104]夏四清,高廷耀,周增炎.悬浮填料生物反应器去除有机污染物和氨氮的中试研究.给水排水.2000,126(12):42-45
    [105]申欢,金奇庭,李明波,崔喜勤.膜生物法处理城市垃圾渗滤液.中国给水排水, 2004, 20(3):56-59 .
    [106]夏四清,高廷耀,周增炎.悬浮填料生物反应器石化废水生物硝化研究.同济大学学报.2001,29(4):448-452
    [107]申欢,陈建,崔喜勤,金奇庭.浸没式厌氧膜生物法处理垃圾渗沥液试验研究. 2005,环境科学与技术, 28(5): 71-74
    [108]王学江,夏四清,张全兴.悬浮填料生物膜A/O法处理石化废水试验研究.工业水处理.2001,21(6):26-30
    [109]吴慧芳,王世和.折流式水解-复合膜生物法处理印染废水的特性.环境工程学报, 2008, 2(6):776-779.
    [110]石顺存,邹同庆,曾坚贤.涤纶废丝生物接触氧化法处理石化废水工业水处理.2003,23 (9):23 -25
    [111]关卫省,刘珊,张志杰.厌氧一好氧法处理石化废水的研究.中国沼气.1999,17(11):7-21
    [112]邹茂荣,彭永臻,荣宏伟.HOBAF工艺处理石化废水生产性试验研究.哈尔滨商业大学学报(自然科学版).2004,20(2):195-199
    [113]陈长松,李天增,张宝林,李楠. A/O工艺处理焦化废水的工程实践.环境科学与技术, 2006 , 29(10):85-87。
    [114]石利军,杨凤林,荀钮娴.缺氧好氧摇动床石化废水生物脱氮实验研究.沈阳建筑大学学报(自然科学版).2005,21(5):556-559
    [115]韦朝海,贺明和,吴超飞,李磊,晏波,陈金贵,李国保,江承付,乔显辉,曾宗浪.生物三相流化床A /O2组合工艺在焦化废水处理中的工程应用.环境科学学报,2007,27(7):1107-1112
    [116]赵义. A2/O2生物膜法处理焦化废水中试研究.太原理工大学博士论文,2007,24-25.
    [117]山丹,马放,王金生,王晨.低温下生物强化SBR工艺处理苯胺废水的研究.中国环境科学, 2009,29(8):844~849 .
    [118]李日强.焦化废水中酚、氰降解细菌的分离选育.重庆环境科学,2002,24(3):23-24
    [119]信欣,王焰新,叶芝祥,羊依金,张雪乔.生物强化技术处理高盐有机废水.水处理技术, 2008,34(8): 66-70.
    [120]王翠红.焦化废水中解氰细菌的分离培养.上海环境科学,2000, 19(H):526-529
    [121]解宏端,马溪平.生物强化技术提高焦化废水处理效果的研究.中国给水排水, 2007,25(15):90-92.
    [122]王景.应用生物强化技术处理焦化废水难降解有机物.城市环境与城市生态,2000,13(6):42-44
    [123]秦华明,尹华,张娜,梁世中.生物强化技术处理含油脂废水的研究.水处理技术, 2007, 33(3);32-35.
    [124]黄霞,陈戈,邵林广,等,固定化优势菌种处理焦化废水中几种难降解有机物的试验研究.中国环境科学,1995,15(l):1-4
    [125] A. Stop, J. R. Duncan. Implementation of a Continuous-Flow Stirred Bioreactor System in the Bioremediation of Heavy Metals from Industrial Waste Water. Environmental Pollution. 1997, 97(3):247251
    [126]冉岩,王志锐,宋立学等.高效优势菌处理橡胶工业有机废水实验条件的研究.天津医科大学学报.2005,11(1):1518
    [127] A. I. Zouboulis, M. X. Loukidou, K. Christodoulou. Enzymatic Treatment of Sanitary Landfill Leachate. Chemosphere. 2001,(44):1103一1108
    [128]李宗义,李培睿,王鸿磊.应用生物强化技术处理啤酒废水试验研究.工业水处理.2003,23 (7):41 }43
    [129]丁雪梅.利用EM处理垃圾渗沥液的效果研究.城市管理与科技,2002,(4):2427
    [130]王国惠.投菌强化技术降解食品工业废水的研究.净水技术.2005, 24(1): 1214
    [131] Cronin, K.VLo. Anaerobic Treatment of Brewery Wastewater Using UASB Reactors Seeded with Activated Sludge. Bioresoure Technology.1998,(64):3338
    [132]韦朝海,贺明和,任源(2007) Pollution characteristics of coking wastewater and control strategies: biological treatment process and technology. Acta Scientiae Circumstantiae 27: 1084–1093
    [133]Wei CH, He MH, Wu C F (2007) Engineering application of a biological three-phase fluidized bed A/O2 process in coking wastewater treatment. Acta Scientiae Circumstantiae 27: 1107–1112.
    [134]Ehrhardt HM, Rehm HJ (1985) Phenol degradation by microorganisms adsorbed on activated carbon . Appl Microbiol Biotechnol 21: 32-36
    [135]Gopaul K, Campbell W, Robinson , William E I (1991) Phenol degradation by apsychrotrophic strain of Pseudomonas putida . Appl Microbiol Biotechnol 34: 539-543
    [136] Heuer H, Dwyer DF, Timmis KN, Wagner D (1995) Efficacy in Aquatic Microcosms of a Genetically Engineered Pseudomonad Applicable for Bioremediation . Microb Ecol 29: 203-220
    [137]Artur ER, David HM, Antonio R, Jack TT, Siu MT (2000) Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples. Arch Microbiol 174: 346–352
    [138]Heinaru E, Jaak T, Ulrich S (2000) Types of phenol and p-cresol catabolism in phenol- and p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds[J]. Microbiol Ecol 31:195—205
    [139]Gong B, Liu J, Zhao B (2006) The isolation and identification of a phenol-degrading strain and study on its degrading characterization. Acta Scientiae Circumstantiae 26 (12): 2008– 2012
    [140] Xia Y, Min H (2003) Identification, Cloning and Sequencing of GST Gene of Bacterium Degrading Poly-aromatic Hydrocarbons. Acta Microbiologica Sinica. 43 (6): 691-697
    [141]Zhang J, Liu YS, Feng J, Bai X,Zhang ZZ ( 2003 ) Isolation and Identification of PAHs- Degrading Strain ZL5 and ITS Degradative Plasmid. Chin J Appl Environ Biol 94: 433~435
    [142]Wang C, Li D, Liu S (2007) Screening and Identification of Four PAHs-biodegrading Strains. Chin J Appl Environ Biol 4: 546~550
    [143].Fischer, S. G., and L. S. Lerman. 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory.Proc Natl Acad Sci U S A 80:1579-83.
    [144].Lerman, L. S., S. G. Fischer, I. Hurley, K. Silverstein, and N. Lumelsky. 1984.Sequence-determined DNA separations. Annu Rev Biophys Bioeng 13:399-423.
    [145].Myers, R. M., S. G. Fischer, L. S. Lerman, and T. Maniatis. 1985. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131-45.
    [146].Myers, R. M., S. G. Fischer, T. Maniatis, and L. S. Lerman. 1985. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence asdetermined by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3111-29.
    [147].Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695-700.
    [148].Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317-22.
    [149].Muyzer, G., and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127-41.
    [150].Sekiguchi, H., N. Tomioka, T. Nakahara, and H. Uchiyama. 2001. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnology Letters 23:1205-1208.
    [151].Sanguinetti, C. J., E. Dias Neto, and A. J. Simpson. 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914-21.
    [152].Teske, A., C. Wawer, G. Muyzer, and N. B. Ramsing. 1996. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 62:1405-15.
    [153].Smalla, K., G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, N. Roskot, H. Heuer, and G. Berg. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742-51.
    [154].Watanabe, K., M. Teramoto, H. Futamata, and S. Harayama. 1998. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol 64:4396-402.
    [155].Simpson, J. M., V. J. McCracken, B. A. White, H. R. Gaskins, and R. I. Mackie. 1999.Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J Microbiol Methods 36:167-79.
    [156]. Zoetendal, E. G., A. D. Akkermans, and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable andhost-specific communities of active bacteria. Appl Environ Microbiol 64:3854-9.
    [157].Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community.Appl Environ Microbiol 62:340-6.
    [158].Sekiguchi, H., M. Watanabe, T. Nakahara, B. Xu, and H. Uchiyama. 2002. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 68:5142-50.
    [152].Heuer, H., M. Krsek, P. Baker, K. Smalla, and E. M. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233-41.
    [159].Watanabe, K., Y. Kodama, K. Syutsubo, and S. Harayama. 2000. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl Environ Microbiol 66:4803-9.
    [160].Nicolaisen, M. H., and N. B. Ramsing. 2002. Denaturing gradient gel electrophoresis(DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50:189-203.
    [161].Wawer, C., and G. Muyzer. 1995. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl Environ Microbiol 61:2203-10.
    [162].Zhang, X., P. Gao, C. Chao, L. Wang, S. Eric, and L. Zhao. 2004. Microdiversity of Phenol Hydroxylase Genes among Phenol-Degrading Isolates of Alcaligenes sp. from an Activated Sludge System. FEMS Microbiol Letters.
    [163].Santegoeds, C. M., S. C. Nold, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl Environ Microbiol 62:3922-8.
    [164].Ward, D. M., C. M. Santegoeds, S. C. Nold, N. B. Ramsing, M. J. Ferris, and M. M.Bateson. 1997. Biodiversity within hot spring microbial mat communities: molecularmonitoring of enrichment cultures. Antonie Van Leeuwenhoek 71:143-50.
    [165].Keohavong, P., and W. G. Thilly. 1989. Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci U S A 86:9253-7.
    [166].Zhang, X., X. Yan, P. Gao, L. Wang, Z. Zhou, and L. Zhao. 2004. Optimized sequence retrieval from single bands of TGGE (temperature gradient gel electrophoresis) profiles of the amplified 16S rDNA fragments from an activated sludge system. J Microbiol Methods.
    [167].高平平,晁群芳,张学礼,王凌华, and赵立平. 2003. TGGE分析焦化废水处理系统活性污泥细菌种群动态变化及多样性.生态学报23:1963-1969.
    [168].Farrelly, V., F. A. Rainey, and E. Stackebrandt. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species.Appl Environ Microbiol 61:2798-801.
    [169].Picard, C., C. Ponsonnet, E. Paget, X. Nesme, and P. Simonet. 1992. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 58:2717-22.
    [170].Maarit Niemi, R., I. Heiskanen, K. Wallenius, and K. Lindstrom. 2001. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Methods 45:155-65.
    [171].Martin-Laurent, F., L. Philippot, S. Hallet, R. Chaussod, J. C. Germon, G. Soulas, and G. Catroux. 2001. DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354-9.
    [172].Jensen, M. A., and N. Straus. 1993. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. PCR Methods Appl 3:186-94.
    [173].Qiu, X., L. Wu, H. Huang, P. E. McDonel, A. V. Palumbo, J. M. Tiedje, and J. Zhou. 2001.Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67:880-7
    [174].Reysenbach, A. L., L. J. Giver, G. S. Wickham, and N. R. Pace. 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417-8.
    [175].Holben, W. E., K. P. Feris, A. Kettunen, and J. H. Apajalahti. 2004. GC fractionation enhances microbial community diversity assessment and detection of minority populations of bacteria by denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:2263-70.
    [176].Nubel, U., F. Garcia-Pichel, and G. Muyzer. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327-32.
    [177].Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636-43.
    [178].Sigler, W. V., C. Miniaci, and J. Zeyer. 2004. Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. J Microbiol Methods 57:17-22.
    [179].Jackson, C. R., E. E. Roden, and P. F. Churchill. 2000. denaturing gradient gel eletrophoresis can fail to seperate 16S rDNA fragments with multiple base differences.Molecular biology today 1:49-51.
    [180].Vallaeys, T., E. Topp, G. Muyzer, V. Macheret, G. Laguerre, A. Rigaud, and G. Soulas.1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol. Ecol. 24:279-285.
    [181]Tannock, G. W., K. Munro, R. Bibiloni, M. A. Simon, P. Hargreaves, P. Gopal, H. Harmsen, and G. Welling. 2004. Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol 70:2129-36.
    [182].Ferris, M. J., and D. M. Ward. 1997. Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis.Appl Environ Microbiol 63:1375-81.
    [183].Speksnijder, A. G., G. A. Kowalchuk, S. De Jong, E. Kline, J. R. Stephen, and H. J.Laanbroek. 2001. Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl Environ Microbiol 67:469-72.
    [184].Kocherginskaya, S. A., R. I. Aminov, and B. A. White. 2001. Analysis of the RumenBacterial Diversity under two Different Diet Conditions using Denaturing Gradient Gel Electrophoresis, Random Sequencing, and Statistical Ecology Approaches. Anaerobe 7:119-134.
    [185].Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489-97.
    [186].Wei, G., L. Pan, H. Du, J. Chen, and L. Zhao. 2004. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J Microbiol Methods.
    [187].Wei, G. F., L. Pan, H. M. Du, J. Y. Chen, and L. P. Zhao. 2004. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J.Microbiological Methods.
    [188] State Environmental Protection Administration of China, 2000. Analytical method of the water and waste water. China Environmental Science Press, Beijing,211-213
    [189]王云端,董小军,王茜,洪青,蒋新,李顺鹏.自然土壤中苯酚降解菌的分离和系统发育分析.环境科学, 2007, 28(3):623-626
    [190]Andrew ,S., Whiteley., Mark, J., Bailey., 2000. Bacterial Community Structure and Physiological State within an Industrial Phenol Bioremediation System . Applied and environmental microbiology . 66(6),2400–2407
    [191]Guieysse ,B., Wikstrom , P., Forsman ,M., Mattiasson, B., 2001. Biomonitoring of continuous microbial community adaptation towards more efficient phenol-degradation in a fed-batch bioreactor. Appl Microbiol Biotechnol. 56,780–787.
    [192] Kaplan ,C.W., Kitts ,C.L., 2004. Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol. 70, 1777–1786.
    [193]Xia ,X., Bollinger, J., Ogram,A., 1995. Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D. Mol Ecol .4, 17–28.
    [194]Nilsson,T., Bjordal,C.,2008. The use of kapok fibres for enrichment cultures of lignocellulose-degrading bacteria. International Biodeterioration & Biodegradation, 61, 11–16
    [195]Joe, S.j., Suto, K., Inoie, C., Chida ,T., 2007. Isolation and Characterization of Acidophilic Heterotrophic Iron-Oxidizing Bacterium from Enrichment Culture Obtained from Acid Mine Drainage Treatment Plant. Journal of Bioscience and Bioengineering, 104(2), 117–123.
    [196] Ros , M., Goberna, M ., Pascual , J. A., Klammer ,S ., Insam, H .,2008. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. Journal of Microbiological Methods .72 , 221–226
    [197] Lovell,C. R.,. Decker, P. V.,. Bagwell ,C.E., 2008. Analysis of a diverse assemblage of diazotrophic bacteria from Spartina alterniflora using DGGE and clone library screening. Journal of Microbiological Methods. 73,160–171
    [198] Korthals ,M ., Ege ,M. J ., Tebbe ,C. C ., Mutius, E ., Bauer ,J., 2008. Application of PCR-SSCP for molecular epidemiological studies on the exposure of farm children to bacteria in environmental dust. Journal of Microbiological Methods .73, 49–56
    [199]XING Defeng , REN Nanqi , SONG Jiaxiu , QU Min , XU Xiangling. (2006).Community of Activated Sludge Based on Different Targeted Sequence of 16SrDNA by Denaturing Gradient Gel Electrophoresis. Environmental Science, 27(7) :1424-1428. [200 ]XING Defeng , REN Nanqi , GONG Manli. (2005).Application of PCR-DGGE to Resolve Microbial Diversity in Bio-Hydrogen Producing Reactor. Environmental Science, 26 (2) :172-176.
    [201]XING Wei ,ZUO Jian-e ,SUN Yujiao. (2006). Study on Microbial Community in Methanogenic Granular Sludge by FISH and DGGE. Environmental Science, 27( 11) :2268-2272.
    [202] BIOLOG INC. BIOLOG自动微生物分析系统. http:www.biolog.com.
    [203]陈承利,廖敏,曾路生.污染土壤微生物群落结构多样性及功能多样性测定方法[J].生态学报,2006,26(10):3404-3412
    [204] Bruns A,Nübel U,Cypionka H,et al . Effect of signal compounds and incubationconditions on the culturability of freshwater bacterioplankton[J]. Appl. Environ. Microbiol.,2003,69:1980 - 1989
    [205] Atlas R M. Principles of microbiology[M]. Bosten:McGraw -Hill,1995,525 - 528
    [206]Thompson JD,Gibson TJ,Plewniak F , et al.( 1997).The Clustal X win-dows interface:flexible strategies for multiple sequence align-ment aided by quality analysis tools.Nucleic Acids Research,25:4876-4882.
    [207] Kumar S,Tamura K,Nei M.MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.Brief Bioinform,2004,5:150-163.
    [208] Eeva Heinaru, Jaak Truu, Ulrich Stottmeister.(2000). Types of phenol and p-cresol catabolism in phenol- and p-cresol-degrading bacteria isolated from riverwater continuouslypollutedwith phenolic compounds[J]. Microbiology Ecology , 31:195—205
    [209]GONGBin, LIU Jin, ZHAO Bin.(2006). The isolation and identification of a phenol-degrading strain and study on its degrading characterization. Acta Scientiae Circumstantiae, 26 (12):2008– 2012
    [210] H.M. Ehrhardt and H. J. Rehm. (1985). Phenol degradation by microorganisms adsorbed on activated carbon . Appl Microbiol Biotechnol (1985) 21 : 32-36
    [211] Gopaul Kotturi , Campbell W. Robinson , and William E. Inniss. (1991). Phenol degradation by a psychrotrophic strain of Pseudomonas putida . Appl Microbiol Biotechnol .34:539-543
    [212] H. Heuer, D.F. Dwyer,t K.N. Timmis, Wagner-Dobler . (1995). Efficacy in Aquatic Microcosms of a Genetically Engineered Pseudomonad Applicable for Bioremediation . Microb Ecol .29:203-220
    [213] WANG Yan ,SUN Caiyun , YANG Pingping.( 2005) The effect of rare earth CeCl on the growth and shape of Corynebacterium glutamicum S9114. China Condiment. 5:23-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700