潜流带砷迁移水动力—水化学过程监测与耦合模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松散沉积物含水层的砷污染己成为当前地下水环境领域研究的热点。目前,全球包括孟加拉、印度、中国、柬埔寨、越南、美国等都出现了含水层砷污染问题。地下水是重要的水资源,对人类生产、生活和生态维持具有重要价值。同时,地下水为砷的扩散提供了潜在重要路径,对人类健康和生态系统造成了极大危害。地下水系统中砷的迁移转化及浓度衰减受复杂的水文地质条件、地球化学及生物地球化学过程的控制。准确预测和模拟地下水中砷的迁移转化及浓度衰减对开展高砷含水层修复及降低砷暴露风险起着重要作用。而预测天然状态和人为扰动条件下砷在地下水系统中的迁移转化,数值方法被认为是最简便、最经济和最有效的手段之一
     大同盆地位于山西省北部,自1994年就发现地下水砷异常。关于砷在大同盆地地下水系统中的迁移机制,前人研究一致认为第四系含水层地下水中的砷主要来源于盆地周边太古变质岩以及中生代富煤地层,控制砷在地下水中迁移的主要过程是铁氧化物/氢氧化物对砷的吸附/解吸以及强还原条件下富铁矿物的还原溶解。然而,砷在地下水中的迁移、聚集与分散离不开地下水的流动,水动力特征不同,砷迁移富集特征也不相同。因此,在研究砷在地下水系统中的迁移转化时,必须将水文地球化学与地下水运动结合起来。然而,大同盆地高砷地下水的前期研究都只是采用(水文)地球化学手段来探讨浅层含水层砷的空间分布及形成机制。到目前为止还未系统开展过大同盆地的水文地质过程对砷在含水层中释放迁移的影响。而且由于桑干河干涸近十余年,所以至今从未在大同盆地开展地表水/地下水相互作用对砷在地下水系统中迁移富集的影响。
     因此,本文在查明区域水文地球化学条件的基础上,选取大同盆地典型地下水高砷区山阴县小疙瘩村,建立野外三维地下水长期监测试验场,首先进行天然条件下的地下水水位和水化学的连续监测,并建立潜流带的三维非稳定饱和地下水流模型,探讨天然条件下地下水流动对砷在地下水中运移的影响;然后在试验场地开展人为引入地表水试验,连续监测地表水和地下水的水位以及水化学,探讨地表水/地下水相互作用对潜流带地下水系统中砷运移的影响;最后耦合砷的生物地球化学过程建立地表水/地下水相互作用过程中的“1D反应运移模型”,识别地表水/地下水相互作用过程中,影响砷在地下水系统中迁移转化的主要因素。旨在:1)理解场地在天然和人为扰动情况下砷的地球化学行为和质量转移过程;2)分析研究场地中控制砷反应运移的关键过程,为地下水修复提供依据。本文的主要研究内容和结果概述如下:
     1.通过山阴试验场三维非稳定饱和地下水流模型,认识了天然条件下地下水流动特征对砷在地下水系统中迁移富集的影响
     天然条件下,对山阴试验场进行为期一年的地下水水位和水化学的连续监测,获取地下水位、地下水化学以及砷浓度的时空分布特征。在此基础上,耦合数值模拟手段,用MODFLOW建立场地三维非稳定饱和地下水流模型,发现:
     (1)从灌溉期(5月)到非灌溉期(10月),地下水As浓度显著增加,氧化还原电位(ORP)值有不同程度的减小,HS-浓度显著增加。垂向上,地下水As浓度随深度的增加逐渐增大,高As、低ORP、高HS-区集中在地面以下20~25m范围内。
     (2)地下水流数值模型计算得到的水平地下水流速的月变化揭示了灌溉作用具有重要影响。灌溉不仅抬升地下水位、减小水平地下水流速,而且还加速了不同岩性地层之间的垂向水量交换。
     (3)地下水流净交换量计算结果表明L1-L2、L2-L3、L3-L4、L4-L5、L5-L6之间始终存在由上至下的垂向水量交换,而L6~L10之间以水平交换为主。虽然与水平交换量相比,垂向交换量较小,但该现象仍反应了一个普遍规律:大气降水和灌溉水从地表垂直入渗穿过包气带(L1)、粉土层(L2、L3、L4)和粘土1(L5),进入含水层(L6,饱水带)后,逐渐变成水平方向流向排泄区。
     (4)地下水流数值模型计算得到靠近桑干河区域最大地下水流水平向净交换量为8.98m3day-1,该区域地下水As浓度约为190μgL-1,由此可估算出潜流带中砷富集量的最大值为1706.2mg day-1
     (5)砷在地下水中迁移的一个可能机制:灌溉水和大气降水从地表向下垂直入渗至含水层的过程中,推动了地表和包气带沉积物中的砷逐渐向下迁移,因此地下水砷浓度随深度增加而富集;到达含水层后,水平交换量占主导地位,地下水在水平方向上频繁的水量交换加速了砷在含水层中的水平迁移,因此地面以下17~25m范围内,越靠近排泄区,地下水砷含量越高。
     2.通过人工引入地表水试验,认识了地表水/地下水相互作用对砷在地下水系统中迁移富集的影响
     在山阴试验场开展为期一个月的人工洪水试验,实时监测地表水和地下水的水位、常规水化学、稳定同位素、锶同位素以及含水层中砷浓度的时空分布。发现:
     (1)地下水位对地表水位波动响应明显,尤其是浅层地下水位,指示了地表水与地下水之间存在相互作用。
     (2)所有地下水样品的氢氧稳定同位素组成(δ180和δ2H)均靠近全球大气降水线(GMWL)和局部大气降水线(LMWL),指示研究区地下水来源于大气降水;但地下水样品向地表水方向的演化,则直接证明了地表水与地下水之间的混合作用。
     (3)据87Sr/86Sr-Mg关系图可识别出两个端元:一个端元是洪水前期的地下水样品,该端元具有较高的87Sr/86Sr值和较低的Mg2+浓度;另一个端元是地表水,该端元具有较低的87Sr/86Sr值和较高的Mg2+浓度。所有地下水样品均落在这两个端元之间,并向地表水方向演化,指示了地表水与地下水之间的混合过程。
     (4)从洪水前期到洪水后期,地表水体的Mg2+、Na+、Ca2+、Cl-、SO42浓度显著增加,主要原因可能是受河床底部蒸发盐类矿物(盐岩、石膏、芒硝、泻盐)风化溶解的影响;而地下水中这些离子含量的升高一方面可能是受具有高浓度Mg2+、Na+、Ca2+、Cl-、S042-地表水入渗补给的影响,另一方面可能是储存在非饱和带内和/或含水层浅部的蒸发盐类矿物在地表水入渗过程中垂直向下运移至含水层的结果。
     (5)从洪水前期到洪水后期,地下水总As浓度呈增加趋势,而且地下水中As的变化量与C1的变化量显著正相关(所有水样γ2=0.59,α=0.01;仅浅层水样γ2=0.99,α=0.01),揭示地下水As浓度的增加可能是由于储存在非饱和带和/或浅层含水层中富砷矿物的风化溶解并垂直向下运移至含水层的结果。
     (6)地表水入渗补给地下水过程中携带了大量氧气和有机质至含水层中,这将加速不稳定有机质以及少量营养物质的氧化,同时氧气被耗尽,使地下水呈现强还原环境。这种条件下,低能量的电子受体,如Fe(Ⅲ)和SO42-,在微生物的作用下被还原,分别生成Fe(Ⅱ)和HS-,进一步加强地下水的还原环境。与洪水前期相比,洪水后期地下水的ORP值减小,HS和Fe(Ⅱ)含量均增加,恰好证明这一点。因此,地下水As浓度增加的另一个重要原因可能是Fe(Ⅲ)氧化物/氢氧化物和SO42-的微生物还原溶解。除此之外,沉积物中SO42-与Fe(Ⅲ)氧化物/氢氧化物的微生物还原溶解分别形成的产物HS-与Fe(Ⅱ),能进一步形成FeS2沉淀,这将更加促进Fe(Ⅲ)氧化物/氢氧化物的还原溶解,并释放出表面吸附的砷至地下水中。
     3.通过建立地表水/地下水相互作用过程中耦合砷生物地球化学过程的“1D反应运移模型”,识别了地表水/地下水相互作用过程中影响砷在地下水系统中迁移富集的主要因素
     应用PHREEQC软件首先对地表水/地下水相互作用过程中地下水系统中发生的矿物溶解/沉淀反应进行反向模拟;然后建立该过程的“1D反应运移模型”探讨控制砷在地下水系统中迁移转化的主要因素,主要得到以下认识:
     (1)地表水/地下水相互作用过程的反向水文地球化学模拟结果表明,从洪水前期到洪水后期导致监测井Well1-2、Well2-2、Well3-2、Well4-2水化学组分发生变化的主要化学过程是白云石、钠长石的溶解与方解石的沉淀作用。白云石和钠长石的溶解量最大分别达9.651mmol/kg H2O和0.862mmol/kg H2O,方解石的沉淀量高达15.73nmol/kg H2O。同时不同程度的消耗CO2气体。石膏、盐岩、天青石的溶解是造成地下水Ca2+、Na+、Cl-、 SO42-、Sr2+浓度增加的主要原因。离子交换作用也不同程度控制着地下水化学组分的演化。
     (2)Fe(Ⅲ)表面络合模型揭示了在地表水/地下水相互作用过程中,Fe(Ⅲ)氧化物/氢氧化物对砷的吸附作用是控制砷在地下水中迁移转化的一个重要因素。模拟得到Well1-2S和Well2-2S溶液中被吸附的砷浓度分别为1.06mmol L-1、1.56mmol L-1。
     (3)氧化还原模型及吸附-氧化还原模型均揭示了在地表水/地下水相互作用过程中,氧化还原反应也是控制砷在地下水系统中迁移转化的一个重要过程,尤其对靠近桑干河的地下水监测井的影响更为显著。
     (4)地表水/地下水相互作用期间,距离桑干河较近的监测井Well1-2S,吸附与氧化还原过程共同控制其地下水中砷迁移富集的主要过程;距离桑干河较远的监测井Well2-2S,吸附与氧化还原过程均对砷的迁移富集存在影响,但吸附作用的影响更为显著。
     本文的创新点体现在:1)开展地质成因砷在潜流带迁移富集过程的监测与反应运移模拟,为高砷地下水研究提供了新的思路和方法。2)通过人为引入地表水,揭示地表水/地下水相互作用对砷在地下水系统中迁移转化的影响,发现地表水入渗补给地下水过程中携带的大量氧气和有机质至含水层中,将加速不稳定有机质以及少量营养物质的氧化,使地下水呈现强还原环境,促进Fe(Ⅲ)氧化物/氢氧化物的还原溶解,并释放出表面吸附的砷至地下水中,丰富了高砷地下水成因理论。
Natural As groundwater contamination is a serious problem in many areas around the world, especially in Asian countries. The fate and transport of arsenic in groundwater system is influenced by hydrogeologic conditions and geochemical and biogeochemical processes. Due to the extremely complex geochemical reactions in aquifers system and many uncertain factors, numerical modeling has been regarded as the most cost-effective method.
     Datong Basin is located in an arid and semi-arid region of Shanxi Province, northern China. Groundwater has been the major source of potable water for drinking and irrigation purpose. High arsenic concentration has been detected in Datong groundwater, with the maximum value being up to1820μg/L. Long-term intake of high-As groundwater has caused endemic arsenic poisoning in Datong. Science1990s, a lot of work have been done to understand the genesis of Datong high arsenic groundwater. The results indicated that the arsenic in the Quaternary aquifer systems mainly originated from the Archean metamorphic rocks and Mesozoic coal-bearing strata around the Basin. The major processes of arsenic mobilization are most likely linked to As desorption from Fe oxides/oxyhydroxides and the reductive dissolution of the Fe-rich phase in the aquifer sediments under reducing and alkaline conditions.
     In fact, the hydrogeolocial conditions play an important role in As release. In recent years, many studies have demonstrated the effect of hydrodynamic conditions on dissolved As distribution in the aquifer. However, the previous studies on high-arsenic groundwater in the Datong Basin have been mostly focused on the geochemical and biogeochemical processes controlling As transport in the groundwater system. No systematical investigations were conducted to discuss the linkage between As concentration and groundwater flow paths in this area. Since studies of groundwater flow are helpful to understanding the enrichment of As in the groundwater affected by natural or anthropogenic changes in the hydrological cycle, clarifying the relationship between hydrodynamic conditions and arsenic behavior in groundwater is becoming essential.
     For this study, we selected a typical high arsenic groundwater site for detailed monitoring. At first, based on the one-year continuous monitoring work with one month interval for water level and water chemistry, a three-dimensional transient groundwater flow model with realistic assumptions of hydraulic parameters and boundary conditions of the geological structure was conducted with MODFLOW to reveal the relationships between groundwater dynamics and As concentrations in shallow contaminated groundwater systems. Then a short-term artificial flooding experiment was conducted to further understand the effects of groundwater and surface water interactions on arsenic transport in the adjacent aquifer. Finally, a one-dimensional reactive transport model occupied with biogeochemical processes of arsenic was conducted with PHREEQC to recognize the major processes controlling arsenic mobilization in adjacent groundwater system during the period of groundwater and surface water interaction. The main contents of this paper and findings are summarized as below.
     1. The relationships between groundwater dynamics and As concentrations in shallow contaminated groundwater systems were understood.
     A one-year continuous monitoring work was conducted under natural condition with one month interval for groundwater level and groundwater chemistry. Based on the three-dimensional transient groundwater flow model, the following main findings were obtained:
     (1) Groundwater arsenic concentration significantly increases from irrigation season to non-irrigation season, with the fluctuation range of2.8-46.3μg L-1and3.5-181.5μg L-1, respectively. A slight decrease of oxidation reduction potential (ORP) value presents from irrigation season to non-irrigation season, fluctuating between-6.6mV and-141.1mV and between-61.1mV and-134.9mV, respectively. During irrigation season, groundwater HS-concentration has a narrow fluctuation range of1-5μg L-1, but with a much wider fluctuation range of2-12μg L-1during non-irrigation season.
     (2) Groundwater numerical simulation indicates that irrigation can increase groundwater level and reduce horizontal groundwater velocity and thereby accelerate vertical and horizontal groundwater exchange among sand, silt and clay formations.
     (3) Results of net groundwater flux estimation suggest that vertical infiltration is likely the primary control of As transport in the vadose zone, while horizontal water exchange is dominant in controlling As migration within the sand aquifers. Recharge water, including irrigation return water and flushed saltwater, travels downward from the ground surface to the aquifer and then nearly horizontally across the sand aquifer.
     (4) The maximum value of As enriched in the hyporheic zone is roughly estimated to be1706.2mg day-1for a horizontal water exchange of8.98m3day-1close to the river and an As concentration of190μg L-1.
     (5) A possible mechanisms of As transport in the aquifer can be discussed within the framework of groundwater dynamics. First, in the process of downward movement of irrigation return water and salt flushing water, oxygen and organic matter are carried into the aquifers, which can not only oxidize the dissolved As in the vadose zone but also desorbed As into the groundwater. Second, the horizontal groundwater flux plays a dominant role in the saturated zone since the vertical groundwater flux is too small to be neglected. Horizontal water exchange may also cause As dissolution and release into the groundwater or promote the transport of dissolved As toward a more reductive environment. Consequently, the As concentration increases along the flow paths over the depth from17m to25m below the ground surface.
     2. The effect of short-term flooding on arsenic transport in groundwater system was investigated.
     Hydrogeological and geochemical approaches were combined to investigate the impact of a short-term artificial flooding event on water chemistry at this field monitoring site. By monitoring the groundwater physical-chemical parameters including redox potential, major ions and trace elements concentrations, and isotope compositions of18O/16O,2H/1H and87Sr/86Sr, we have the following key findings:
     (1) The groundwater levels fluctuate to respond to the fluctuation of surface water, as a result of groundwater-surface water interaction.
     (2) The δ18O and δ2H shift away from local meteoric water line may be related to the mixing with surface water having higher values. The δ18O and δ2H values of shallow groundwater samples increase after the flooding, indicating the effect of mixing with infiltrating surface water, since there is no precipitation during the flooding period.
     (3) The87Sr/86Sr ratios in groundwater samples reflects the contribution of silicate rock weathering, and the shift of87Sr/86Sr ratios of post-flood groundwater samples away from those of pre-flood ones but towards the surface water should be related to their mixing in the aquifers.
     (4) The variations of water temperature and TDS provide us some clues about surface water and groundwater interaction:when surface water with lower temperature and higher TDS percolates into the aquifers, there should be a decline in groundwater temperature and a rise in TDS. Correlations between Cl-and Na+, Mg2+, Ca2+and SO42-concentrations reveal surface water infiltration into groundwater trigged by the flooding. Cl-concentration increases in both surface water and groundwater after flooding, although that it is much higher in groundwater than in surface water, indicating there must be some other sources of groundwater Cl-, such as the dissolution of halite in the unsaturated zone.
     (5) The close positive relationship between As change and Cl change (γ2=0.59,α=0.01for all samples; γ2=0.99, a=0.01for only shallow samples) suggests a possible process of arsenic transport in groundwater:the vertical downward shift of the dissolution by weathering of detrital As-bearing minerals in shallow aquifer.
     (6) When surface water infiltrates into the aquifer, oxygen and organic matters can be brought into the groundwater system, which will accelerate the oxidation of organic matters and induce more reducing environment, as reflected by the lowering of ORP values and rasing of HS-and Fe(II) concentrations of our groundwater samples before and after flooding. A more reducing groundwater environment will induce the reduction of sulfate minerals and Fe-oxyhydroxides to produce sulfide. NH4-N contents, much like HS-, increase from0.19to0.68mg L-1before and after flooding indicating ammonification under reducing conditions. Therefore, the reductive dissolution of Fe-oxyhydroxides and bacteria-mediated reactions may be other important processes controlling arsenic mobilization in groundwater.
     3. The major processes controlling arsenic mobilization in groundwater system during the period of groundwater and surface interaction were discerned.
     Inverse model and forward model were conducted to calculate the mole transfers of phase and figure out the major processes controlling arsenic transport in groundwater system under the impact of surface-groundwater interaction, respectively. The main results and findings are concluded as follows:
     (1) Inverse modeling results indicate that the increase of Ca2+、Na+、Cl-、SO42-、Sr2+concentrations is mainly related to the dissolution of dolomite and albite and the precipitation of calcite, with the maximum quantity of dolomite dissolution and calcite precipitation being up to9.651mmol/kg H2O and15.73mmol/kg H2O, respectively. Ion exchange is another important process.
     (2) Fe(III) surface complexation model results demonstrate that a primary process controlling arsenic mobilization in aquifers during the period of groundwater and surface water interaction is the adsorption onto Fe(III) oxides/hydroxide. The quantity of sorbed arsenic onto HFO is1.06mmol L-1and1.56mmol L-1, respectively.
     (3) Both redox model and adsorption-redox model illustrate the importance roles of redox reactions in arsenic mobilization in groundwater system associating with surface-groundwater mixing.
     (4) For the monitoring well (Well1-2S) closest to the riverbed, the adsorption of Fe(III) oxides/hydroxide and related redox reactions, e.g. the reduce dissolution of As(V), Fe(III), SO4and NO3, together control the arsenic mobilization; while for the monitoring well (Well2-2S) further away from the riverbed, the effect of arsenic adsorption onto Fe(III) oxides/hydroxide seems to have more significant impact on arsenic mobilization than that of redox reactions.
     The major innovative advances achieved in this dissertation are as follows:1) new approaches were provided for high arsenic groundwater studies by carrying out monitoring of geogenic arsenic transport in hyporheic zone and modeling the relevant coupled reactive solute transport;2) by short-term artificial flooding experiments, the impact of surface-groundwater interaction on arsenic transport was investigated. A new model of the genesis of high arsenic groundwater was proposed:abundant oxygen and organic matter were introduced into the hyporheic aquifers by the infiltrating surface water to accelerate oxidation of instable oragnics and nutrients and facilitate the occurrence of strongly reducing conditions in the aquifers. Reductive dissolution of ferric oxyhydroxides was consequently intensified to release sorbed arsenic into groundwater.
引文
[1]王焰新,(俄)葛·马·斯贝泽尔.东亚大陆裂谷医疗矿水水文地球化学研究——以山西和贝加尔裂谷系为例.北京:中国环境出版社,2000.
    [2]李永敏.山西省山阳县水砷中毒成因环境化学研究:[硕士学位论文].武汉:中国地质大学,2001.
    [3]苏春利.大同盆地区域水文地球化学与高砷地下水成因研究:[博士学位论文].武汉:中国地质大学,2006.
    [4]Guo H M, Wang Y X, Shpeizer G M, et al. Natural occurrence of arsenic in shallow groundwater, Shanyin, Datong basin, China. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substances & Environmental Engineering,2003,38(11): 2565-2580.
    [5]Guo H M, Wang Y X. Geochemical characteristics of shallow groundwater in Datong basin, northwestern China. Journal of Geochemical Exploration,2005,87(3):109-120.
    [6]Xie X J, Ellis A, Wang Y X, et al. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Science of the Total Environment,2009,407(12):3823-35.
    [7]Xie X J, Wang Y X, Su C L, et al. Arsenic mobilization in shallow aquifers of Datong Basin:Hydrochemical and mineralogical evidences. Journal of Geochemical Exploration, 2008b,98(3):107-115.
    [8]王焰新,Shpeyzer G.东亚大陆断裂带矿物水的水文地球化学:山西和贝加尔湖的基础研究.北京:中国环境科学出版社.2000.
    [9]Zhang H, Selim H M. Reaction and transport of arsenic in soils:Equilibrium and kinetic modeling. Advance in Agronomy,2008,98:45-115.
    [10]Fendorf S, Michael H A, van Geen A. Spatial and temporal variations of groundwater arsenic in south and southeast Asia. Science,2010,328(5928):1123-1127.
    [11]Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry,2002,17(5):517-568.
    [12]金银龙,梁超轲,何公理,等.中国地方性砷中毒分布调查.卫生研究,2003,32(6):519-539.
    [13]Park J M, Lee J S, Lee J U, et al. Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. Journal of Geochemical Exploration,2006,88(1):134-138.
    [14]Stollenwerk K G. Geochemical processes controlling transport of arsenic in groundwater: a review of adoption. Arsenic in grund water:Geochemistry and occurrence,2003, 67-100.
    [15]刘辉利,梁美娜,朱义年,等.氢氧化铁对砷的吸附与沉淀机理.环境科学学报,2009,29(5):1011-1020.
    [16]苏春利,Win H,王焰新,等.大同盆地砷中毒病区沉积物中砷的吸附行为和影响因素分析.地质科技情报,2009,28(3):121-126.
    [17]Charlet L, Charkraborty S, Appelo C A J, et al. Chemodynamics of an arsenic "hotpot" in a West Bengal aquifer:A field and reactive transport modeling study. Applied Geochemistry,2007,22(7):1273-1292.
    [18]Swarzenski P W, McKee B A, Skei J M, et al. Uranium biogeochemistry across the redox transition zone of a permanently stratified fjord:Framvaren, Norway. Marine Chemistry, 1999,67(3):181-198.
    [19]朱霞萍,白德奎.模拟酸雨对氧化锰吸附砷(Ⅲ)的解吸行为研究.环境工程学报,2010,4(4):947-949.
    [20]Manning B A, Goldberg S. Arsenic(Ⅲ) and arsenic(V) absorption on three California soils. Soil Science,1997,162(12):886-895.
    [21]Appelo C A J, Drijver B, Hekkenberg R, et al. Modeling in situ iron removal from groundwater. Ground Water,1999,37(6):811-817.
    [22]Radu T, Subacz J L, Phillippi J M, et al. Effects of dissolved carbonate on arsenic adsorption and mobility. Environmental science & technology,2005,39(20):7875-7882.
    [23]Corwin D L, David A, Goldberg S. Mobility of arsenic in soil from the Rocky Mountain Arsenal area. Journal of Contamination Hydrology,1999,39(1):35-38.
    [24]Welch A H, Westjohn D B, Helsel D R, et al. Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water,2000,38(4):589-604.
    [25]Harvey C F, Swartz C H, Badruzzaman A B M, et al. Arsenic mobility and groundwater extraction in Bangladesh. Science,2002,298(5598):1602-1606.
    [26]McArthur J M, Banerjee D M, Hudson-Edwards K A, et al. Natural organic matter in sedimentary basins and its relation to arsenic in anaerobic ground water:the example of West Bengal and its worldwide implications. Applied Geochemistry,2004,19(8): 1255-1293.
    [27]Nickson R, McArthur J, Burgess W, et al. Arsenic poisoning of Bangladesh groundwater. Nature,1998,395(6700):338-338.
    [28]Postma D, Larsen F, Hue N T M, et al. Arsenic in groundwater of the Red River flood plain, Vietnam:controlling geochemical processes and reactive transport modeling. Geochemica et Cosmochimica Acta,2007,71(21):5054-5071.
    [29]van Geen A, Rose J, Thoral S, et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part Ⅱ:Evidence from sediment incubations. Geochimicaet et Cosmochimica Acta,2004,68(17):3475-3486.
    [30]Welch A H, Stollenwerk K G, Breit G N, et al. Attenuation of arsenic in Bangladesh sediments. Managing Arsenic in the Environment:From Soil to Human Health,2006,363.
    [31]Islam F S, Gault A G, Boothman C, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature,2004,430(6995):68-71.
    [32]Swartz C H, Blute N K, Badruzzman B, et al. Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochemical et Cosmochimica Acta,2004,68(22):4539-4557.
    [33]Zheng Y, Stute M, van Geen A, et al. Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry,2004,19(2):201-214.
    [34]Campbell K M, Malasam D, Saltikov C W, et al. Simultaneous microbial reduction of iron (Ⅲ) and arsenic (Ⅴ) in suspensions of hydrous ferric oxide. Environmental Science & Technology,2006,40(19):5950-5955.
    [35]Guo H M, Yang S Z, Tang X H, et al. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao basic, Inner Mongolia. Science of the Total Environment,2008,393(1):131-144.
    [36]Newman D K, Kennedy E K, Coates J D, et al. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. Nov. Archives of Microbiology,1997, 168(5):380-388.
    [37]Smedley P L, Zhang M, Zhang G, et al. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 2003,18(9):1453-1477.
    [38]Harvey C E, Ashfaque K N, Yu W, et al. Groundwater dynamics and arsenic contamination in Bangladesh. Chemical Geology,2006,228(1):112-136.
    [39]Klump S, Kipfer R, Cirpka O A, et al. Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environmental Science & Technology, 2006,40(1):243-250.
    [40]Stute M, Zheng Y, Schlosser P, et al. Hydrological control of As concentrations in Bangladesh groundwater. Water Resources Research,2007,43(9):W09417.
    [41]Harvey C F, Swartz C H, Badruzzaman A B M, et al. Response to comments on Arsenic Mobility and Groundwater Extraction in Bangladesh. Science,2003,300(5619):584-584.
    [42]Ali M A. Fate of Arsenic in the Environment. In:Ahmed, M F. Arsenic Contamination: Bangladesh Perspective. ITN, Bangladesh.2003.
    [43]Kinniburgh D G, Smedley P L, Davies J, et al. The scale and causes of the groundwater arsenic problem in Bangladesh, (in):Welch A H, Stollenwerk K G, Eds. Arsenic in Ground Water:Geochemsitry and Occurrence. Boston, MA:Kluwer Academic,2003.211-257.
    [44]van Geen A, Zheng Y, Stute M, et al. Comments on "Arsenic mobility and groundwater extraction in Bangladesh" (Ⅱ). Science,2003,300(5619):584c-584c.
    [45]Benner S G, Polizzotto M L, Kocar B D, et al. Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia. Applied Geochemistry,2008, 23(11):3072-3087.
    [46]Nakaya S, Natsume H, Masuda H, et al. Effect of groundwater flow on forming arsenic contaminated groundwater in Sonargon, Bangladesh. Journal of Hydrology,2011, 409(3-4):724-736.
    [47]Xie X J, Wang Y X, Ellis, A, et al. Multiple isotope (O, S and C) approach elucidates the enrichment of arsenic in the groundwater from the Datong Basin, northern China. Journal of Hydrology,2013,498:103-112.
    [48]Xie X J, Wang Y X, Su C L. Hydrochemical and Sediment Biomarker Evidence of the Impact of Organic Matter Biodegradation on Arsenic Mobilization in Shallow Aquifers of Datong Basin, China. Water Air Soil Pollution,2012,223(2):483-498.
    [49]Xie X J, Wang Y X, Su C L, et al. Influence of irrigation practices on arsenic mobilization:Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China. Journal of Hydrology,2012,424:37-47.
    [50]Appelo C A J, Van der Weiden M J J, Tournassat C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science & Technology,2002,36(14):3096-3103.
    [51]Moldovan B J, Hendry M J. Characterizing and quantifying controls on arsenic solubility over a pH range of 1-11 in a uranium mill-scale experiment. Environmental Science & Technology,2005.39(13):4913-4920.
    [52]Stollenwerk K G, Breit G N, Welch A H, et al. Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Science of the Total Environment,2007,379(2):133-150.
    [53]Jung H B, Charette M A, Zheng Y. Field, Laboratory, and Modeling Study of Reactive Transport of Groundwater Arsenic in a Coastal Aquifer. Environmental Science & Technology,2009,43(14):5333-5338.
    [54]Eljamal O, Sasaki K, Hirajima T. Numerical simulation for reactive solute transport of arsenic in permeable reactive barrier column including zero-valent iron. Applied Mathematical Modeling,2011,35(10):5198-5207.
    [55]Biterna M, Antonoglou L, Lazou E, et al. Arsenite removal from water by zero valent iron:Batch and column tests. Chemosphere,2010,78(1):7-12.
    [56]刘懿洁,甘义群,王焰新,等.铁矿渣去除水中砷实验研究.环境科学与技术,2010,33(3):167-170.
    [57]Halter W E, Pfeifer H R. Arsenic(V) adsorption onto α-Al2O3 between 25 and 70℃. Applied Geochemistry,2001,16(7-8):793-802.
    [58]Manning B A, Fendorf S E, Bostick B, et al. Arsenic(Ⅲ) and Arsenic(V) Adsorption Reactions on Synthetic Birnessite. Environmental Science & Technology.2002,36(5): 976-981.
    [59]Sracek O, Bhattacharya P, Jacks G, et al. Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry.2004,19(2): 169-180.
    [60]沈照理,朱苑华,钟佐燊,等.水文地球化学.北京:地质出版社,1999,55-56.
    [61]Goldberg S, Johnston C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science,2001,234(1):204-216.
    [62]豆晓敏,张昱,杨敏,等.砷在金属氧化物/水界面上的吸附机制Ⅱ.电荷分布多位络合模型模拟.环境科学学报,2006,26(10):1592-1599.
    [63]Dixit S, Hering J G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals:Implication for arsenic mobility. Environmental Science & Technology,2003, 37(18):4182-4189.
    [64]Zhang H, Selim H M. Modeling of transport and retention of arsenic(V) in soils. Soil Science Society of America Journal,2006,70(5):1677-1687.
    [65]Zheng C M, Wang P P. MT3DMS:A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems. Documentation and User's Guide. ALABAMA UNIV UNIVERSITY.1999.
    [66]Couture R M, Shafei B, Van Cappellen P. Non-Steady State Modeling of Arsenic Diagenesis in Lake Sediments. Environmental Science & Technology,2009,44(1): 197-203.
    [67]Darland J E, Inskeep W P. Effects of pore water velocity on the transport of arsenate. Environmental Science & Technology,1997,31(3):704-709.
    [68]Walker J R, Hayes T H. Reaction scheme for the oxidation of As(Ⅲ) to As(V) by bimessite. Clays Clay Miner,1990,38(5):549-555.
    [69]Manning B A., Suarez D L. Modeling arsenic(Ⅲ) adsorption and heterogeneous oxidation kinetics in soils. Soil Science Society of the America Journal,2000,64(1): 128-137.
    [70]Ying S C, Kocar B D, Griffis S D, et al. Competitive microbially and Mn oxide mediated redox processes controlling arsenic speciation and partitioning. Environmental science & technology,2011,45(13):5572-5579.
    [71]Qi Y Q, Donahoe R J. Modeling Arsenic Sorption in the Subsurface with a Dual-Site Model. Ground Water,2011,49(2):219-226.
    [72]Wallis I, Prommer H, Pichler T, et al. Process-Based Reactive Transport Model To Quantify Arsenic Mobility during Aquifer and Storage and Recovery of Potable Water. Environmental Science & Technology,2011,45(16):6924-6931.
    [73]Parkhurst D L, Appelo C A J. Decription of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations:U.S. Geological Survey Techniques and Methods,2013, book 6, chap. A43,497 p., available only at http://pubs.usgs.gov/tm/06/a43.
    [74]Burnol A, Charlet L. Fe(II)-Fe(III)-bearing phases as a mineralogical control on the heterogeneity of arsenic in Southeast Asian groundwater. Environmental Science & Technology,2010,44(19):7541-7547.
    [75]Genc-Fuhrman H, Christian Tjell J, Mcconchie D. Adsorption of arsenic from water using activated neutralized red mud. Environmental Science & Technology,2004,38(8): 2428-2434.
    [76]Johannesson K H, Tang J. Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system. Journal of Hydrology,2009,378(1-2): 13-28.
    [77]Langmuir D, Mahoney J, Rowson J. Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta,2006,70(12):2942-2956.
    [78]Le Guern C, Baranger P, Crouzet C, et al. Arsenic trapping by iron oxyhydroxides and carbonates at hydrothermal spring outlets. Applied Geochemistry,2003,18(9):1313-1323.
    [79]Lenoble V, Omanovic D, Garnier C, et al. Distribution and chemical speciation of arsenic and heavy metals in highly contaminated waters used for health care purposes (Srebrenica, Bosnia and Herzegovina). Science of the Total Environment,2013,443:420-428.
    [80]Sharif M S U, Davis R K, Steele K F, et al. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA. Applied Geochemistry,2011,26(4):496-504.
    [81]Smedley P L, Kinniburgh D G, Macdonald D M J, et al. Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry,2005,20(5): 989-1016.
    [82]王敬华,孙幸之,冯兆悦,等.地下水砷含量及其与居民慢性中毒的关系.环境与健康杂志,1998,3(5):22-23.
    [83]张青喜,赵亮正.山西省地方性砷中毒调查报告.中国地方病学杂志,19(6):439-441.
    [84]裴捍华,梁树雄,宁联元.大同盆地地下水中砷的富集规律及成因探讨.水文地质工程地质,2005,4:65-69.
    [85]郭华明.山西大同盆地浅层地下水环境演化及污染敏感性研究:[博士学位论文].武汉:中国地质大学,2002.
    [86]谢先军.大同盆地浅层地下水环境中砷的来源与迁移转化规律研究:[博士学位论文].武汉:中国地质大学,2008.
    [87]Xie X J, Johnson T M, Wang Y X, et al. Mobilization of arsenic in aquifers from the Datong Basin, China:evidence from geochemical and iron isotopic data. Chemosphere, 2013,90(6):1878-84.
    [88]Kirk M F, Holm T R, Park J, et al. Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology,2004,32(11):953-956.
    [89]Lowers H A, Breit G N, Foster A L, et al. Arsenic incorporation into authigenic pyrite, Bengal basin sediment, Bangladesh. Geochimica et Cosmochimica Acta,2007,71(11): 2699-2717.
    [90]Mallik S, Rajagopal N R. Groundwater development in the arsenic-affected alluvial belt of West Bengal:some questions. Current Science,1996,70(11):956-958.
    [91]Mandal B K, Chowdhury T R, Samanta G, et al. Arsenic in groundwater in seven districts of West Bengal, India:the biggest arsenic calamity in the world. Current Science,1996,70: 976-986.
    [92]Peters S C, Blum J D. The source and transport of arsenic in a bedrock aquifer, New Hampshire, USA. Applied Geochemistry,2003,18(11):1773-1787.
    [93]Schreiber M E, Simo J A, Freiberg P G. Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater. eastern Wisconsin, USA. Hydrogeology Journal,2000,8(2):161-176.
    [94]Matsunaga T, Karametaxas G, von Gunten H R, et al. Redox chemistry of iron and manganese minerals in river-recharged aquifers:a model interpretation of a column experiment. Geochimica et Cosmochimica Acta,1993,57(8):1691-1704.
    [95]von Gunten U, Zobrist J. Biogeochemical changes in groundwater infiltration systems: column studies. Geochimica et Cosmochimica Acta,1993,57(16):3895-3906.
    [96]Bose P, Sharma A. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Research,2002,36(19):4916-4926.
    [97]Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and the impact on contaminant dynamics. Environmental Science and Technology,2009,44(1): 15-23.
    [98]Duan M, Xie Z, Wang Y X. Microcosm studies on iron and arsenic mobilization from aquifer sediments under different conditions of microbial activity and carbon source. Environmental Geology,2009,57(5):997-1003.
    [99]Xie Z M, Wang Y X, Duan M Y, et al. Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China. Front Earth Science,2011, 5(1):37-44.
    [100]张建国,赵慧君.山西省地下水资源的科学管理.地下水,1987,4.
    [101]Xie X J, Wang Y X, Ellis A, et al. Delineation of groundwater flow paths using hydrochemical and strontium isotope composition:A case study in high arsenic aquifer systems of the Datong basin, northern China. Journal of Hydrology,2013,476:87-96.
    [102]Wang Y X, Shavartsev S L, Su C L. Genesis of arsenic/fluoride-enriched soda water:A case study at Datong, northern China. Applied Geochemistry,2009,24(4):641-649.
    [103]夏正楷.大同-阳泉盆地古泥河湾湖的岸线变化.地理研究,1992,11(2):52-59.
    [104]Berg M, Stengel C, Trang P T K, et al. Magnitude of arsenic pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment,2007, 372(2):413-425.
    [105]Charlet L, Polya D A. Arsenic in shallow, reducing groundwaters in southern Aisa:An environmental health disaster. Elements,2006,2(2):91-96
    [106]Nickson R T, McArthur J M, Ravenscroft P, et al. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry,2000,15(4):403-413.
    [107]Smith A H, Lingas E Q, Rahamn M. Contamination of drinking-water by arsenic in Bangladesh:a public health emergency. Bull of the World Health Organization,2000, 78(9):1093-1103.
    [108]李军,王正辉,程晓天,等.山西省应县地方性砷中毒流行病学调查报告.中国地方病学杂质,2005,24(2):183-185.
    [109]Guo H M, Wang Y X. Hydrogeochemical processes in shallow quaternary aquifers from the northern part of the Datong Basin, China. Applied Geochemistry,2004,19(1):19-27.
    [110]Farooqi A, Masuda H, Kusakabe M, et al. Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutes in the natural hydrological cycle. Geochemical Journal,2007, 41(4):213-234.
    [111]Masuda H, Mitamura M, Farooqi A M, et al. Geologic structure and geochemical characteristics of sediment of fluoride and arsenic contaminated groundwater aquifer in Kalalanwala and its vicinity, Punjab, Pakistan. Geochemical Journal,2010,44(6): 489-505.
    [112]Aziz Z, van Geen A, Stute M, et al. Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh. Water Resources Research,2008,44(7).
    [113]Horneman A, van Geen A, Kent D V, et al. Arsnenic mobilization in Bangladesh groundwater decoupled from dissolution of iron oxyhydroxides, part 1:Evidence from borehole cuttings. Geochimica et Cosmochima Acta,2004,68:3459-3473.
    [114]McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference groundwater flow model. USGS, Techniques of Water-Resources Investigations 34 (Book 6),1988.586 (Chapter A1).
    [115]董少刚,唐仲华,刘白薇,等.大同盆地地下水数值模拟及水资源优化配置评价.工程勘察,2008,3:30-35.
    [116]Fetter C W. Applied Hydrogeology.4th Eds. New Jersey,2001.75-85.
    [117]Konikow L F, Neuzil C E. A method to estimate groundwater depletion from confining layers. Water Resources Research,2007,43(7).
    [118]Thangarajan M, Linn F, Uhl V, et al. Modeling an inland delta aquifer system to evolve pre-development management schemes:a case study upper Thamalakane River valley, Botswana, southern Africa. Environmental Geology,1999,38(4):285-295.
    [119]Xie X J, Wang Y X, Duan M Y, et al. Geochemical and environmental magnetic characteristics of high arsenic aquifer sediments from Datong Basin, northern China. Environmental Geology,2008,58(1):45-52.
    [120]Stigter T Y, Carvalho Dill A M M, Ribeiro L, et al. Impact of the shift from groundwater to surface water irrigation on aquifer dynamics and hydrochemistry in a semi-arid region in the south of Portugal. Agricultural Water Management,2006,85(1-2):121-132.
    [121]Guo H M, Zhang Y, Jia Y F, et al. Dynamic behaviors of water levels and arsenic concentration in shallow groundwater from the Hetao Basin, Inner Mongolia. Journal of Geochemical Exploration,2013,135:130-140.
    [122]Han S, Zhang F, Zhang H, et al. Spatial and temporal patterns of groundwater arsenic in shallow and deep groundwater of Yinchuan Plain, China. Journal of Geochemical Exploration,2013,135:71-78.
    [123]Jones J B, Mulholland P J. Streams and Ground Waters. San Diego, California: Academic,2000,425.
    [124]Baillie M N, Hogan J F, Ekwurzel B, et al. Quantifying water sources to a semiarid riparian ecosystem, San Pedro River, Arizona. Journal of Geophysical Research: Biogeosciences (2005-2012),2007,112(G3).
    [125]Mauclaire L, Gibert J. Effects of pumping and floods on groundwater quality:a case study of the Grand Gravier well field (Rhone, France). Hydrobiologia,1998,389(1-3): 141-151.
    [126]Sanchez-Perez J M, Tremolieres M. Change in groundwater chemistry as a consequence of suppression of floods:the case of the Rhine floodplain. Journal of Hydrolgy.,2003, 270(1):89-104.
    [127]Simpson S C, Meixner T. Modeling effects of floods on streambed hydraulic conductivity and groundwater-surface water interactions. Water Resources Research,2012, 48(2):1-13.
    [128]Cardenas M B, Wilson J L. Hydrodynamics of coupled flow above and below a sediment-water interface with triangular bed forms:underflow case. Advances Water Resources,2007,30(3):301-313.
    [129]Negrel P H, Petelet-Giraud E. Strontium isotopes as tracers of groundwater-induced floods:the Somme case study (France). Journal of Hydrology,2005,05(1):99-119.
    [130]Vanek V. Water flows through the River Rhone sediments near Lyon, their effect on groundwater chemistry and biology. Ecological Importance River Bottom,1995,91: 149-157.
    [131]Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Science,1996,24(1):225-262.
    [132]Criss R E, Davisson M L. Isotopic imaging of surface water/groundwater interactions, Sacramento Valley, California. Journal of Hydrology,1996,178(1):205-222.
    [133]Walker J F, Krabbenhoft D P. Groundwater and surface-water interaction in riparian and lake-dominated systems. Isotope tracers in Catchment Hydrology,1998:467-488.
    [134]Magda D A, Cuna S M, Berdea P, et al. Study of mineral water resources from the Eastern Carpathians using stable isotopes. Rapid communications in Mass Spectrometry, 2009,23(16):2568-3572.
    [135]Rodriguez-Rodriguez M, Benavente J, Cruz-San Julian J J, et al. Estimation of ground-water exchange with semi-arid playa lakes (Antequera region, southern Spain). Journal of Arid Environment,2006,66(2):272-289.
    [136]Fette M, Kipfer R, Schubert C L, et al. Assessing river-ground water exchange in the regulated Rhone River (Switzerland) using stable isotopes and geochemical tracers. Applied Geochemistry,2005,20(4):701-712.
    [137]Huddart P A, Longstaffe F J, Crowe A S.δD and δ18O evidence for inputs to groundwater at a wetland coastal boundary in the Southern Great Lakes Region of Canada. Journal of Hydrology,1999,214(1):18-31.
    [138]Hunt R J, Coplen T B, Haas N L, et al. Investigating surface water-well interaction using stable isotope ratios of water. Journal of Hydrology,2005,302(1):154-172.
    [139]Mayo A L, Klauk R H. Contributions to the solute and isotopic groundwater geochemistry, Antelope Island, Great Salt Lake, Utah. Journal of hydrology,1991,127(1): 307-335.
    [140]Craig H. Isotope variation in meteoric water. Science,1961,133(3465):1702-1703.
    [141]郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究.科学通报,1983,
    [142]Clark I, Fritz P. Environmental isotopes in hydrogeology. Lewis, New York,1997.328.
    [143]Blum J D, Erel Y, Brown K.87Sr/86Sr ratios of Sierra Nevada stream waters: implications for relative mineral weathering rates. Geochemica et Cosmochimica Acta, 1993,57(21):5019-5025.
    [144]Wang Y X, Guo Q H, Su C L, et al. Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. Journal of Hydrology,2006, 328(3):592-603.
    [145]Land M, Ingri J, Andersson P S, et al. Ba/Sr, Ca/Sr and 87Sr/86Sr ratios in soil water and groundwater:implications for relative contributions to stream water discharge. Applied Geochemistry,2000,15(3):311-325.
    [146]Petelet E, Luck J M, Ben Othman D, et al. Geochemistry and water dynamics of a medium-sized watershed:I. Organisation of the different water reservoirs as constrained by Sr isotopes, major and trace elements. Chemical Geology,1998,150(1):63-83.
    [147]Alonso-Azcarat J, Bottrell S H, Mas J R. Synsedimentary versus metamorphic control of S, O and Sr isotopic compositions in gypsum evaporates from the Cameros Basin, Spain. Chemical Geology,2006,234(1):46-57.
    [148]Smalley P C, Bishop P K, Dickson J A D, et al. Water-rock interaction during meteoric flushing of limestone:implications for Porosity development in Karstified petroleum reservoirs. Journal of Sedimentary Research,1994,64(2a):180-189.
    [149]Li J X, Wang Y X, Xie X J, et al. Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong Basin, Northern China. Journal of Geochemical Exploration,2012,118,77-89.
    [150]Cartwright I, Weaver T R, Fifield L K. Cl/Br ratios and environmental isotopic indicators of recharge variability and groundwater flow:An example from the southeast Murray Basin:Australia. Chemical Geology,2006,231(1):38-56.
    [151]Masuda H, Shinoda K, Okudaira T, et al. Chlorite-source of arsenic groundwater pollution in the Holocene aquifer of Bangladesh. Geochemical Journal,2012,46(5): 381-391.
    [152]Islam F S, Boothman C, Gault A G, et al. Potential role of the Fe(Ⅲ)-reducing bacteria Geobacter and Geothrix in controlling arsenic solubility in Bengal delta sediments. Mineralogical Magazine,2005,69(5):865-875.
    [153]van Geen A, Zheng Y, Versteeg R, et al. Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resources Research.2003,39(5).
    [154]Lizotte R E, Shields F D, Knight S S, et al. Effect of artificial flooding on water quality of a floodplain backwater. River Research and Applications,2012,28(10):1644-1657.
    [155]Eby G N. Principles of Environmental Geochemistry. Pacific Grove:Thomson,2004. 114-124.
    [156]Hohn R, Isenbeck-Schroter M, Kent D B, et al. Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations. Journal of Contaminant Hydrology,2006,88(1):36-54.
    [157]山西省水文地质调查局.山阴县水文地质调查报告.1981.
    [158]Anawar H M, Akai J, Komaki K, et al. Geochemical occurrence of arsenic in groundwater of Bangladesh, source and mobilization process. Journal of Geochemical Exploration,2003,77(2):109-131.
    [159]Kim M-J, Nriagu J, Haack S. Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution,2002,120(2):379-390.
    [160]Barry D A, Bajracharya K, Carpper M, et al. Comparison of split-operator methods for solving coupled chemical non-equilibrium reaction/groundwater transport models. Mathematics and Computers in Simulation,2000,53:113-127.
    [161]Ball J W, Nordstrom D K. User's Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters; U.S. Geological Survey:Denver,1998.
    [162]Schecher W D, McAvoy D C. MINEQL+, Users Manual, V4.5, Hallowell:ME.1998.
    [163]Archer D G, Nordstrom D K. Thermodynamic properties of some arsenic compounds of import to groundwater and other applications. Journal of Chemical Engineering,2003.
    [164]Dzombak D A, Morel F M M. Surface Complexation Modeling:Hydrous Ferric Oxides. Wiley-Interscience, New York,1990.
    [165]Parkhurst D L. Christenson S, Breit G N. Ground-water-quality assessment of the central Oklahoma aquifer, Oklahoma-Geochemical and geohydrologic investigations:U.S. Geological Survey Water-Supply Paper.1996.2357:101.
    [166]Afonso M D, Stumm W. Reductive Dissolution of Iron(Ⅲ) (Hydr)oxides by hydrogen-sulfide. Langmuir,2003,8:1671-1675.
    [167]Davison W. The solubility of iron sulphides in synthetic and natural waters at ambient temperature. Aquatic Science,1991,53(4):309-329.
    [168]Parkhurst D L, Appelo C A J. PHREEQC. USGS-WRI Report,1999,99-4259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700