黑铜泥中砷的综合回收工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷通常作为铜精矿中伴生的有害元素,在铜冶炼的每一个工艺环节都会产生大量含砷的中间物料,砷的存在不仅对冶炼过程带来不利影响,同时也会带来环境的污染问题,危害人类健康。本研究以铜电解液净化环节产出的黑铜泥为原料,制备出在木材防腐上、玻璃清洁剂、农业资源等领域均有着广泛应用的砷酸铜、砷酸钠、三氧化二砷产品。探讨研究了由黑铜泥制备砷酸钠、砷酸铜、三氧化二砷的各环节工艺条件及其基础机理,主要完成了以下几个方面的工作:
     (1)确定了在最佳的碱浸工艺条件:NaOH浓度1mol/L、液固比10:1、温度85℃、反应时间6h、空气流量为0.8m~3/h、搅拌速度为400r/min,此时As的浸出率约为92%,Cu、Sb的浸出率均小于3%。碱浸液蒸发结晶得到砷酸钠产品,碱浸渣采用Na_2S浸出回收残余的As。通过单因素实验,确定了硫化钠浸出碱浸渣的最佳工艺条件:NaOH溶液浓度为40g/L, Na_2S溶液浓度为160g/L,液固比为8:1,搅拌速度为400r/min,浸出时间为2.5h,浸出温度为85℃。此时As、Sb浸出率分别约为88%、90%。用氧化剂氧化硫浸液分离砷锑,氧化液通过蒸发结晶制备出砷酸钠,经检测砷酸钠含量为38.8%。
     (2)通过单因素实验和大量数据筛选确定了黑铜泥酸浸最佳工艺条件:H_2SO_4物质的量浓度1mol/L、液固比10:1、温度80℃、反应时间4h、空气流量为0.8m~3/h、搅拌速度为400r/min,此时Cu的浸出率约为90%, As的浸出率约为89%。酸浸液蒸发结晶得到五水硫酸铜,其纯度达到98.01%,符合中华人民共和国硫酸铜国家标准(GB4371993)一级标准。砷酸铜制备的适宜条件为:反应温度为60℃,反应时间为1h,pH值为3.5,铜砷质量比为1.0~1.3。经XRD分析,砷酸铜产品的主要结构为Cu_5As_4O_(15)·9H_2O。砷酸铜产品的成分达到企业标准。酸浸渣通过Na_2S浸出回收残余As并制备出含砷酸钠为35.7%的产品。
     (3)确定由结晶后液制备三氧化二砷的工艺条件:pH值为0~1,反应时间为1h,反应温度为30℃。As_2O_3的纯度大于95%,达到有色金属行业标准(YS-T99-1997)中As_2O_3三级品标准。
As the accompanying element of copper concentrate, arsenic always isharmful, and a large number of in-process materials containing arsenic willbe produced in each process of smelting. The existence of arsenic onlyadversely affect the smelting process, but also leads to environmentalpollution problems and is harm to humans healthy. In this paper, as rawmaterials, copper sludges which is produced in copper electrolytepurification process are used to prepare sodium arsenate、 copper arsenateand arsenic trioxide. they can be widely used in wood preservation、 glasscleaner and agricultural resource etc. In this subject, the various conditionsof preparation of sodium arsenate、copper arsenate and arsenic trioxide werestudied, and the basis of mechanism is analyzed. The following researcheshave been carried out:
     (1) The optimum process conditions of alkaline leaching of coppersludges are certain. The optimal process conditions of alkaline leaching areas follow: the reaction temperature is85℃, the ratio of liquid to solid is10:1, the NaOH concentration is1mol/L, the reaction time is6hours, theflowing rate of air is0.8m~3/h, the stirring speed is400r/min. The resultshows that under the optimal conditions, the leaching rate of arsenic incopper sludges is about92%, while copper and antimony are less than3%.The alkaline residue is leaching for As by using sodium sulfide, theoptimum process conditions of sodium sulfide leaching of the residue aredrawn by single factor experiment. Under the conditions: the NaOHconcentration is40g/L, the Na_2S concentration is160g/L, the ratio ofliquid to solid is8:1, the stirring speed is400r/min, the reaction time is2.5hours, he reaction temperature is85℃. The result shows that under theoptimal conditions, the leaching rate of As and Sb in the alkaline residueare88%and90%, respectively. In order to separate As from Sb, the sodiumsulfide leaching liquid is oxidized by oxidizer. copper arsenate is preparedby evaporating, after mixing oxidation solution with alkaline leachingsolution. After testing, the content of sodium arsenate is38.8%in theproduct.
     (2) The optimum process conditions of acid leaching of copper sludges are certain by experimental research and mass of data. The optimal processconditions of acid leaching are as follow: the H_2SO_4concentration is1mol/L, the ratio of liquid to solid is10:1, the reaction temperature is80℃,the reaction time is4hours, the flowing rate of air is0.8m~3/h, the stirringspeed is400r/min. The result shows that under the optimal conditions, theleaching rate of copper in copper sludges is about90%, he leaching rate ofarsenic in copper sludges is about89%. CuSO_4·5H_2O is obtained from acidleaching solution after evaporating and crystallizing, the product quality ofCuSO_4·5H_2O is up to the first grade standard of china(GB4371993).Technological conditions of preparation of copper arsenate was drawn asfollow:the reaction temperature is60℃,the reaction time is1hour, the pHvalue is3.5, the Cu/As is1.0to1.3. Results of the analysis by XRD showthat the main structure of copper arsenate is Cu_5As_4O_(15)·9H_2O, Theproduction could basic met demands of enterprise standard. Sodiumarsenate is obtained through arsenic in acid leaching residue is leaching bysodium sulfide. After testing, the content of sodium arsenate is35.7%in theproduct.
     (3) The optimum process conditions of sulfur dioxide reduction arecertain. Under the conditions: the reaction time is1hours, the reactiontemperature is30℃, the pH value is from0to1. The purity of As_2O_3ismore than95%, the product quality of arsenic trioxide is up to the thirdgrade standard of nonferrous metal industry of china(YS-T99-1997).
引文
[1]梁峰.砷污染治理及其资源化研究[D].长沙:中南大学,2004.
    [2]Rios-Arana J.V,Walsh E.J,Gardea-Torresdey J.L. Assessment of arsenicand heavy metal concentrations in water and sediments of the RioGrande at El Paso-Juarez metroplex region[J].Environment International,2004,29(7):957-971.
    [3]曹庭礼,郭炳南.无机化学丛书第四卷(砷分族)[M].北京:科学出版社,1998,379-390.
    [4]傅作健.高铅砷转炉烟尘中砷的综合利用问题[J].有色冶炼,1979,3(5):17-19.
    [5]王勇.铜冶炼含砷废水处理新工艺及其基础理论研究[D].长沙:中南大学,2009.
    [6]牛秋雅.砷污染治理及砷资源回收利用的清洁生产新技术研究[D].长沙:湖南大学,2001.
    [7] Xiao Faxing, Zheng Yajie. Novel technology of purification of copperelectrolyte[J].Transactions of Nonferrous Metal Society of China,2007:17(5):1069-1074.
    [8] V.Dutré, C.Vandecasteele. Solidification/stabilisation of hazardousarsenic containing waste from a copper refining process[J].Journal ofHazardous Materials.1995,40(1):55-68.
    [9]郑雅杰,赵攀峰,王勇,等.高电流密度电解对阴极铜质量的影响[J].中南大学学报(自然科学版),2009,40(2):311-316.
    [10]郭学益,宋瑜,王勇.我国铜资源物质流分析研究[J].自然资源学报,2008,23(4):665-673.
    [11]刘启武.黑铜泥综合利用技术[D].兰州:兰州理工大学,2011.
    [12] T.G.Ghuah,Y.Robiah.Arsenic toxicity, health harzard and removaltechniques from water: an overview[J]. Desalination,2007,(217):139-166.
    [13]彭子玉.有色金属高砷物料的冶炼脱砷[J].工程设计与究,1990,(70):20-30.
    [14] T.Fujita, R.Taguchi, M. Abumiya, etal. Novel atmospheric scoroditesynthesis by oxidation of ferrous sulfate solution[J]. Hydrometallurgy,2008,90(2-4):92-102.
    [15] N.L.Piret. The removal and safe disposal of arsenic in copper process-ing[J]. JOM,1999,51(9):16-17.
    [16]廖自基.环境中微量重金属的污染危害与迁移转化[M].北京:科学出版社,1989,100-102.
    [17]邹家庆.工业废水处理技术[M].北京:化学工业出版社,2003,291-293.
    [18]刘万宇.含砷废水硫化处理及As2O3的制备[D].长沙:中南大学,2008.
    [19]彭容秋.砷及其用途[J].世界有色金属,1992,5:6-7.
    [19]冯树屏.砷的分析化学[M].北京:中国环境科学出版社,1986:10-15.
    [20]孟琳升.中医治癌大全[M].北京:科学技术出社,1995:278-285.
    [21]许占民.中国药物大全[M].北京:人民卫生出社,1991:390-395.
    [22]朱松然.铅蓄电池实用手册[D].北京:机械工业出版社.1993:1-58.
    [23]丁祥沁.土壤砷污染及其防治[J].江西铜业工程,1994,2:38-47.
    [24]王季梅,张树春.砷与人体健康[J].环境保护,1989(11):16-17.
    [25]章礼.利用含砷烟灰研制木材防腐剂[J].株冶科技,1994,22(1):28-32.
    [26]张孙玮,吴水生,刘绍璞.有机试剂在分析化学中的应用[D].北京:科学出版社,1981:103-165.
    [27]郭炳琨.有色冶炼过程中砷的分离和回收[J].砷译文集,1986,3-7.
    [28] M.Leist,R.J.Casey,D.Caridi.The management of arsenic wastes:problemsand prospects[J]. Journal of Hazardous Materials,2001,B76:125-138.
    [29]李莉.碱性体系下As(Ⅲ)的催化氧化及其机理研究.长沙:中南大学,2009.
    [30]洪育民.贵溪冶炼厂闪速炉电收尘烟灰除砷及综合利用研究[J].湿法冶金,2003,22(4):208-211.
    [31]刘政,姚媛.高砷钴矿火法富集过程中砷的污染和治理[J].江西有色金属,2002,16(4):35-37.
    [32]李云,袁朝新,王云.难处理砷金矿原矿焙烧试验研究[J].有色金属:冶炼部分,2005,(2):21-23.
    [33]戈保梁,杨波,周国仲.云锡高砷高硫尾矿中有价元素的综合回收[J].金属矿山,2003(4):51-53.
    [34]魏昶,姜琪,罗天骄.重有色金属冶炼中砷的脱除与回收[J].有色金属,2003,55(z1):46-49.
    [35]付一鸣,王德全,姜澜.固体含砷废料的稳定性及处理方法[J].有色矿冶,2002,18(4):42-45.
    [36] A.J.Monhemius, P.M.Swash. Removing and stabilizing As from copperrefining circuits by hydrothermal processing[J]. JOM,1999,51(9):30—33.
    [37]王小龙,张昕红.铜阳极泥处理工艺的探讨[J].矿冶,2005,14(4):46-48.
    [38]陆英英,林强,王科军.含砷废水处理的研究动态[J].工业处理,1992,12(3):7~10.
    [39] Suhendrayatna, Akira Ohki, Takayoshi Kuroiwa. Arsenic compounds inthe freshwater green microalga Chlorella vulgarism after exposure toarsenate[J].Applied Organ metallic Chemistry,1999,13:127-133.
    [40] Suzuki T.M, Bomani J.O, Matsunaga H, etal. Removal of As(Ⅲ)andAs(V) by a porous spherical resin loaded with monoclinic hydrouszirconium oxide[J]. Chemistry Letters,1997,1:19-25.
    [41] Min J.H, Hering J.G. Arsenate sorption by Fe(Ⅲ)-doped alginategels[J]. Water Research,1998,32(5):544-1552.
    [42] Yasuyuki Matsushita, Toyoki Inomata. Solubilization and functiona-lization of sulfuric acid lignin generated during bioethanol productionfrom woody biomass[J].Bioresource Technology,2009,2(100):1024-1026.
    [43]王绍文,齐龙武.硫化物沉淀法处理重金属废水的实践与发展[J].冶金环保情报,2003,2:36-47.
    [44]丁治元,周兴芳.Na2S法处理含砷废酸的生产实践[J].硫酸工业,2000,(4):4l-43.
    [45]徐根良,肖大松,肖敏.重金属废水处理技术综述[J].水处理技术.1991,17(2):77-86.
    [46]郑金旺.铜电解精炼时砷、锑、铋的分配行为及其应用研究[D].长沙:中南大学,2005.
    [47]赵天从.重金属冶金学(上册)[M].北京:冶金工业出版社,1981:1-146.
    [48]吴文伟.高银粗铜电解新工艺研究[J].有色金属:冶炼部分,2003(6):18-20.
    [49]卓文,王清宏.电解法处理黑铜渣工艺[P].中国发明专利,CN102242268A.2011-06-15.
    [50]唐仁衡.由黑铜泥制备砷酸铜工艺及理论研究[D].长沙:中南工业大学,2000.
    [51]黄善富.浅析砷锑在铜电解过程中的行为[J].有色炼,2001,25(3):20-23.
    [52]王玉棉,刘启武,冯福山,等.黑铜泥碱性浸出工艺及机理探讨[J].兰州理工大学学报,2011,37(2):5-8.
    [53]谢兆凤,杨天足.脆硫铅锑矿碱性熔炼渣的综合利用工艺研究[J].矿冶工程,30(3):77-81
    [54]金哲男,蒋开喜,魏绪钧.高温As-S-H2O系电位-pH图[J].矿冶,1999,8(4):45-50.
    [55]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004:188-197.
    [56]白猛,郑雅杰,刘万宇,张传福.硫化砷渣的碱性浸出及浸出动力学[J].中南大学学报(自然科学版),2008,39(2):268-272.
    [57]蔡云升.结晶原理和冰淇淋中的结晶现象[J].冷饮与速冻食品工业,2006,12(1):1-5.
    [58]姜海洋.五水硫酸铜冷却结晶过程研究[D].天津:天津大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700