综放采空区遗煤自然发火规律及高效防治技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国的主要能源,煤炭开采面临煤自然发火的严重威胁。由于广泛采用综采放顶煤开采工艺和瓦斯抽采技术,造成了采空区遗煤多、漏风大,综放采空区成为自然发火的主要区域。综放采空区空间大、遗煤分布广、漏风复杂等特点导致自燃危险区域分布异常且缺乏深入研究,使得综放采空区遗煤自燃的防治工作存在很大的盲目性,时常导致自燃事故的发生。本文以分析采空区煤氧化自热环境为切入点,深入研究采空区贫氧条件下遗煤自燃氧化特性,通过建立符合现场实际的综放采空区及上覆岩三维空隙场数学模型和煤自然发火三维数学模型,揭示采空区遗煤自然发火规律,提出针对性较强的防治措施,提高防治综放采空区遗煤自燃的技术水平。
     综放采空区为半封闭空间,煤自燃氧化多在贫氧条件下进行。为了获得更加符合现场实际的煤自燃特性参数规律,奠定系统研究综放工作面采空区自然发火规律的实验基础,论文开展了贫氧条件下煤自燃特性研究。为了保证实验可靠和准确性,首次采用计算机智能动态稳定配气装置,实现对不同氧浓度N2-O2混合气体的高精度、动态稳定配制。在此基础上,利用差示扫描量热技术(C80微量热仪)和煤氧化过程特征参数多元测试装置实现准确定量分析不同氧浓度条件下耗氧、放热以及气体产物生成规律。研究表明,贫氧状态对煤耗氧和放热的影响较小,而对气体产物的影响稍大;煤自燃在300℃前存在缓慢放热和加速放热两个阶段,对不同氧浓度条件下煤样缓慢放热阶段和加速放热阶段的表观活化能进行了计算,表观活化能随氧浓度的降低而近似呈线性缓慢升高的趋势;变质程度低的煤对环境的贫氧程度敏感性强,氧浓度的变化对其自燃过程的耗氧、放热、气体产物以及交叉点温度特性的影响程度都普遍高于变质程度高的煤。总体来说,贫氧条件对综放采空区煤自燃特性的影响较大,以上实验研究为准确分析采空区自然发火规律奠定了基础。
     采空区与覆岩的空隙是遗煤自燃的漏风供氧、烟气和热量逸散的通道,是煤氧复合和蓄热升温的重要影响因素,决定着遗煤自燃环境的气体浓度场、流场和温度场分布。因此,研究采空区及覆岩的空隙率分布规律对掌握采空区遗煤自燃过程的热、质传递规律尤为重要。在现场观测和理论分析的基础上,本文在关键层挠曲方程基础上提出了覆岩倾向、走向比例耦合平面连续挠曲模型,基于该模型得出覆岩离层带裂隙场的“双驼峰”比例耦合空间曲面模型,同时根据基本顶下沉曲面及采空区倾向空隙率变化系数,并考虑重力对破碎岩体空隙率的影响,推导出冒落带空隙率连续变化曲面方程,从而形成了采空区及上覆岩的三维空隙场数学模型,并对该模型进行了验算,得出的结论与现场实测数据基本吻合,这为揭示综放采空区遗煤自然发火规律,定量模拟综放采空区自燃火源特性确定了重要参量。
     在以上理论分析、实验研究的基础上,开展了综放采空区自燃危险区域现场观测和数值模拟研究,得出了综放采空区自然发火规律,即:综放采空区存在“空间自燃三带”分布特征,随着距离底板高度的不断增加,高浓度氧气分布区域的范围不断减小。因此得出:紧邻工作面的采空区,上部浮煤自燃的可能性要大于底板处的浮煤;随着进入采空区深度的增加,底板处浮煤自燃的可能性逐渐升高,上部浮煤加快进入窒息带,自燃的可能性降低。
     针对综放采空区自燃危险区空间立体分布的特点,提出了大流量、高扩散的高效阻化泡沫技术。研制了适合井下狭小作业空间的新型大流量、风驱高效泡沫发生装置,构建了满足大流量稳定灌注的阻化泡沫防灭火系统,实现了对大空间采空区遗煤的“宏观立体覆盖和微观高效阻化”,并从宏观和微观角度分别分析了阻化泡沫的阻化效果及阻化机理。有效防治了综放采空区遗煤自然发火,解决了综放大空间采空区自燃隐蔽火源防治难题。
Coal is the major sources of energy in our country, but the spontaneouscombustion of coal seriously threaten the mining safety. The fully mechanized cavingtechnology and gas discharge which are widely used in recent years caused moreresidual coal and air leaking in goaf. The fully mechanized caving face goaf is themain area of coal spontaneous combustion which is characterized by high goaf space,widely distributed residual coal and stereoscopic distribution of spontaneouscombustion risk area. The inadequate research related to the regularity of spontaneouscombustion in the stereoscopic goaf results in a lot of blindness in controlling it, evenleads to extraordinarily serious spontaneous combustion accidents. Regarding thespontaneous combustion environment in goaf as the starting point, this dissertationanalyzed the space characteristics of spontaneous combustion environment in the goaf,studied the spontaneous combustion oxidation characteristics of residual coal underlean oxygen conditions, revealed the regularity of spontaneous combustion of residualcoal in goaf that more consistent with the actual conditions, at the same time,proposed targeted prevention measures to improve the overall technical level of thecaving face.
     As a hemi-closure space, the oxidation process of coal spontaneous combustionin fully mechanized caving face goaf occurred in the oxygen-poor conditions. In orderto get characteristic parameters and oxidation law that was more in line with theactual situation of coal spontaneous combustion and so as to lay the experimentalfoundation for the systematic study the law of spontaneous combustion of coal, thepaper carried out the experimental study of the characteristic parameters of thespontaneous combustion of coal in oxygen-poor conditions. In order to ensure thereliability and accuracy of the experiment, the study for the first time used thecomputer intelligence dynamic volumetric device, to achieve high accuracy anddynamic stability preparation of the different oxygen concentration in the gas mixtureof N2-O2. On this basis, using Differential Scanning Calorimetry (C80microcalorimeter) and multivariate testing device used to test characteristics parameters ofoxidation process of coal, the paper accurately and quantitatively analyzed the oxygenconsumption, the law of heat release and the generating law of gas product underdifferent oxygen concentration conditions. Research derived that the effect degree of the oxygen-poor conditions on oxygen consumption and heat release is less thangaseous products of the coal sample, and the process of spontaneous combustionexists the slow and accelerated exothermic stages before300℃, moreover, theapparent activation energy of coal samples linearly and slowly increases with thereduction of the oxygen concentration. When analyzed from the metamorphic gradeof coal samples, it was discovered that the effect degree of the oxygen-poorconditions on oxygen consumption, heat release and gaseous products of coal that islow degree of metamorphism is more than coal that is high degree of metamorphism.Overall, the effect of the oxygen-poor conditions on coal spontaneous combustioncharacteristics in fully mechanized caving face goaf.
     The distribution model of fracture field in goaf and overlying strata is theair-leaking and oxygen supply channel of spontaneous combustion of residual coal,fugitive channel of flue gases and heat, and it is the important factor of the process ofcombined effects of coal and oxygen and heat storage, and determines the distributionof concentration field, flow field, as well as the temperature field, so researching thedistribution law of porosity in goaf and overlying strata is particularly important tomaster the transfer law of heat and mass in the process of spontaneous combustion.On the basis of field observations and theoretical analysis, the paper established themathematical model of the three-dimensional void field of goaf and overlying strata.The paper put forward the proportional coupling model of tendency and trend bend ofoverlying strata on the basis of flexure equation of critical layer. Trough this model,the "double hump" proportional coupling space model of the fractured field wasraised. Meanwhile, based on the sinking curved surface of basic top and the changecoefficient of porosity in goaf tendency, and considering the effect of gravity on theporosity of broken rock, the paper deduced the continuously varying surface equationof porosity in caving zone. In addition, the checking results of this model wereconsistent with field data. It provides important parameters to reveal the spontaneouscombustion law of residual coal and quantitatively simulate characteristics of thesource of fire in goaf.
     On the basis of the above theoretical analysis and experimental studies, fieldobservation and numerical simulation of the spontaneous combustion risk area in goafwere conducted, and the spontaneous combustion regularity in fully mechanizedcaving face goaf was obtained, i.e. there was "Stereoscopic Three Zone" exist in goaf,the area of high concentration oxygen constantly reduced with the increase of the distance to the floor. Therefore, near the face, the upper residual coal in the goaf was
     likely to have higher possibility of spontaneous combustion than that of the floorresidual coal; with the gradual entering into the goaf, the spontaneous combustion riskof the floor residual coal gradually increased, the rate of the upper residual coal’sentering the choking area was accelerated, and this reduced the spontaneouscombustion risk of the upper residual coal.
     On the basis of revealing the regularity of spontaneous combustion of coal infully mechanized caving face goaf, according to the stereoscopic distribution of thespontaneous combustion risk area, the hydroxy-type inhibitive foam technology wasproposed for the first time and has been applied in Dafosi mine successfully. Theinhibition effect of the hydroxy-type inhibitor was investigated in the laboratory fromboth macroscopic and microscopic characterization. A new efficient foam generatorwith large flow that suitable for small space underground was developed. The macrostereoscopic coverage and microscopic efficient inhibition of the goaf with largespace were realized, and the risk of spontaneous combustion in goaf was effectivelyreduced. Thereby, the conundrum of the prevention of hidden fire source in goaf withlarge space was successfully resolved.
引文
[1]戚颖敏等.矿井防灭火(煤矿安全手册,第四篇)[M].北京:煤炭工业出版社,1991,75-174.
    [2]王德明,王俊.基于无导师神经网络的煤炭自燃危险性聚类分析[J].煤炭学报,1999,24(2).
    [3]高广伟.中国煤矿氮气防灭火的现状与未来[J].煤炭学报,1999,24(1):48-51.
    [4]任伟. BRC阻化剂阻化防火机理的探讨[J].煤矿安全,1998,(11):38-40.
    [5]焦新明,王德明,仲晓星等.不同阻化剂对煤自燃临界温度影响的实验研究[J].煤炭工程,2012(2):88-91.
    [6] Adamus A., Vicek J.. The optimization of the nitrogen infusion technology[J].Fuel and EnergyAbstracts,1998,39(1):9.
    [7] Jones JC, Newman SC. Non-Arrhenius behaviour in the oxidation of two carbonaceoussubstrates.J Loss Prevent Process Ind2003;16:223–225.
    [8] B. Basil Beamish, Ahmet Arisoy.Effect of mineral matter on coal self-heating rate[J] Fuel87(2008)125-130.
    [9] Beamish BB, Blazak DG. Relationship between ash content and R70self-heating rate ofCallide coal[J]. Int J Coal Geol2005;64:126-132.
    [10] Beamish BB, Hamilton GR. Effect of moisture content on the R70self-heating rate of Callidecoal[J]. Int J Coal Geol2005;64:133-138.
    [11] Ozbas K E.et al. DSC study of the combustion properties of turkish coals [J]Journal ofThermal Analysis and Calorimetry,2003,71(3),849-856.
    [12]徐精彩,张辛亥等.煤氧复合过程及放热强度测算方法[J].中国矿业大学学报2000(29):253~257.
    [13]徐精彩,文虎,葛岭梅等.松散煤体低温氧化放热强度的测定和计算[J].煤炭学报,2000,25(4):387-390.
    [14] Wang H, Dlugogorski B Z, Kennedy E M. Theoretical analysis of reaction regimes inlow-temperature oxidation of coal[J]. Fuel,1999.Vol.78(9):1073-1081.
    [15]朱令起,周心权,谢建国等.自然发火标志气体实验分析及优化选择[J].采矿与安全工程学报,2008,25(4):440-448.
    [16]余明高,郑艳敏等.煤低温氧化热解的热分析实验研究[J].中国安全科学学报,2009,(09):83-86.
    [17]梁运涛,罗海珠.煤低温氧化自热模拟研究[J].煤炭学报,2010,(06):956-959.
    [18]彭伟,何启林等.煤炭自燃指标性气体确定的实验研究[J].中国安全生产科学技术,2010,(06):140-144.
    [19] Carras, J. N., S. J. Day, et al.. Greenhouse gas emissions from low-temperature oxidation andspontaneous combustion at open-cut coal mines in Australia[J]. International Journal of CoalGeology,2009,78(2):161-168.
    [20] Wang, D., X. Zhong, et al.. Changes in active functional groups during low-temperatureoxidation of coal[J]. Mining Science and Technology (China),2010,20(1):35-40.
    [21] Yip, K., E. Ng, et al.. A mechanistic study on kinetic compensation effect duringlow-temperature oxidation of coal chars[J]. Proceedings of the Combustion Institute,2011,33(2):1755-1762.
    [22] Taraba, B., R. Peter, et al.. Calorimetric investigation of chemical additives affectingoxidation of coal at low temperatures. Fuel Processing Technology[J].2011,92(3):712-715.
    [23]葛岭梅,李建伟.神府煤低温氧化过程中官能团结构演变.西安科技学院学报,2003,2(23).
    [24]张国枢,谢应明,顾建明等.煤炭自燃微观结构变化的红外光谱分析[J].煤炭学报,2003,28(5):473-476.
    [25] G.de la Puente,M.J. Iglesias, E. Fuente, J.J. Pis. Changes in the structure of coals of differentrank due to oxidation—effects on pyrolysis behaviour[J].Journal of Analytical and AppliedPyrolysis,1998,5.
    [26]李增华,位爱竹等.煤炭自燃自由基反应的电子自旋共振实验研究[J].中国矿业大学学报,2006,9.
    [27]罗道成,刘俊峰.不同反应条件对煤中自由基的影响[J].煤炭学报,2006,33(7):807-811.
    [28]陆伟,胡千庭.煤低温氧化结构变化规律与煤自燃过程之间的关系[J].煤炭学报,2007,32(9):939-944.
    [29]仲晓星,王德明等.煤氧化过程中的自由基变化特性[J].煤炭学报,2010,35(6):960-963.
    [30]戴广龙.煤低温氧化过程中微晶结构规律研究[J].煤炭学报,2011,36(2):322-357.
    [31]戴广龙.煤低温氧化过程中自由基浓度与气体产物之间的关系[J].煤炭学报,2012,37(1):122-125.
    [32] Yu Ming-gao, Zheng Yan-min, Lu Chang. Thermal analysis of kinetics of coal oxidation[J].The6th International Conference on Mining Science&Technology. Procedia Earth andPlanetary Science,2009:341–346.
    [33]郑艳敏.煤氧化的反应机理函数和热效应的研究[D].焦作:河南理工大学,2010.
    [34] J. C. Jones, K. P. Henderson, J. Littlefair and S. Rennie. Kinetic parameters of oxidation ofcoals by heat-release measurement and their relevance to self-heating tests [J]. Fuel,1998,77(112):19-22.
    [35] Jones, J. C., Chiz, P. S., Koh, R. and Matthew, J., Kinetic parameters of oxidation ofbituminous coals from heatrelease rate measurements [J]. Fuel,1996,75:1755-1757.
    [36] Jones, J. C., A single-point estimation of the combustion rate expression for a bituminous coal[J]. Journal of Fire Sciences,1996,14:325-330.
    [37] J.C. Jones, S.C. Newman. Non-Arrhenius behaviour in the oxidation of two carbonaceoussubstrates [J]. Journal of Loss Prevention in the Process Industries,2003,16:223–225.
    [38] Sondreal EA, Ellman RC. Laboratory determination of factors affecting storage of NorthDakota lignite [M]. US Bureau of Mines,1974.
    [39] Schmidt LD, Elder JL. Atmospheric oxidation of coal at moderate temperatures: rates of theoxidation reaction for representative coking coals [J]. Ind Engng Chem,1940,32:249–256.
    [40] Krevelen DW. Coal: typology—chemistry—physics—constitution [M]. London:Elsevier,1993.
    [41] Haihui Wang, BogdanZ.Dlugogorski, EricM.Kennedy. Theoretical analysis of reactionregimes in low-temperature oxidation of coal [J]. Fuel,1999,78:1073-1081.
    [42]徐精彩,薛韩玲,文虎等.煤氧复合热效应的影响因素分析[J].中国安全科学学报,2001,11(2):31-36.
    [43] Kam, A.Y., Hixson, A.N., and Perlmutter, D.D. The oxidation of bituminous coal-ⅠDevelopment of a mathematical model [J]. Chemical Engineering Science,1976,31(9):815-819.
    [44] Kam, A.Y., Hixson, A.N., and Perlmutter, D.D. The oxidation of bituminous coal-Ⅱexperimental kinetics and interpretation [J]. Chemical Engineering Science,1976.31(9):821-834.
    [45] Wang H, Dlugogorski B.Z., Kennedy E.M. Coal oxidation at low temperatures: oxygenconsumption, oxidation products, reaction mechanism and kinetic modelling [J]. Progress inEenergy and Combustion Science,2003,29(6):487-513.
    [46] Wang H, Dlugogorski B.Z., Kennedy E.M. Kinetic modeling of low-temperature oxidation ofcoal [J]. Combustion and Flame,2002,131(4):452-464.
    [47] Wang H, Dlugogorski B.Z., Kennedy E.M. Thermal decomposition of solid oxygenatedcomplexes formed by coal oxidation at low temperatures [J]. Fuel,2002,81:1913-1923.
    [48] Wang H, Dlugogorski B.Z., Kennedy E.M. Analysis of the mechanism of the low-temperatureoxidation of coal [J]. Combustion and Flame,2003,134:107-117.
    [49] Krishnaswamy, S., Gunn, R.D., and Agarwal, P.K. Low-temperature oxidation of coal.2. Anexperimental and modelling investigation using a fixed-bed isothermal flow reactor [J]. Fuel,1996,75(3):344-352.
    [50] Krishnaswamy, S., Bhat, S., Gunn, R.D., et al. Low-temperature oxidation of coal.1. Asingle-particle reaction-diffusion model [J]. Fuel,1996.75(3):333-343.
    [51] Krishnaswamy, S., Agarwal, P.K., and Gunn, R.D. Low-temperature oxidation of coal.3.Modelling spontaneous combustion in coal stockpiles [J]. Fuel,1996.75(3):353-362.
    [52] Itay, M., Hill, C.R., and Glasser, D. A study of the low temperature oxidation of coal [J]. FuelProcessing Technology,1989,21(2):81-97.
    [53] Ashok K. Singh, R.V.K. Singh, Mahendra P. Singh. Mine fire gas indices and their applicationto Indian underground coal mine fires. International Journal of Coal Geology,2007(69):92–204.
    [54] Ann G. Kim. Locating fires in abandoned underground coal mines. International Journal ofCoal Geology,2004(59):49-62.
    [55] de la Puente, G., Iglesias, M.J., Fuente, E., et al. Changes in the structure of coals of differentrank due to oxidation--effects on pyrolysis behaviour[J].Journal of Analytical and AppliedPyrolysis,1998.47(1):33-42.
    [56] Iglesias, M.J., de la Puente, G., Fuente, E., et al. Compositional and structural changes duringaerial oxidation of coal and their relations with technological properties[J].VibrationalSpectroscopy,1998.17(1):41-52.
    [57] Rhoads, C.A., Senftle, J.T., Coleman, M.M., et al. Further studies of coal oxidation[J].Fuel,1983.62:1387-1392.
    [58] Perry, D.L. and Grint, A. Application of XPS to coal characterization[J].Fuel,1983.62(9):1024-1033.
    [59]陆伟.煤自燃过程气态产物产生机理[J].湖南科技大学学报(自然科学版),2009,24(2):10-14.
    [60]石婷,邓军,王小芳等.煤自燃初期的反应机理研究[J].燃料化学学报,2004.32(6):652-657.
    [61]李树刚,钱鸣高,石平五.综放开采覆岩离层裂隙变化及空隙渗流特性研究[J].岩石力学与工程学报,2000,19(5):604-607.
    [62]程久龙,胡克峰,王玉和等.测地雷达探测地下采空区的研究[J].岩土力学,2004,25(增刊1):79-82.
    [63]宋颜金,程国强,郭惟嘉.采动覆岩裂隙分布及其空隙率特征[J].岩土力学,2011,32(2):533-536.
    [64]周西华.双高矿井采场自燃与爆炸特性及防治技术研究[D].阜新:辽宁工程技术大学,2006:41-43.
    [65]李宗翔,衣刚,武建国等.基于“O”型冒落及耗氧非均匀采空区自燃分布特征[J].煤炭学报,2012,37(3):484-489.
    [66]梁运涛,张腾飞,王树刚等.采空区孔隙率非均质模型及流场分布模拟[J].煤炭学报,2009,34(9):1203-1207.
    [67]王月红,温佳丽,秦跃平等.采空区多参数气-固耦合渗流模拟[J].辽宁工程技术大学学报(自然科学版),2012,31(5):760-764.
    [68]张玉军,张华兴,陈佩佩.覆岩及采动岩体裂隙场分布特征的可视化探测[J].煤炭学报,2008,31(11):1216–1219.
    [69]黄炳香,刘长友,许家林.采动覆岩破断裂隙的贯通度研究[J].中国矿业大学学报,2010,39(1):45-49.
    [70]张玉军,李凤明.高强度综放开采采动覆岩破坏高度及裂隙发育演化监测分析[J].岩石力学与工程学报,2011,30(增1):2994-3000.
    [71]林海飞,李树刚,成连华.覆岩采动裂隙带动态演化模型的实验分析[J].采矿与安全工程学报,2011,28(2):298-303.
    [72]马占国,缪协兴,陈占清等.破碎煤体渗透特性的试验研究[J].岩土力学,2009,30(4):985-988.
    [73]马占国,兰天,潘银光等.饱和破碎泥岩蠕变过程中孔隙变化规律的试验研究[J].岩石力学与工程学报,2009,28(7):1447-1454.
    [74]苏承东,顾明,唐旭等.煤层顶板破碎岩石压实特征的试验研究[J].岩石力学与工程学报,2012,31(1):18-26.
    [75]徐精彩,邓军等.采煤工作面采空区可能发火区域分析[J].西安矿业学院学报,1998,18(1):1-16.
    [76]徐精彩.煤自燃极限厚度分析[J].煤炭科研参考资料,1998,(1):41-44.
    [77]周英,南华.特厚易自燃煤层综放开釆釆空区“三带”划分研究[J].中国煤炭,2006,32(2).
    [78] Brooks Kevin,Svanas Nicoloas,Glasser David. Evaluating the risk of spontaneous combustionin coal stockpiles[J].Fuel.1988.
    [79] Xu Jingcai,WenHu,Deng Jun,et al.Determination oxidation zone in mined out areas.14thAnnual Inter-national Pittsburgh Coal Conference.1997.
    [80]邓凯.综采面采空区三带划分方法的研究[D].淮南:安徽理工大学,2012.
    [81] Van Genderen JL.Annual Technical Progress Report for Project: environment Monitoring ofspontaneous combustion in the north China coalfields[RJ.Intemet Institute foe Aerospace Surveyand Earth Sciences(ITC),The Netherlands,1996.
    [82] Li Zong-xiang. CFD simulation of coal spontaneous combustion in irregular patterns of goafwith multi-point of air leaking[J].Journal of China University of Mining andTechnology.2008,18(4):504-508.
    [83]李宗翔,孙广义,王继波.综放工作面煤柱内漏风与耗氧过程的数值模拟[J].力学与实践,2001,3(4):15~23.
    [84]兰泽全,张国枢,马汉鹏.多漏风釆空区"三带"分布模拟研究[J].矿业安全与环保,2008,4(35):1-4.
    [85]秦庆举.运河煤矿1302孤岛综放面采空区“三带”的确定[J].煤矿安全,2010,1:53-55.
    [86]王学家,潘荣锟.王台矿2304采面自燃“三带”观测及数值模拟,煤矿安全,2010,4:39-45
    [87]鲍庆国,文虎,王秀林等.煤自燃理论及防治技术[M].北京:煤炭工业出版社,2002.
    [88]孟警战,王绪友.罗克休泡沫充填防漏风技术在煤矿中的应用[J].山东煤炭科技,2004,(3).
    [89] Walter Both. Fighting Mine Fires with Nitrogen in the Germany Coal Industry[J]. MineEngineer.1981,(296).
    [90] Morries.R. A review of experiences on the use of inert gases in mine fire[J].Mining SocietyTechnology.1987,6(1).
    [91]戚颖敏.矿井火灾防治技术的现代发展与应用[J].煤矿安全,1991(4):7-13.
    [92] Evseev V. New Methods for the Prevention of Spontaneous fires in Underground Coal. Paperin Proceedings of the21st International Conference of Safety in Mines ResearchInstitutes[J].Sydney Australia,Oct,21-25,1985,481-483.
    [93]蔡永乐.矿井内因火灾防治理论与实践[M].北京:煤炭工业出版社,2001.
    [94] Yael Miron. Gel Sealants for the Mitigation of Spontaneous Heating in Coal Mines Report ofInvestigations[J].1995,9585.
    [95]煤矿防火用阻化剂通用技术条件. MT/T700-1997.
    [96]于水军,谢峰承,路长等.不同还原程度煤的氧化与阻化特性[J].煤炭学报,2010,35.
    [97]于水军,余明高,谢峰承等.无机发泡胶凝材料防治高冒区托顶煤自燃火灾[J].中国矿业大学学报,2010,39(2):173-177.
    [98]张如意.煤矿用防灭火材料及阻化剂[J].矿业安全与环保,1999(1).
    [99]杨运良,于水军,张如意等.防止煤炭自燃的新型阻化剂研究[J].煤炭学报,1999(4).
    [100]陆伟.高倍阻化泡沫防治煤自燃[J].煤炭科学技术,2008(10).
    [101]叶正亮,李金亮,陆伟等.化学阻化剂对高硫煤的阻化实验研究[J].煤矿安全,2011(11).
    [102]李金亮,陆伟,徐俊.化学阻化剂防治煤自燃及其阻化机理分析[J].煤炭科学技术,2012(1).
    [103]松田范之,张在浩.惰性气体在各国煤矿的应用[J].世界煤炭技术,1990(l):11-15.
    [104]周连春,张世明.注氮防灭火技术在火区控制中的应用[J].水力采煤与管道运输,2009,(2):51-53.
    [105]杜志刚,王捧社,施玉成. MKY-360型二氧化碳发生器在煤矿防灭火中的应用[J].煤炭科学技术,2002,30(7):10-12.
    [106]周凤增. CO2灭火技术在开滦集团公司的应用实践[J].煤矿安全,2006,37(5):23-26.
    [107]郝迎格,简俊常.超长综放工作面自然发火的防治技术[J].中国煤炭,2005,31(9):61-65.
    [108]赵忠,王海东,刘永军. CO2灭火技术在天祝煤矿的成功实践[J].煤矿安全,2005,36(5):15-17.
    [109]蔡如法.液态二氧化碳治理封闭火区实践[J].科技之窗,2011,(6):131-133.
    [110]赵辉.液态二氧化碳灭火技术在东荣二矿的应用[J].黑龙江科技信息.2011(24):46-47.
    [111]韩刚,刘生玉.液态二氧化碳灭火技术在实践中的应用[J].煤炭技术.2009(04):107-109.
    [112]王震,张宏伟,周西华.海州立井3315工作面液氮降温灭火数值模拟[J].煤炭技术,2006,25(10):57-58.
    [113]董伟,王学兵,史波波等.开区注液氮防灭火技术在羊场湾煤矿的研究与应用[J].煤炭工程.2011(12):47-49.
    [114]抚顺煤炭研究所.高倍数泡沫灭火及其在煤矿中的应用[M].1980.
    [115]王振平,王洪权,宋先明等.惰气泡沫防灭火技术在兴隆庄煤矿的应用[J].煤矿安全:2004,12(05):26-28.
    [116]胡广扬,王洪斌,李辉等.压注惰泡灭火技术的研究[J].煤矿安全:1992,(08):1-6.
    [117]赵玉岐,李改云.惰性泡沫防灭火[J].河北煤炭:1997,(01):12-14.
    [118]王德明.矿井防灭火新技术-三相泡沫[J].煤矿安全,2004,35(7):16-18.
    [119]秦波涛,王德明,陈建华.防灭火三相泡沫流体特性实验研究[J].辽宁工程技术大学学报,2006,25(4):489-492.
    [120]周福宝,王德明,张玉良.含氮气三相泡沫惰化火区的机理及应用研究[J].煤炭学报,2005,30(4):443-446.
    [121]秦波涛.防治煤炭自燃的三相泡沫理论与技术研究[D].徐州:中国矿业大学,2005.
    [122]王威.利用热重分析研究煤的氧化反应过程及特征温度[D].西安:西安科技大学,2005.
    [123]肖旸,马砺,王振平等.采用热重分析法研究煤自燃过程的特征温度[J].煤炭科学技术,2007,35(5):73-76.
    [124]王长安,刘银河,车得福.低氧浓度下煤燃烧特性的热重实验研究[J].工程热物理学报,2010,31(10):1786-1788.
    [125]周福宝,邵和,李金海等.低O2含量条件下煤自燃产物生成规律的实验研究[J].中国矿业大学学报,2010,39(6):808-812.
    [126]张晞,史波波,邵和等.变氧浓度条件下崔家寨矿煤自燃特性的实验研究[J].湖南科技大学学报(自然科学版),2010,25(4):16-20.
    [127]周西华,王继仁等.山东兖州东滩矿3#煤层自燃临界氧浓度指标研究[J].中国地质灾害与防治学报,2006,17(4):129-133.
    [128]刘振海,徐国华,张洪林.热分析与量热仪及其应用[M].化学工业出版社,2011.
    [129]仲晓星.煤自燃倾向性的氧化动力学测试方法研究[D].徐州:中国矿业大学安全工程学院,2008.
    [130]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:65-91.
    [131]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000.
    [132]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [133]徐永圻.采矿学[M].徐州:中国矿业大学出版社,2003:531-533.
    [134]吴家龙.弹性力学[M].北京:高等教育出版社,2001:316-333.
    [135]车强.采空区气体三维多场藕合规律研究[D].北京:中国矿业大学(北京),2010:55-57.
    [136]朱建芳.动坐标下采空区自燃无因次模型及判别准则研究[D].北京:中国矿业大学(北京),2006:20-24.
    [137]马占国.采空区破碎岩体压实和渗流特性研究[M].徐州:中国矿业大学出版社,2009:21-28.
    [138]高博禹,彭仕宓,龚宏杰等.油气储层流动单元划分标准的探讨[J].中国矿业大学学报,2005,34(1):82-86.
    [139] G.Estethuizen, C.Kracan. A methodology for determining gob permeability distributionsand its Application to reservoin modeling of coal mine longwalls [C].in Proceeding of the2007SME annual Meeting and Exhibit. Colorado: Society for Mining, Metallurgy, and Exploration,Inc.,2007:1-6.
    [140]时国庆.防灭火三相泡沫在采空区中的流动特性与应用[D].徐州:中国矿业大学,2010:67-69.
    [141]李宗翔.采空区场流安全理论及其研究的新进展[J].中国安全科学学报,2005,(12):85-88.
    [142] Ren T.X., Richards M.J. Computer system for the study of the spontaneous combustion ofcoal[J].Mining Engineer(London)1994,153(398):121-127
    [143]邓军,徐精彩等.综放面采空区自燃危险区域判定技术研究[J].淮南矿业学院学报,2000,10.
    [144] Ashok K. Singh, R.V.K. Singh.Mine fire gas indices and their application to Indianunderground coal mine fires.[J]. International Journal of Coal Geology,2007.
    [145]黄伯轩,齐庆杰.用流场理论确定采空区火源点位置[J].工业安全与防尘.1997.
    [146]刘忠全,刘剑.采用流场理论确定采空区内自然发火火源点位置[J].矿业快报2006.
    [147]徐精彩.煤自燃危险区域判定理论[M]北京:煤炭工业出版社,2001.
    [148]徐精彩,文虎.综放面巷道煤层自燃危险区域判定方法[J].北京科技大学学报.2003
    [149]徐精彩,文虎.综放面采空区遗煤自燃危险区域判定方法的研究[J].中国科学技术大学学报.2002.
    [150]丁广骧.矿井大气与瓦斯三维流动[M].徐州:中国矿业大学出版社,1996:83-90.
    [151] BALUSU R, DEGUCHI G, HOLLAND R, etal. Goaf gas flow mechanics and developmentof gas and spontaneous combustion control strategies at a highly gassy mine[J].Coal andSafety,2002,20,35-45.
    [152] LI Ming-yuan, ALEX C S. Numerical study on effects of coal properties on spontaneousheating in longwall goaf areas[J].Fuel,2008,87(15),3409-3419.
    [153]胡千庭,梁运培,刘见中.采空区瓦斯流动规律的CFD模拟[J].煤炭学报,2007,32(7),719-723.
    [154]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [155] Jiejie Huang, J. Bruining, K.-H.A.A. Wolf. Modeling of gas flow and temperature fields inunderground coal fires[J].Fire Safety Jounrnal,2001,477-489.
    [156] WENDT M, BALUSU R. CFD modeling of longwall goaf gas flow dynamics[J].Coal andSafety,2002,20,17-34.
    [157]杨世铭.传热学[M].北京:高等教育出版社,1994.
    [158]杨胜强,徐全,黄金等.采空区自燃“三带”微循环理论及漏风流场数值模拟[J].中国矿业大学学报,2009,38(6),769-773.
    [159] Xu Jincai, Deng Jun. Computer simulation of spontaneous combustion process of crushedcoals around the tailgate close to gob at fully mechanized faces[J].Computer Applications in theminerals industries,2001,565-568.
    [160] Ting Xiang Ren, Rao Balusu. Proactive goaf inertisation for controlling longwall goafheatings. The6th International Conference on Mining Science&Technology,2009,309-315.
    [161] T. Ren and R. Balusu. Applications of CFD simulations for mine gas and spontaneousheatings control in underground coal mines, International Symposium on Coal Gas ControlTechnology,2007.
    [162]傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2004.
    [163]胡千庭,梁运培,刘见中.采空区瓦斯流动规律的CFD模拟[J].煤炭学报,2007,32(7):719-723.
    [164] Yuan L. M, Smth A. C, Numerical study on effects of coal properties on spontaneous heatingin longwall gob areas [J]. Fuel,2008,87(15/16):3409-3419.
    [165] QI X, WANG D, JAMES A M, et al. Self-reaction of initial active groups in coal [J].International Journal of Mining Science and Technology,2012,22(2):169-75.
    [166] QI X, WANG D, ZHONG X, et al. Characteristics of oxygen consumption of coal atprogrammed temperatures [J]. Mining Science and Technology (China),2010,20(3):372-377.
    [167] WANG D, ZHONG X, GU J, et al. Changes in active functional groups duringlow-temperature oxidation of coal [J]. Mining Science and Technology (China),2010,20(1):35-40.
    [168] XUYAO Q, WANG D, MILKE J A, et al. Crossing point temperature of coal [J].MiningScience and Technology (China),2011,21(2):255-60.
    [169]许涛,王德明,辛海会,戚绪尧.煤自燃过程温升特性及产生机理的实验研究[J].采矿与安全工程学报,2012,(4):575-580.
    [170]戚绪尧.煤中活性基团的氧化及自反应过程[J].煤炭学报,2011,(12):2133-2134.
    [171]石必明.易自燃煤低温氧化和阻化的微观结构分析[J].煤炭学报,2000(6):294-298.
    [172]葛岭梅,薛韩玲,徐精彩等.对煤分子中活性基团氧化机理的分析[J].煤炭转化,2001(7):23-28.
    [173]王德明.矿井火灾学[M].徐州:中国矿业大学出版社,2008.
    [174]王德明.防灭火新技术三相泡沫[J].煤矿安全,2004,35(07):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700