用户名: 密码: 验证码:
发光功能化纳米材料在结核病诊断化学发光核酸传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先综述了化学发光、纳米材料参与的液相化学发光体系、化学发光核酸传感器、发光功能化纳米材料及其在化学发光核酸传感器中的应用和结核病诊断方法的研究现状。化学发光分析由于灵敏度高、线性范围宽、仪器简单、价格便宜等优点,已经成为生物分析包括免疫分析与核酸分析的主要探测手段。目前发光生物分析方法主要依赖于标记技术,各种标记物与蛋白分子或核酸片段偶联形成生物分析探针,因此,制备特异、灵敏的分析探针是这一技术成功的关键。现行的商业上基于标记技术的化学发光生物分析方法中,一个分析探针仅能联接单个信号分子,使分析的灵敏度受到限制,难以进行低含量组分的检测。因此,一个分析探针联接多个信号分子的多标记分析方法受到了人们的关注。通过在纳米材料上富集多个化学发光信号分子即发展发光功能化的纳米材料,成为一种具有创新概念的纳米科学发展新趋势。这些发光功能化纳米材料为核酸分析探针提供了一种理想的具有信号放大功能的标记物,有望对传感器的灵敏度的提高起到积极地推动作用。基于此,本论文围绕着发光功能化纳米材料在结核病诊断化学发光核酸传感器中的应用这一研究主题,开展了一系列研究工作。利用实验室前期工作合成的鲁米诺发光功能化纳米金构建核酸分析探针,发展了均相和异相两种分析策略,开发出两种化学发光核酸传感器,并进一步推向于实际应用,实现对结核病临床快速灵敏特异诊断。此外,我们探索新型简单快捷的合成方法,制备了具有高量子产率的新型发光纳米材料——碳点,研究了所制得碳点的形貌、表面化学组成和荧光性质等;设计与构建碳点参与的化学发光新体系,探索了其化学发光行为、规律和机理。主要研究内容如下:
     1.基于鲁米诺发光功能化纳米金卓越的信号放大功能,标记DNA构建信号探针,同时引入纳米金修饰电极以及生物素-链霉亲和素生物放大系统,构成多重信号放大基元,由此发展了一种新型的超灵敏电致化学发光DNA传感器,用于结核分枝杆菌(TB)的检测。传感器的构建过程如下:我们选取结核分枝杆菌特异性插入序列IS6110中一段DNA片段作为靶基因序列,设计与合成了能与之发生特异性互补杂交的两段探针。将捕获探针固载到链霉亲和素包裹的纳米金修饰电极上,与TB目标链反应后,鲁米诺发光功能化纳米金标记的信号探针随即组装连接到修饰电极的表面,形成“三明治”模式的TB传感器。富集在鲁米诺发光功能化纳米金表面的鲁米诺发光分子作为信号源,在双阶脉冲电压下会产生电致化学发光信号响应,从而实现对TB目标链的检测。所构建的电致化学发光TB传感器对于人工合成的TB目标链的检测限可达到6.7×10-15mol/L,该检测限优于文献报道的其它基于金纳米探针的结核分枝杆菌基因诊断方法。该TB传感器稳定性好且具有良好的选择性,其它致病菌如大肠埃希氏菌、铜绿假单胞菌和金黄色葡萄球菌的基因组DNA对于目标物的测定几乎不产生影响。此外,该TB传感器成功被用于结核分枝杆菌标准株H37Rv中提取的基因组DNA的检测,对于结核分枝杆菌实际临床基因诊断具有重要的应用潜力。
     2.采用鲁米诺发光功能化纳米金标记适配体构建了发光功能化纳米适配体探针,利用适配体探针识别目标物所引起的氯化血红素/G-四联体DNA酶构型的转变,以及氯化血红素/G-四联体DNA酶对鲁米诺功能化纳米金的化学发光增强作用,提出了均相分析策略,发展出一种用于结核病诊断相关的干扰素.-gamma检测的化学发光适配体传感器。传感器的构建过程如下:我们将氯化血红素/G-四联体DNA酶中的G-四联体链对称地劈裂成两部分,并将这两部分连接到干扰素-gamma适配体(记作P1链)的互补序列的两端从而形成P2链。端基生物素化的P1链与P2链杂交形成稳定的双链结构,同时,通过生物素-链霉亲和素之间的特异性相互作用组装到链霉亲和素包裹的鲁米诺发光功能化纳米金上,从而成功构建了鲁米诺发光功能化纳米金传感平台。与鲁米诺发光功能化纳米金传感平台中的干扰素-gamma适配体识别目标物干扰素-gamma时,释放P2链到溶液中。处于自由状态的P2链可以自组装形成稳定的G-四联体结构,并与随后加入的氯化血红素反应形成氯化血红素/G-四联体DNA酶,有效催化鲁米诺发光功能化的纳米金与过氧化氢之间的化学发光反应,从而实现对干扰素-gamma特异性的定量检测。所构建的适配体传感器用于检测目标干扰素-gamma时,展现出较宽的线性范围0.5~100nmol/L和低的检测限0.4nmol/L。这一检测限与之前文献报道的多数异相的干扰素-gamma检测适配体传感器的检测限基本相当,但更为简便、快速和实用。此外,该适配体传感器显示出良好的精确度、稳定性和重现性,不被复杂的人血清基质所影响,在生理介质中显现出的较强的适用性,在结核病临床诊断中具有重要的实际应用潜力。
     3.报道了一种简单便捷的碳点合成方法,通过使用氨基酸作为前驱体,经由酸/碱辅助的一步微波法制备碳点。借助高分辨透射电子显微镜(HRTEM)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、紫外-可见吸收光谱(Uv-vis)、傅里叶红外光谱(FT-IR)和荧光光谱等仪器分析手段,对所合成的碳点的形貌结构、表面状态和光学性质进行了详细研究。结果表明,所合成的碳点大小均一,粒径在1-4nm之间。表现出强烈的荧光性质和优良上转换发光特性,量子产率高于目前文献报道的绝大多数碳点,是目前量子产率最高的碳点之一。此外,该碳点还能够有效增强高碘酸钠-过氧化氢体系的超微弱化学发光。本章工作所作研究与所获结果为碳点光学性质的研究提供了新视点,并且对于拓宽碳点这种新材料在分析领域的应用具有一定的重要意义,在光电器件、生化分析、生物医学和生物成像等领域有重要的应用前景。
In this dissertation, the state of arts in the field of chemiluminescence (CL), Nanomaterial-amplified CL systems, nucleic acid probe based CL biosensors, CL functionalized nanomaterials and their applications in bioassays were reviewed. Chemiluminescence has become a powerful analytical tool and been widely used in bioassays for its advantages such as high sensitivity, wide linear range, low background and simple instrumentation. In CL bioassays, quantitative assays commonly rely on the indirect approaches based on labeling strategies. In the commercially available CL bioassays based on labeling strategies, only one signal reporter was attached to a signal probe. Challenge remains in improving the sensitivity of bioassays to meet the increasing demand for detection of biomarkers at ultra-trace amount level. Accordingly, some multi-labeling strategies have been explored, in which one signal probe can carry a number of signal reporters. Among them, the development of CL functionalized nanoparticles(CF-NPs) becomes a new trend with innovative concepts nanoscience, which makes hundreds of CL signal-generating molecules be coated on or encaspsulated in a nanoparticle host. Our previous work has demonstrated the direct synthesis of CL functionalized gold nanoparticles using luminol as reducent and stabilizing reagent. This new type of CF-NPs would be used as labels for nucleic acid probe based CL biosensors with excellent signal amplification, improving the sensitivity of the biosensors. The aim of this dissertation is to explore the synthesis of new CF-NPs and their applications in nucleic acid probe based biosensors for tuberculosis diagnosis. The assembly of the luminol functionalized gold nanoparticles with DNA and aptamer molecules to build nucleic acid nanoprobes was studied. On the basis, a sandwich-type electrochemiluminescence (ECL) DNA sensor and a homogeneous CL aptamer sensor were developed for tuberculosis diagnosis. Moreover, a kind of new CF-NPs, i.e carbon nanodots with strong photoluminescence were synthesized. Carbon nanodots involved new CL system was designed and its CL behavior and mechanism were explored. The main results are as follows:
     1. A novel ECL DNA sensor was developed for a fast test for Mycobacterium tuberculosis (MTB), which was based on luminol functionalized gold nanoprobes with excellent signal amplification functionality. This nanoprobe was formed by the conjugation of luminol functionalized gold nanoparticles (lum-AuNPs) with signal DNA probes. An81bp segment derived from the Mycobacterium tuberculosis specific insertion sequence IS6110was chosen as the target strand and corresponding probes were designed to specifically hybridize with it. Biotinylated capture probes can be effectively immobilized directly on a streptavidin coated AuNP modified indium tin oxide electrode. After catching the TB target strand, signal probes tagged with lum-AuNPs were attached to the assembled electrode surface to.form a sandwich-type TB sensor. Extremely high sensitivity for detecting the synthetic TB target strand was achieved with a detection limit of6.7×10-15mol/L, which was superior to other genetic methodologies for TB tests based on gold nanoprobes. Genomic DNA from other pathogenic bacterias (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) had a negligible effect on its detection, which guaranteed the good selectivity of the TB sensor. The efficacy of the TB sensor was also evaluated for genomic DNA extracted from cultured M. tuberculosis. The TB sensor is sensitive, highly selective, convenient and cost-effective. The simplicity of the assay and the lack of a requirement for sophisticated equipment render the TB sensor a promising candidate as a rapid molecular test for the detection of M. tuberculosis.
     2. A homogeneous hemin/G-quadruplex DNAzyme (HGDNAzyme) based turn-on chemiluminescence aptasensor for interferon-y detection is developed, via dynamic in-situ assembly of luminol functionalized gold nanoparticles, DNA, IFN-y and hemin. The G-quadruplex oligomer of the HGDNAzyme was split into two halves, which was connected with the complementary sequence of P1(IFN-γ-binding aptamer) to form P2. P2hybridized with IFN-y-binding aptamer and meanwhile assembled onto lum-AuNPs through biotin-SA specific interaction. When IFN-γ was recognized by aptemer, P2was released into the solution. The two lateral portions of P2combined with hemin to yield the catalytic hemin/G-quadruplex DNAzyme, which amplified the luminol oxidation for a turn-on chemiluminescence signaling. Based on this strategy, the homogeneous aptasensor enables the facile detection of IFN-y with high sensitivity (0.4nM) and satisfactory specificity, pointing to great potential applications in clinical analysis.
     3. A general strategy for the production of carbon nanodots (CDs) has been developed involving microwave irradiation of amino acids in the presence of acids or alkali. Transmission electron microscopy, UV-visible spectroscopy, X-ray photoelectron spectroscopy and powder X-ray diffraction analysis were used to characterize the morphology and surface component of the obtained CDs. The result demonstrated that the CDs were spherical in morphology and well dispersed with diameter of1-4nm. The obtained CDs exhibited highly photoluminescent activities, excellent upconversion photoluminescent properties and could effectively enhance the ultra-weak chemiluminescence from the reaction of NaIO4with H2O2. This investigation could be valuable to obtain new insight into the optical characteristics of the CDs and broaden the application of the novel materials in analytical fields. Because of their high photoluminescence and effective enhancement of chemiluminescence, CDs would offer great potential for a broad range of applications, including optoelectronic devices, bioassays, biomedical and bioimaging applications.
引文
[1]Zhao L X, Sun L, Chu X G. "Chemiluminescence immunoassay". Trac-Trends in Analytical Chemistry,2009,28(4):404-415.
    [2]Roda A, Pasini P, Guardigli M, et al. "Bio-and chemiluminescence in bioanalysis". Fresenius Journal of Analytical Chemistry,2000,366(6-7):752-759.
    [3]Richter M M. "Electrochemiluminescence (ECL)". Chemical Reviews,2004,104(6): 3003-3036.
    [4]Dodeigne C, Thunus L, Lejeune R. "Chemiluminescence as a diagnostic tool. A review". Talanta,2000,51(3):415-439.
    [5]Qi H L, Peng Y, Gao Q, et al. "Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors". Sensors,2009,9(1):674-695.
    [6]Knight A W. "A review of recent trends in analytical applications of electrogenerated chemiluminescence". Trac-Trends in Analytical Chemistry,1999,18(1):47-62.
    [7]徐叙瑢,苏勉曾.”发光学与发光材料”.北京:化学工业出版社,2004.
    [8]陆明刚.”化学发光分析”.合肥:安徽科技出版社,1986.
    [9]Seitz W R, Suydam W W, Hercules D M. "Determination of trace amounts of chromium (Ⅲ) using chemiluminescence analysis". Analytical Chemistry,1972,44(6):957-963.
    [10]Burdo T G, Seitz W R. "Mechanism of cobalt catalysis of luminol chemiluminescence". Analytical Chemistry,1975,47(9):1639-1643.
    [II]Brown A J, Francis P S, Adcock J L, et al. "Manganese(Ⅲ) and manganese(IV) as chemiluminescence reagents:A review". Analytica Chimica Acta,2008,624(2):175-183.
    [12]Seitz W R, Hercules D M. "Determination of trace amounts of iron (Ⅱ) using chemiluminescence analysis". Analytical Chemistry,1972,44(13):2143-&.
    [13]Bowie A R, Achterberg E P, Mantoura R F C, et al. "Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection". Analytica ChimicaActa,1998,361(3):189-200.
    [14]Hanaoka S, Lin J M, Yamada M. "Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper(Ⅱ)-amino acid complexes and its application to the determination of tryptophan and phenylalanine". Analytica Chimica Acta,2000,409(1-2): 65-73.
    [15]Nakamura M, Nakamura S. "One and two-electron oxidations of luminol by peroxidase systems". Free Radical Biology and Medicine,1998,24(4):537-544.
    [16]Aitken R J, Buckingham D W, West K M. "Reactive oxygen species and human spermatozoa-analysis of the cellular mechanisms involved in luminol-dependent and lucigenin-dependent chemiluminescence". Journal of Cellular Physiology,1992,151(3): 466-477.
    [17]Diaz A N, Sanchez F G, Garcia J A G. "Phenol derivatives as enhancers and inhibitors of luminol-H2O2-horseradish peroxidase chemiluminescence". Journal of Bioluminescence and Chemiluminescence,1998,13(2):75-84.
    [18]Schroeder H R, Boguslaski R C, Carrico R J, et al. "Monitoring specific protein-binding reactions with chemiluminescence". Methods in Enzymology,1978,57(Biolumin. Chemilumin.):424-445.
    [19]Kricka L J. "Chemiluminescent and bioluminescent techniques". Clinical Chemistry,1991, 37(9):1472-1481.
    [20]Totter J R. "The quantum yield of the chemiluminescence of dimethylbiacridinium nitrate and the mechanism of its enzymically induced chemiluminescence". Photochemistry and Photobiology,1964,3(3):231-241.
    [21]Maskiewicz R, Sogah D, Bruice T C. "Chemiluminescent reactions of lucigenin.2. Reactions of lucigenin with hydroxide ion and other nucleophiles". Journal of the American Chemical Society,1979,101(18):5355-5364.
    [22]Maskiewicz R, Sogah D, Bruice T C. "Chemiluminescent reactions of lucigenin.1. Reactions of lucigenin with hydrogen peroxide". Journal of the American Chemical Society,1979, 101(18):5347-5354.
    [23]Faulkner K, Fridovich I. "Luminol and lucigenin as detectors for 02.-". Free Radical Biology and Medicine,1993,15(4):447-451.
    [24]Maeda M, Tsuji A. "Chemiluminescent assay for biological substances using lucigenin". Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan,1997,117(10-11):864-874.
    [25]McCapra F. "Chemical mechanisms in bioluminescence". Accounts of Chemical Research, 1976,9(6):201-208.
    [26]Hart R C, Taaffe L R. "The use of acridinium ester-labelled streptavidin in immunoassays". Journal of Immunological Methods,1987,101(1):91-96.
    [27]Ruberto M A, Grayeski M L. "vestigation of acridinium labelling for chemiluminescence detection of peptides separated by capillary electrophoresis". Journal of Microcolumn Separations,1994,6(6):545-550.
    [28]Schaap A P, Sandison M D, Handley R S. "Chemical and enzymatic triggering of 1,2-dioxetanes.3:alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate-substituted dioxetane". Tetrahedron Letters,1987,28(11):1159-1162.
    [29]Gorman B A, Francis P S, Barnett N W. "Tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence". Analyst,2006,131(5):616-639.
    [30]林金明.”化学发光基础理论与应用”.北京:化学工业出版社,2004.
    [31]Zhang Z F, Cui H, Lai C Z, Liu L J. "Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and Its Analytical Applications". Analytical Chemistry,2005,77(10): 3324-3329.
    [32]Duan C F, Cui H, Zhang Z F, Liu B, Guo J Z, Wang W. "Size-Dependent Inhibition and Enhancement by Gold Nanoparticles of Luminol-Ferricyanide Chemiluminescence". Journal of Physical Chemistry C,2007,111(12):4561-4566.
    [33]Li S F, Li X Z, Xu J, Wei X W, "Flow-injection chemiluminescence determination of polyphenols using luminol-NaIO4-gold nanoparticles system". Talanta,2008,75(1):32-37.
    [34]Zisimopoulos E G, Tsogas G Z, Giokas D L, Kapakoglou N I, Vlessidis A G. "Indirect chemiluminescence-based detection of mefenamic acid in pharmaceutical formulations by flow injection analysis and effect of gold nanocatalysts". Talanta,2009,79(3):893-899.
    [35]Koutsoulis N P, Giokas D L, Vlessidis A G, Tsogas G Z. "Alkaline earth metal effect on the size and color transition of citrate-capped gold nanoparticles and analytical implications in periodate-luminol chemiluminescence". Analytica Chimica Acta,2010,669(1-2):45-52.
    [36]Cao Z J, Lau C, Lu J Z. "A general chemiluminescence method for the determination of surfactants based on its quenching effect on the luminol-NaIO4-cyclodextrin reaction". Analyst,2004,129:1262-1266.
    [37]Cui H, Guo J Z, Li N, Liu L J. "Gold nanoparticle triggered chemiluminescence between luminol and AgNO3". Journal of Physical Chemistry C,2008,112(30):11319-11323.
    [38]Li N, Guo J Z, Liu B, Yu Y Q, Cui H, Mao L Q, Lin Y Q. "Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence". Analytica Chimica Acta,2009,645(1-2):48-55.
    [39]Cui H, Zhang Z F, Shi M J, Xu Y, Wu Y L. "Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide". Analytical Chemistry,2005,77(19):6402-6406.
    [40]Liang S X, Li H F, Lin J M. "Reaction mechanism of surfactant-sensitized chemiluminescence of bis(2,4,6-trichlorophyenyl) oxalate and hydrogen peroxide induced by gold nanoparticles". Luminescence,2008,23(6):381-385.
    [41]Cui H, Zhang Z F, Shi M J. "Chemiluminescent Reactions Induced by Gold Nanoparticles". Journal of Physical Chemistry B,2005,109(8):3099-3103.
    [42]Zhang Z F, Cui H, Shi M J. "Chemiluminescence accompanied by the reaction of gold nanoparticles with potassium permanganate". Physical Chemistry Chemical Physics,2006,8: 1017-1021.
    [43]Lin J M, Liu M L. "Chemiluminescence from the Decomposition of Peroxymonocarbonate Catalyzed by Gold Nanoparticles". Journal of Physical Chemistry B,2008,112(26): 7850-7855.
    [44]Yu X J, Bao J. "Determination of norfloxacin using gold nanoparticles catalyzed cerium(IV)-sodium sulfite chemiluminescence". Journal of Luminescence,2009,129(9): 973-978.
    [45]Wang L, Yang P, Li Y X, Chen H Q, Li M G, Luo F B. "A flow injection chemiluminescence method for the determination of fluoroquinolone derivative using the reaction of luminol and hydrogen peroxide catalyzed by gold nanoparticles". Talanta,2007,72(3):1066-1072.
    [46]Lan D, Li B X, Zhang Z L. "Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase". Biosensors and Bioelectronics,2008,24(4):934-938.
    [47]Zhao S L, Niu T X, Song Y R, Liu Y M. "Gold nanoparticle-enhanced chemiluminescence detection for CE". Electrophoresis,2009,30(6):1059-1065.
    [48]Zhao S L, Lan X H, Liu Y M. "Gold nanoparticle-enhanced capillary electrophoresis-chemiluminescence assay of trace uric acid". Electrophoresis,2009,30(15): 2676-2680.
    [49]Xu S L, Cui H. "Luminol chemiluminescence catalysed by colloidal platinum nanoparticles". Luminescence,2007,22(2):77-87.
    [50]Niazov T, Shlyahovsky B, Willner I. "Photoswitchable Electrocatalysis and Catalyzed Chemiluminescence Using Photoisomerizable Monolayer-Functionalized Surfaces and Pt Nanoparticles". Journal of the American Chemical Society,2007,129(20):6374-6375.
    [51]Collins G E, Latturner S, Rosepehrsson S L. "Chemiluminescence detection of hydrazine vapor". Talanta,1995,42(4):543-551.
    [52]Duan C F, Cui H. "Time-tunable autocatalytic lucigenin chemiluminescence initiated by platinum nanoparticles and ethanol". Chemical Communications,2009,2574-2576.
    [53]Gorman B A, Francis P S, Dunstan D E, Barnett N W. "Tris(2,2'-bipyridyl)ruthenium(Ⅱ) chemiluminescence enhanced by silver nanoparticles". Chemical Communications,2007, 395-397.
    [54]Guo J Z, Cui H, Zhou W, Wang W. "Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide". Journal of Photochemistry and Photobiology A: Chemistry,2008,193(2-3):89-96.
    [55]Chen H, Gao F, He R, Cui D X. "Chemiluminescence of luminol catalyzed by silver nanoparticles". Journal of Colloid and Interface Science,2007,315(1):158-163.
    [56]Haghighi B, Bozorgzadeh S. "Flow injection chemiluminescence determination of isoniazid using luminol and silver nanoparticles". Microchemical Journal,2010,95(2):192-197.
    [57]Guo J Z, Cui H. "Lucigenin Chemiluminescence Induced by Noble Metal Nanoparticles in the Presence of Adsorbates". Journal of Physical Chemistry C,2007,111(33):12254-12259.
    [58]Li N, Gu J, Cui H, "Luminol chemiluminescence induced by silver nanoparticles in the presence of nucleophiles and Cu2+". Journal of Photochemistry and Photobiology A: Chemistry,2010,215(2-3):185-190.
    [59]Gorman B A, Francis P S, Dunstan D E, et al. "Tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence enhanced by silver nanoparticles". Chemical Communications,2007,4, 395-397.
    [60]Chowdhury M H, Aslan K, Malyn S N, et al. "Metal-enhanced chemiluminescence: Radiating plasmons generated from chemically induced electronic excited states". Applied Physics Letters,2006,88(17):173104.
    [61]Lee I, Han S W, Kim K. "Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys". Chemical Communications,2001,1782-1783.
    [62]Ibanez F J, Zamborini F P. "Chemiresistive Sensing of Volatile Organic Compounds with Films of Surfactant-Stabilized Gold and Gold-Silver Alloy Nanoparticles". ACS Nano,2008, 2(8):1543-1552.
    [63]Li S F, Zhang X M, Yao Z J, Yu R, Huang F, Wei X W. "Enhanced Chemiluminescence of the Rhodamine 6G-Cerium(IV) System by Au-Ag Alloy Nanoparticles". Journal of Physical Chemistry C,2009,113(35),15586-15592.
    [64]Li N, Wang W, Tian D Y, Cui H. "pH-dependent catalytic properties of Pd-Ag nanoparticles in luminol chemiluminescence". Chemical Communications,2010,46,1520-1522.
    [65]Poznyak S K, Talapin D V, Shevchenko E V, Weller H. "Quantum Dot Chemiluminescence". Nano Letters,2004,4(4):693-698.
    [66]Wang Z P, Li J, Liu B, Li J H. "CdTe nanocrystals sensitized chemiluminescence and the analytical application". Talanta,2009,77(3):1050-1056.
    [67]Wang Z P, Li J, Liu B, Hu J Q, Yao X, Li J H. "Chemiluminescence of CdTe Nanocrystals Induced by Direct Chemical Oxidation and Its Size-Dependent and Surfactant-Sensitized Effect". Journal of Physical Chemistry C,2005,109(49):23304-23311.
    [68]Kang J, Li J, Tang J L, Li M J, Li X Z, Zhang Y H. "Sensitized chemiluminescence of Tween 20 on CdTe/H2O2 and its analytical applications for determination of phenolic compounds". Colloids and Surfaces B:Biointerfaces,2010,76(1):259-264.
    [69]Li Y X, Yang P, Wang P, Huang X, Wang L. "CdS nanocrystal induced chemiluminescence: reaction mechanism and applications". Nanotechnology,2007,18,225602.
    [70]Chen H, Li R B, Lin L, Guo G S, Lin J M. "Determination of 1-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide-sodium hydrogen carbonate-CdSe/CdS quantum dots system". Talanta,2010,81(4-5):1688-1696.
    [71]Li X Z, Li J, Tang J L, Kang J, Zhang Y H. "Study of influence of metal ions on CdTe/H2O2 chemiluminescence". Journal of Luminescence,2008,128(7):1229-1234.
    [72]Zhang L J, Xu C L, Li B X. "Chemiluminescence of CdTe quantum dots using K3Fe(CN)6 as oxidant and its capping ligand-dependent effect". Microchemical Journal,2010,95(2): 186-191.
    [73]Huang X Y, Li L, Qian H F, Dong C Q, Ren J C. "A Resonance Energy Transfer between Chemiluminescent Donors and Luminescent Quantum-Dots as Acceptors (CRET)". Angewandte Chemie International Edition,2006,45(31):5140-5143.
    [74]Sun C Y, Liu B, Li J H. "Sensitized chemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and its analytical applications". Talanta,2008,75(2):447-454.
    [75]Li S F, Zhang X M, Du W X, Ni Y H, Wei X W. "Chemiluminescence Reactions of a Luminol System Catalyzed by ZnO Nanoparticles". Journal of Physical Chemistry C,2009,113(3): 1046-1051.
    [76]Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. "Electrophoretic analysis and purification of pluorescent single-walled carbon nanotube fragments". Journal of the American Chemical Society,2004,126(40):12736-12737.
    [77]Lin Z, Xue W, Chen H and Lin J M. "Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing". Analytical Chemistry,2011,83(21):8245-8251.
    [78]Lin Z, Xue W, Chen H and Lin J M. "Classical oxidant induced chemiluminescence of fluorescent carbon dots". Chemical Communications,2012,48(7):1051-1053.
    [79]Xue W, Lin Z, Chen H, Lu C and Lin J M. "Enhancement of ultraweak chemiluminescence from reaction of hydrogen peroxide and bisulfite by water-soluble carbon nanodots". Journal of Physical Chemistry C,2011,115(44):21707-21714.
    [80]Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, Yan X Y. "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles". Nature Nanotechnology,2007,2,577-583.
    [81]Triantis T M, Papadopoulos K, Yannakopoulou E, Dimotikali D, Hrbac J, Zboril R. "Sensitized chemiluminescence of luminol catalyzed by colloidal dispersions of nanometer-sized ferric oxides". Chemical Engineering Journal,2008,144(3):483-488.
    [82]He S H, Shi W B, Zhang X D, Li J, Huang Y M. "β-cyclodextrins-based inclusion complexes of CoFe2O4 magnetic nanoparticles as catalyst for the luminol chemiluminescence system and their applications in hydrogen peroxide detection". Talanta,2010,82(1):377-383.
    [83]Sun Z Y, Yuan H Q, Liu Z M, Han B X, Zhang X R. "A Highly Efficient Chemical Sensor Material for H2S:a-Fe2O3 Nanotubes Fabricated Using Carbon Nanotube Templates". Advanced Materials,2005,17(24):2993-2997.
    [84]Tuerk C, Gold L. "Systematic Evolution of Ligands by Exponential Enrichment-Rna Ligands to Bacteriophage-T4 DNA-Polymerase". Science,1990,249(4968):505-510.
    [85]Ellington A D, Szostak J W. "Invitro Selection of Rna Molecules That Bind Specific Ligands". Nature,1990,346(6287):818-822.
    [86]Jayasena S D. "Aptamers:An Emerging Class of Molecules That Rival Antibodies in Diagnostics". Clinical Chemistry,1999,45(9):1628-1650.
    [87]Macaya R F, Schultze P, Smith F W, et al. "Thrombin-Binding DNA Aptamer Forms a Unimolecular Quadruplex Structure in Solution". Proceedings of the National Academy of Sciences of the United States of America,1993,90(8):3745-3749.
    [88]Tombelli S, Minunni A, Mascini A. "Analytical Applications of Aptamers". Biosensors and Bioelectronics,2005,20(12):2424-2434.
    [89]Bock L C, Griffin L C, Latham J A, et al. "Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin". Nature,1992,355(6360):564-566.
    [90]Hermann T, Patel D J. "Biochemistry-Adaptive Recognition by Nucleic Acid Aptamers". Science,2000,287(5454):820-825.
    [91]Farokhzad O C, Cheng J J, Teply B A, et al. "Targeted Nanoparticle-Aptamer Bioconjugates for Cancer Chemotherapy in Vivo". Proceedings of the National Academy of Sciences of the United States of America,2006,103(16):6315-6320.
    [92]Ponte P, Ng S Y, Engel J, et al. "Evolutionary Conservation in the Untranslated Regions of Actin Messenger-Rnas-DNA-Sequence of a Human Beta-Actin Cdna". Nucleic Acids Research,1984,12(3):1687-1696.
    [93]Herne T M, Tarlov M J. "Characterization of DNA Probes Immobilized on Gold Surfaces". Journal of the American Chemical Society,1997,119(38):8916-8920.
    [94]Small N, Woodhead J L, Malcolm A D B. "The Properties of Immobilized Horseradish-Peroxidase". Biochemical Society Transactions,1984,12(2):280-280.
    [95]Wang J, Polsky R, Xu D K. "Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization". Langmuir,2001,17(19):5739-5741.
    [96]Liu G, Wan Y, Gau V, et al. "An Enzyme-Based E-DNA Sensor for Sequence-Specific Detection of Femtomolar DNA Targets". Journal of the American Chemical Society,2008, 130(21):6820-6825.
    [97]Richter A, Schwager C, Hentze S, et al. "Comparison of Fluorescent Tag DNA Labeling Methods Used for Expression Analysis by DNA Microarrays". Biotechniques,2002,33(3): 620-630.
    [98]Hojo H, Kwon Y, Kakuta Y, et al. "Development of a Linker with an Enhanced Stability for the Preparation of Peptide Thioesters and Its Application to the Synthesis of a Stable-Isotope-Labeled Hu-Type DNA-Binding Protein". Bulletin of the Chemical Society of Japan,1993,66(9):2700-2706.
    [99]Mannelli I, Minunni M, Tombelli S, et al. "Direct Immobilisation of DNA Probes for the Development of Affinity Biosensors". Bioelectrochemistry,2005,66(1-2):129-138.
    [100]Wang J. "Electrochemical Biosensors:Towards Point-of-Care Cancer Diagnostics". Biosensors and Bioelectronics,2006,21(10):1887-1892.
    [101]Miesenbock G, De Angelis D A, Rothman J E. "Visualizing Secretion and Synaptic Transmission with Ph-Sensitive Green Fluorescent Proteins". Nature,1998,394(6689): 192-195.
    [102]Zhang G J, Zhou Y K, Yuan J W, et al. "A Chemiluminescence Fiber-Optic Biosensor for Detection of DNA Hybridization". Analytical Letters,1999,32(14):2725-2736.
    [103]Ding C, Zhong H, Zhang S. "Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using Nanocus Tags". Biosensors and Bioelectronics,2008,23(8): 1314-1318.
    [104]Zhang X, Zhao Y, Zhou H, et al. "A New Strategy for Photoelectrochemical DNA Biosensor Using Chemiluminescence Reaction as Light Source". Biosensors and Bioelectronics,2011, 26(5):2737-2741.
    [105]Jaffrezic-Renault N, Martelet C, Chevolot Y, et al. "Biosensors and Bio-Bar Code Assays Based on Biofunctionalized Magnetic Microbeads". Sensors,2007,7(4):589-614.
    [106]Okahata Y, Kawase M, Niikura K, et al. "Kinetic Measurements of DNA Hybridisation an an Oligonucleotide-Immobilized 27-Mhz Quartz Crystal Microbalance". Analytical Chemistry,1998,70(7):1288-1296.
    [107]Hashimoto K, Ito K.Ishimori Y. "Sequence-Specific Gene Detection with a Gold Electrode Modified with DNA Probes and an Electrochemically Active Dye". Analytical Chemistry, 1994,66(21):3830-3833.
    [108]Zhou X C, Huang L Q, Li S F Y. "Microgravimetric DNA Sensor Based on Quartz Crystal Microbalance:Comparison of Oligonucleotide Immobilization Methods and the Application in Genetic Diagnosis". Biosensors and Bioelectronics,2001,16(1-2):85-95.
    [109]Liu X J, Tan W H. "A Fiber-Optic Evanescent Wave DNA Biosensor Based on Novel Molecular Beacons". Analytical Chemistry,1999,71(22):5054-5059.
    [100]Moore E J, Curtin M, Ionita J, et al. "Selective Release of DNA from the Surface of Indium-Tin Oxide Thin Electrode Films Using Thiol-Disulfide Exchange Chemistry". Analytical Chemistry,2007,79(5):2050-2057.
    [101]Hartwich G, Caruana D J, de Lumley-Woodyear T, et al. "Electrochemical Study of Electron Transport through Thin DNA Films". Journal of the American Chemical Society,1999, 121(46):10803-10812.
    [102]Moses S, Brewer S H, Lowe L B, et al. "Characterization of Single-and Double-Stranded DNA on Gold Surfaces". Langmuir,2004,20(25):11134-11140.
    [103]Xu Y, Yang L, Ye X Y, et al. "Impedance-Based DNA Biosensor Employing Molecular Beacon DNA as Probe and Thionine as Charge Neutralizer". Electroanalysis,2006,18(9): 873-881.
    [104]Lermo A, Campoy S, Barbe J, et al. "In Situ DNA Amplification with Magnetic Primers for the Electrochemical Detection of Food Pathogens". Biosensors and Bioelectronics,2007, 22(9-10):2010-2017.
    [105]Hawgood S, Benson B J, Schilling J, et al. "Nucleotide and Amino-Acid-Sequences of Pulmonary Surfactant Protein Sp-18 and Evidence for Cooperation between Sp-18 and Sp 28-36 in Surfactant Lipid Adsorption". Proceedings of the National Academy of Sciences of the United States of America,1987,84(1):66-70.
    [106]Steel A B, Levicky R L, Herne T M, et al. "Immobilization of Nucleic Acids at Solid Surfaces:Effect of Oligonucleotide Length on Layer Assembly". Biophysical Journal,2000, 79(2):975-981.
    [107]Hur Y, Han J, Seon J, et al. "Development of an Sh-Saw Sensor for the Detection of DNA Hybridization". Sensors and Actuators a-Physical,2005,120(2):462-467.
    [108]Li D, Yan Y, Wieckowska A, et al. "Amplified Electrochemical Detection of DNA through Au Nanoparticles on Electrodes and the Incorporation into the DNA-Crosslinked Structure". Chemical Communications,2007,34,3544-3546.
    [109]Miao W J, Bard A J. "Electrogenerated Chemiluminescence.77. DNA Hybridization Detection at High Amplification with [Ru(Bpy)(3)](2+)-Containing Microspheres". Analytical Chemistry,2004,76(18):5379-5386.
    [110]Zhang J, Qi H, Li Y, et al. "Electrogenerated Chemiluminescence DNA Biosensor Based on Hairpin DNA Probe Labeled with Ruthenium Complex". Analytical Chemistry,2008,80(8): 2888-2894.
    [111]Wang X, Yun W, Dong P, et al. "A Controllable Solid-State Ru(Bpy)(3)(2+) Electrochemiluminescence Film Based on Conformation Change of Ferrocene-Labeled DNA Molecular Beacon". Langmuir,2008,24(5):2200-2205.
    [112]Hui W, Yan D, Jianzhen K, et al. "Label Free Electrochemiluminescence Protocol for Sensitive DNA Detection with a Tris(2,2'-Bipyridyl)Ruthenium(Ii) Modified Electrode Based on Nucleic Acid Oxidation". Electrochemistry Communications,2007,9(7).
    [113]Zhang L, Li D, Meng W, et al. "Sequence-Specific DNA Detection by Using Biocatalyzed Electrochemiluminescence and Non-Fouling Surfaces". Biosensors and Bioelectronics,2009, 25(2):368-372.
    [114]Shan Y, Xu J J, Chen H Y. "Distance-Dependent Quenching and Enhancing of Electrochemiluminescence from a Cds:Mn Nanocrystal Film by Au Nanoparticles for Highly Sensitive Detection of DNA". Chemical Communications,2009,8,905-907.
    [115]Bruno J G, Kiel J L. "In Vitro Selection of DNA Aptamers to Anthrax Spores with Electrochemiluminescence Detection". Biosensors and Bioelectronics,1999,14(5):457-464.
    [116]Yin X B, Xin Y Y, Zhao Y. "Label-Free Electrochemiluminescent Aptasensor with Attomolar Mass Detection Limits Based on a Ru(Phen)(3)(2+)-Double-Strand DNA Composite Film Electrode". Analytical Chemistry,2009,81(22):9299-9305.
    [117]Fang L, Lue Z, Wei H, et al. "A Electrochemiluminescence Aptasensor for Detection of Thrombin Incorporating the Capture Aptamer Labeled with Gold Nanoparticles Immobilized onto the Thio-Silanized Ito Electrode". Analytica Chimica Acta,2008,628(1):80-86.
    [118]Yan L, Honglan Q, Yage P, et al. "Electrogenerated Chemiluminescence Aptamer-Based Method for the Determination of Thrombin Incorporating Quenching of Tris(2,2'-Bipyridine)Ruthenium by Ferrocene". Electrochemistry Communications,2008, 10(9).
    [119]Wang X, Zhou J, Yun W, et al. "Detection of Thrombin Using Electrogenerated Chemiluminescence Based on Ru(Bpy)(3)(2+)-Doped Silica Nanoparticle Aptasensor Via Target Protein-Induced Strand Displacement". Analytica Chimica Acta,2007,598(2): 242-248.
    [120]Wang X, Dong P, Yun W, et al. "A Solid-State Electrochemiluminescence Biosensing Switch for Detection of Thrombin Based on Ferrocene-Labeled Molecular Beacon Aptamer". Biosensors and Bioelectronics,2009,24(11):3288-3292.
    [121]Huang H, Zhu J J. "DNA Aptamer-Based Qds Electrochemiluminescence Biosensor for the Detection of Thrombin". Biosensors and Bioelectronics,2009,25(4):927-930.
    [122]Guo W, Yuan J, Li B, et al. "Nanoscale-Enhanced Ru(Bpy)(3)(2+) Electrochemiluminescence Labels and Related Aptamer-Based Biosensing System". Analyst, 2008,133(9):1209-1213.
    [123]Huang H, Jie G, Cui R, et al. "DNA Aptamer-Based Detection of Lysozyme by an Electrochemiluminescence Assay Coupled to Quantum Dots". Electrochemistry Communications,2009,11(4):816-818.
    [124]Bai J, Wei H, Li B, et al. "[Ru(Bpy)(2)(Dcbpy)Nhs] Labeling/Aptamer-Based Biosensor for the Detection of Lysozyme by Increasing Sensitivity with Gold Nanoparticle Amplification". Chemistry-an Asian Journal,2008,3(11):1935-1941.
    [125]Wu Y, Lun W, Haiyan W, et al. "An Aptamer-Based Electrochemiluminescent Biosensor for Atp Detection". Biosensors and Bioelectronics,2009,24(11).
    [126]Hu L, Bian Z, Li H, et al. "[Ru(Bpy)(2)Dppz](2+) Electrochemiluminescence Switch and Its Applications for DNA Interaction Study and Label-Free Atp Aptasensor". Analytical Chemistry,2009,81(23):9807-9811.
    [127]Li Y, Qi H, Peng Y, et al. "Electrogenerated Chemiluminescence Aptamer-Based Biosensor for the Determination of Cocaine". Electrochemistry Communications,2007,9(10): 2571-2575.
    [128]Zhu X, Lin Z, Chen L, et al. "A Sensitive and Specific Electrochemiluminescent Sensor for Lead Based on Dnazyme". Chemical Communications,2009,40,6050-6052.
    [129]Jie G F, Wang L, Yuan J X, Zhang S S. "Versatile Electrochemiluminescence Assays for Cancer Cells Based on Dendrimer/CdSe-ZnS-Quantum Dot Nanoclusters". Analytical Chemistry,2011,83,3873-3880.
    [130]Li Y, Qi H, Yang J, et al. "Detection of DNA Immobilized on Bare Gold Electrodes and Gold Nanoparticle-Modified Electrodes Via Electrogenerated Chemiluminescence Using a Ruthenium Complex as a Tag". Microchimica Acta,2009,164(1-2):69-76.
    [131]Wang H, Zhang C, Li Y, et al. "Electrogenerated Chemiluminescence Detection for Deoxyribonucleic Acid Hybridization Based on Gold Nanoparticles Carrying Multiple Probes". Analytica Chimica Acta,2006,575(2):205-211.
    [132]Cui H, Wang W, Duan C F, et al. "Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor". Chemistry-a European Journal,2007,13(24):6975-6984.
    [133]Chai Y, Tian D Y, Wang W, Cui H. "A novel electrochemiluminescence strategy for ultrasensitive DNA assay using Iuminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system". Chemical Communications,2010,46,7560-7562.
    [134]Chen L, Cai Q, Luo F, et al. "A Sensitive Aptasensor for Adenosine Based on the Quenching of Ru(Bpy)(3)(2+)-Doped Silica Nanoparticle Eel by Ferrocene". Chemical Communications, 2010,46(41):7751-7753.
    [135]Li J, Xu Y, Wei H, et al. "Electrochemiluminescence Sensor Based on Partial Sulfonation of Polystyrene with Carbon Nanotubes". Analytical Chemistry,2007,79(14):5439-5443.
    [136]Stoller M D, Park S, Zhu Y, et al. "Graphene-Based Ultracapacitors". Nano Letters,2008, 8(10):3498-3502.
    [137]Stankovich S, Dikin D A, Dommett G H B, et al. "Graphene-based composite materials". Nature,2006,442(7100):282-286.
    [138]Li L L, Liu K P, Yang G H, et al. "Fabrication of Graphene-Quantum Dots Composites for Sensitive Electrogenerated Chemiluminescence Immunosensing". Advanced Functional Materials,2011,21(5):869-878.
    [139]Shen W, Yu Y Q, Shu J N, Cui H. "A graphene-based composite material noncovalently functionalized with a chemiluminescence reagent:synthesis and intrinsic chemiluminescence activity". Chemical Communications,2012,48:2894-2896.
    [140]Li F, Cui H. "A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and Iuminol functionalized gold nanoparticles". Biosensors and Bioelectronics,2013,39:261-267.
    [141]Li F, Yu Y Q, Cui H, Yang D, Bian Z P. "Label-free electrochemiluminescence immunosensor for cardiac troponin I using Iuminol functionalized gold nanoparticles as a sensing platform". Analyst,2013,138:1844-1850.
    [142]Cole S T, Brosch R, Parkhill J, et al. "Deciphening the biology of M.tuberculosis from the complete genome sequence". Nature,1998,396:190-198.
    [143]Fleischmann R D, Alland D, Eisen J A, et al. "Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains". Journal of Bacteriology,2002, 184(19):5479-5490.
    [1]Arentz M and Hawn T R. "Tuberculosis infection:Insight from immunogenomics". Drug Discovery Today:Disease Mechanisms,2007,4(4):231-236.
    [2]Caws M, Wilson S M, Clough C and Drobniewski F. "Role of IS6110-targeted PCR, culture, biochemical, clinical, and immunological criteria for diagnosis of tuberculous meningitis". Journal of Clinical Microbiology,2000,38(9):3150-3155.
    [3]Camus J C, Pryor M J, Medigue C and Cole S T. "Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv". Microbiology,2002,148(10):2967-2973.
    [4]Cole S T, Brosch R, Parkhill J, Garnier T, Churcher C, et al. "Deciphering the biology of mycobacterium tuberculosis from the complete genome sequence". Nature,1998,393(6685): 537-544.
    [5]Pai M, Kalantri S and Dheda K. "New tools and emerging technologies for the diagnosis of tuberculosis:Part II. Active tuberculosis and drug resistance". Expert Review of Molecular Diagnostics,2006,6(3):423-432.
    [6]Palomino J C. "Nonconventional and new methods in the diagnosis of tuberculosis: Feasibility and applicability in the field". European Respiratory Journal,2005,26(2): 339-350.
    [7]Shamputa I C, Rigouts L and Portaels F. "Molecular genetic methods for diagnosis and antibiotic resistance detection of mycobacteria from clinical specimens". APMIS,2004, 112(11-12):728-752.
    [8]Gardiner D F and Beavis K G. "Laboratory diagnosis of mycobacterial infections". Seminars in Respiratory Infections,2000,15(2):132-143.
    [9]Soini H and Musser J M. "Molecular diagnosis of mycobacteria". Clinical Chemistry,2001, 47(5):809-814.
    [10]Woods G L. "Molecular methods in the detection and identification of mycobacterial infections". Archives of Pathology and Laboratory Medicine,1999,123(11):1002-1006.
    [11]Bogard M, Vincelette J, Antinozzi R, Alonso R, Fenner T, et al. "Multicenter study of a commercial, automated polymerase chain reaction system for the rapid detection of Mycobacterium tuberculosis in respiratory specimens in routine clinical practice". European Journal of Clinical Microbiology and Infectious Diseases,2001,20(10):724-731.
    [12]Goessens W H F, De Man P, Koeleman J G M, Luijendijk A, Te Witt R, et al. "Comparison of the COBAS AMPLICOR MTB and BDProbeTec ET assays for detection of Mycobacterium tuberculosis in respiratory specimens". Journal of Clinical Microbiology,2005,43(6): 2563-2566.
    [13]Lemaitre N, Armand S, Vachee A, Capilliez O, Dumoulin C, et al. "Comparison of the real-time PCR method and the gen-probe amplified Mycobacterium tuberculosis direct test for detection of Mycobacterium tuberculosis in pulmonary and nonpulmonary specimens", Journal of Clinical Microbiology,2004,42(9):4307-4309.
    [14]Levidiotou S, Vrioni G, Galanakis E, Gesouli E, Pappa C, et al. "Four-year experience of use of the Cobas Amplicor system for rapid detection of Mycobacterium tuberculosis complex in respiratory and nonrespiratory specimens in Greece". European Journal of Clinical Microbiology and Infectious Diseases,2003,22(6):349-356.
    [15]Baptista P V, Koziol-Montewka M, Paluch-Oles J, Doria G and Franco R. "Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples [5]". Clinical Chemistry,2006,52(7):1433-1434.
    [16]Costa P, Amaro A, Botelho A, Inacio J and Baptista P V. "Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex". Clinical Microbiology and Infection,2010,16(9):1464-1469.
    [17]Doria G, Baumgartner B G, Franco R and Baptista P V. "Optimizing Au-nanoprobes for specific sequence discrimination". Colloids and Surfaces B:Biointerfaces,2010,77(1): 122-124.
    [18]Veigas B, MacHado D, Perdigao J, Portugal I, Couto I, et al. "Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis". Nanotechnology, 2010,21(41).
    [19]Soo P C, Horng Y T, Chang K C, Wang J Y, Hsueh P R, et al. "A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens". Molecular and Cellular Probes,2009,23(5): 240-246.
    [20]Upadhyay P, Hanif M and Bhaskar S. "Visual detection of IS 6110 of Mycobacterium tuberculosis in sputum samples using a test based on colloidal gold and latex beads". Clinical Microbiology and Infection,2006,12(11):1118-1122.
    [21]Bertoncello P and Forster R J. "Nanostructured materials for electrochemiluminescence (ECL)-based detection methods:Recent advances and future perspectives". Biosensors and Bioelectronics,2009,24(11):3191-3200.
    [22]Richter M M. "Electrochemiluminescence (ECL)". Chemical Reviews,2004,104(6): 3003-3036.
    [23]Cui H, Wang W, Duan C F, Dong Y P and Guo J Z. "Synthesis, characterization, and electrochemiluminescence of luminolreduced gold nanoparticles and their application in a hydrogen peroxide sensor". Chemistry-A European Journal,2007,13(24):6975-6984.
    [24]Wang W, Xiong T and Cui H. "Fluorescence and electrochemiluminescence of luminol-reduced gold nanoparticles:Photostability and platform effect". Langmuir,2008, 24(6):2826-2833.
    [25]Chai Y, Tian D, Wang W and Cui H. "A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system". Chemical Communications,2010,46(40):7560-7562.
    [26]Almeda J, Garcia A, Gonzalez J, Quinto L, Ventura P J, et al. "Clinical evaluation of an in-house IS6110 polymerase chain reaction for diagnosis of tuberculosis". European Journal of Clinical Microbiology and Infectious Diseases,2000,19(11):859-867.
    [27]Cheng V C C, Yam W C, Hung I F N, Woo P C Y, Lau S K P, et al. "Clinical evaluation of the polymerase chain reaction for the rapid diagnosis of tuberculosis". Journal of Clinical Pathology,2004,57(3):281-285.
    [28]Lazraq R, El Baghdadi J, Guesdon J L and Benslimane A. "Evaluation of IS6110 as amplification target for direct tuberculosis diagnosis". Pathologie Biologie,1999,47(8): 790-796.
    [29]Thierry D, Brisson-Noel A, Vincent-Levy-Frebault V, Nguyen S, Guesdon J L, et al. "Characterization of a Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis". Journal of Clinical Microbiology,1990,28(12):2668-2673.
    [30]Thierry D, Cave M D, Eisenach K D, Crawford J T, Bates J H, et al. "IS6110, an IS-like element of Mycobacterium tuberculosis complex". Nucleic Acids Research,1990,18(1):188.
    [31]Lee T M H, Li L L and Hsing I M. "Enhanced electrochemical detection of DNA hybridization based on electrode-surface modification". Langmuir,2003,19(10):4338-4343.
    [32]Cheng W, Dong S and Wang E. "Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction". Analytical Chemistry,2002,74(15):3599-3604.
    [33]Cui H, Xu Y and Zhang Z F. "Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode". Analytical Chemistry,2004,76(14):4002-4010.
    [34]Fang L, Lu Z, Wei H and Wang E. "A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode". Analytica Chimica Acta,2008,628(1):80-86.
    [35]Manabe Y C, Dannenberg Jr A M and Bishai W R. "What we can learn from the Mycobacterium tuberculosis genome sequencing projects". International Journal of Tuberculosis and Lung Disease,2000,4(2 SUPPL.1):S18-S23.
    [1]Boehm U, Klamp T, Groot M and Howard J C. "Cellular responses to interferon-gamma". Annual Review of Immunology,1997,15:749-795.
    [2]Binder G K and Griffin D E. "Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons". Science,2001,293(5528):303-306.
    [3]Reece W H H, Pinder M, Gothard P K, Milligan P, Bojang K, et al. "A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease". Nature Medicine,2004,10(4): 406-410.
    [4]Aoe K, Hiraki A, Murakami T, Eda R, Maeda T, et al. "Diagnostic significance of interferon-gamma in tuberculous pleural effusions". Chest,2003,123(3):740-744.
    [5]Nomura L E, Walker J M and Maecker H T. "Optimization of whole blood antigen-specific cytokine assays for CD4(+) cells". Cytometry,2000,40(1):60-68.
    [6]Fan R, Vermesh O, Srivastava A, Yen B K H, Qin L D, et al. "Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood". Nature Biotechnology,2008,26(12):1373-1378.
    [7]Zhu H, Stybayeva G, Silangcruz J, Yan J, Ramanculov E, et al. "Detecting Cytokine Release from Single T-cells". Analytical Chemistry,2009,81(19):8150-8156.
    [8]Carothers J M, Oestreich S C and Szostak J W. "Aptamers selected for higher-affinity binding are not more specific for the target ligand". Journal of the American Chemical Society,2006, 128(24):7929-7937.
    [9]Nimjee S M, Rusconi C P and Sullenger B A. "Aptamers:An emerging class of therapeutics". Annual Review of Medicine,2005,56:555-+.
    [10]Stadtherr K, Wolf H and Lindner P. "An aptamer-based protein biochip". Analytical Chemistry,2005,77(11):3437-3443.
    [11]Min K, Cho M, Han S Y, Shim Y B, Ku J, et al. "A simple and direct electrochemical detection of interferon-gamma using its RNA and DNA aptamers". Biosensors & Bioelectronics,2008,23(12):1819-1824.
    [12]Liu Y, Tuleouva N, Ramanculov E and Revzin A. "Aptamer-Based Electrochemical Biosensor for Interferon Gamma Detection". Analytical Chemistry,2010,82(19):8131-8136.
    [13]Tuleuova N, Jones C N, Yan J, Ramanculov E, Yokobayashi Y, et al. "Development of an Aptamer Beacon for Detection of Interferon-Gamma". Analytical Chemistry,2010,82(5): 1851-1857.
    [14]Zhang H X, Jiang B Y, Xiang Y, Chai Y Q and Yuan R. "Label-free and amplified electrochemical detection of cytokine based on hairpin aptamer and catalytic DNAzyme". Analyst,2012,137(4):1020-1023.
    [15]Zhao J J, Chen C F, Zhang L L, Jiang J H and Yu R Q. "An electrochemical aptasensor based on hybridization chain reaction with enzyme-signal amplification for interferon-gamma detection". Biosensors & Bioelectronics,2012,36(1):129-134.
    [16]Liu J W, Cao Z H and Lu Y. "Functional Nucleic Acid Sensors". Chemical Reviews,2009, 109(5):1948-1998.
    [17]Xiao Y, Pavlov V, Niazov T, Dishon A, Kotler M, et al. "Catalytic beacons for the detection of DNA and telomerase activity". Journal of the American Chemical Society,2004,126(24): 7430-7431.
    [18]Li T, Li B L, Wang E K and Dong S J. "G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye". Chemical Communications,2009, (24):3551-3553.
    [19]Freeman R, Liu X Q and Willner I. "Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer-Substrate Complexes Using Hemin/G-Quadruplexes and CdSe/ZnS Quantum Dots". Journal of the American Chemical Society,2011,133(30):11597-11604.
    [20]Li C L, Liu K T, Lin Y W and Chang H T. "Fluorescence Detection of Lead(II) Ions Through Their Induced Catalytic Activity of DNAzymes". Analytical Chemistry,2011,83(1): 225-230.
    [21]Zhou Z X, Du Y, Zhang L B and Dong S J. "A label-free, G-quadruplex DNAzyme-based fluorescent probe for signal-amplified DNA detection and turn-on assay of endonuclease". Biosensors & Bioelectronics,2012,34(1):100-105.
    [22]Luo M, Chen X, Zhou G H, Xiang X, Chen L, et al. "Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme". Chemical Communications,2012,48(8):1126-1128.
    [23]Cui H, Wang W, Duan C F, Dong Y P and Guo J Z. "Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor". Chemistry-a European Journal,2007,13(24):6975-6984.
    [24]Wang W, Xiong T and Cui H. "Fluorescence and electrochemiluminescence of luminol-reduced gold nanoparticles:Photostability and platform effect". Langmuir,2008, 24(6):2826-2833.
    [25]Chai Y, Tian D Y, Wang W and Cui H. "A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system". Chemical Communications,2010,46(40):7560-7562.
    [26]Jiang J, Chai Y and Cui H. "The electrogenerated chemiluminescence detection of IS6110 of Mycobacterium tuberculosis based on a luminol functionalized gold nanoprobe". Rsc Advances,2011,1(2):247-254.
    [27]Shen W, Tian D Y, Cui H, Yang D and Bian Z P. "Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels". Biosensors & Bioelectronics,2011,27(1):18-24.
    [28]Li F and Cui H. "A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles". Biosensors & Bioelectronics,2013,39(1):261-267.
    [29]de Metz J, Sprangers F, Endert E, Ackermans M T, ten Berge I J M, et al. "Interferon-gamma has immunomodulatory effects with minor endocrine and metabolic effects in humans". Journal of Applied Physiology,1999,86(2):517-522.
    [30]Zhu H, Macal M, Jones C N, George M D, Dandekar S, et al. "A miniature cytometry platform for capture and characterization of T-lymphocytes from human blood". Analytica Chimica Acta,2008,608(2):186-196.
    [31]Zhu H, Stybayeva G, Macal M, Ramanculov E, George M D, et al. "A microdevice for multiplexed detection of T-cell-secreted cytokines". Lab on a Chip,2008,8(12):2197-2205.
    [1]Baker S N and Baker G A. "Luminescent carbon nanodots:Emergent nanolights". Angewandte Chemie-International Edition,2010,49(38):6726-6744.
    [2]Esteves da Silva J C G and Goncalves H M R. "Analytical and bioanalytical applications of carbon dots". TrAC-Trends in Analytical Chemistry,2011,30(8):1327-1336.
    [3]Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, et al. "Quantum-sized carbon dots for bright and colorful photoluminescence". Journal of the American Chemical Society,2006, 128(24):7756-7757.
    [4]Liu C, Zhang P, Tian F, Li W, Li F, et al. "One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging". Journal of Materials Chemistry,2011,21(35):13163-13167.
    [5]Hu S L, Niu K Y, Sun J, Yang J, Zhao N Q, et al. "One-step synthesis of fluorescent carbon nanoparticles by laser irradiation". Journal of Materials Chemistry,2009,19(4):484-488.
    [6]Wang Q, Zheng H, Long Y, Zhang L, Gao M, et al. "Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide". Carbon,2011,49(9):3134-3140.
    [7]Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, et al. "Photoluminescent carbogenic dots". Chemistry of Materials,2008,20(14):4539-4541.
    [8]Lin Z, Xue W, Chen H and Lin J M. "Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing". Analytical Chemistry,2011,83(21):8245-8251.
    [9]Lin Z, Xue W, Chen H and Lin J M. "Classical oxidant induced chemiluminescence of fluorescent carbon dots". Chemical Communications,2012,48(7):1051-1053.
    [10]Xue W, Lin Z, Chen H, Lu C and Lin J M. "Enhancement of ultraweak chemiluminescence from reaction of hydrogen peroxide and bisulfite by water-soluble carbon nanodots". Journal of Physical Chemistry C,2011,115(44):21707-21714.
    [11]Xu X, Ray R, Gu Y, Ploehn H J, Gearheart L, et al. "Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments". Journal of the American Chemical Society,2004,126(40):12736-12737.
    [12]Zheng L, Chi Y, Dong Y, Lin J and Wang B. "Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite". Journal of the American Chemical Society,2009,131(13):4564-4565.
    [13]Li Y, Hu Y, Zhao Y, Shi G, Deng L, et al. "An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics". Advanced Materials,2011,23(6):776-780.
    [14]Peng H and Travas-Sejdic J. "Simple aqueous solution route to luminescent carbogenic dots from carbohydrates". Chemistry of Materials,2009,21(23):5563-5565.
    [15]Hsu P C and Chang H T. "Synthesis of high-quality carbon nanodots from hydrophilic compounds:Role of functional groups". Chemical Communications,2012,48(33): 3984-3986.
    [16]Jaiswal A, Ghosh S S and Chattopadhyay A. "One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol)". Chemical Communications,2012,48(3): 407-409.
    [17]Yang Y, Cui J, Zheng M, Hu C, Tan S, et al. "One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan". Chemical Communications,2012,48(3):380-382.
    [18]Zhu H, Wang X, Li Y, Wang Z, Yang F, et al. "Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties". Chemical Communications,2009, (34):5118-5120.
    [19]Chandra S, Das P, Bag S, Laha D and Pramanik P. "Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles". Nanoscale,2011,3(4): 1533-1540.
    [20]Wang X, Qu K, Xu B, Ren J and Qu X. "Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents". Journal of Materials Chemistry,2011,21(8):2445-2450.
    [21]Hua C, Gui-Zheng Z and Xiang-Qin L. "Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode". Analytical Chemistry,2003,75(2): 324-331.
    [22]Lakowicz J R. "Principles of Fluorescence Spectroscopy".2nd Ed.,1999, Kluwer Academic/Plenum Publishers, New York.
    [23]Liu S, Tian J, Wang L, Li H, Zhang Y, et al. "Stable aqueous dispersion of graphene nanosheets:Noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection". Macromolecules,2010,43(23):10078-10083.
    [24]Pawlak A and Mucha M. "Thermogravimetric and FTIR studies of chitosan blends". Thermochimica Acta,2003,396(1-2):153-166.
    [25]Cao L, Wang X, Meziani M J, Lu F, Wang H, et al. "Carbon dots for multiphoton bioimaging". Journal of the American Chemical Society,2007,129(37):11318-11319.
    [26]Lin J M and Yamada M. "Oxidation reaction between periodate and polyhydroxyl compounds and its application to chemiluminescence". Analytical Chemistry,1999,71(9): 1760-1766.
    [27]Poznyak S K, Talapin D V, Shevchenko E V and Weller H. "Quantum dot chemiluminescence". Nano Letters,2004,4(4):693-698.
    [28]Wang Z, Li J, Liu B, Hu J and Yao X. "Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect". Journal of Physical Chemistry B,2005,109(49):23304-23311.
    [29]Liu S, Wang L, Tian J, Zhai J, Luo Y, et al. "Acid-driven, microwave-assisted production of photoluminescent carbon nitride dots from N,N-dimethylformamide". RSC Advances,2011, 1(6):951-953.
    [30]Liu S, Tian J, Wang L, Luo Y and Sun X. "A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose". RSC Advances, 2012,2(2):411-413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700