高铬铸钢轧辊激光熔凝改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铬铸钢由于碳及合金元素的含量较高,具有较高的强度及耐磨性,广泛用作热轧辊。然而其组织中含有大量的一次碳化物,呈网状沿晶界分布,致使轧制过程中产生的裂纹极易沿晶界扩展。另外,轧制过程中高铬铸钢中碳化物与基体的氧化协同性较差,高温条件下发生氧化磨损,恶化了热轧辊的高温耐磨性能,导致轧辊过早失效。本文在高铬铸钢表面进行激光熔凝处理,对熔凝层的微观组织特征进行分析,探讨搭接参数对组织和性能的影响,深入研究激光熔凝处理后的高温氧化行为、高温磨损性能及二者之间的内在联系。
     高铬铸钢组织由回火马氏体和大量网状的M7C3碳化物组成。当采用P=2700W、v=300mm/min、搭接率为33.3%的工艺参数进行激光熔凝处理,可获得表面平整、无气孔、表面硬度高且水平分布均匀的硬化层。激光熔凝处理后组织发生显著变化,高铬铸钢中的网状碳化物完全溶解,熔凝层内组织细化,组织形态由表及里依次为等轴晶—树枝晶—胞状晶,显微组织为奥氏体和颗粒状的M23C6碳化物。熔凝层内碳和合金元素的分布相对均匀,奥氏体组织受到固溶强化、位错强化及细晶强化的共同作用,硬度可达到473.1HV0.2。热影响区显微组织由隐晶马氏体、残余奥氏体和弥散碳化物组成,硬度达到759HV0.2。
     采用SYSWELD软件建立与实际光斑符合较好的热源模型,对激光熔凝过程中的温度场及应力场进行分析。结果表明,激光熔凝过程中,光斑中心瞬时加热速度可达3.2×104℃/s,瞬时冷却速度可达1.5×104℃/s。单道激光熔凝处理后,熔凝层承受拉应力,距光斑中心2.5mm处的热影响区,Mises应力达最大值713MPa。激光熔凝层由于组织具有较高的强韧性,未发生开裂,热影响区的组织韧性较差,且该区残余拉应力较大,沿碳化物与基体界面产生裂纹。预热和搭接处理可有效降低熔凝层残余拉应力和裂纹敏感性,预热150℃保温1h可预防热影响区开裂。
     激光熔凝层在低于400℃回火后,硬度基本保持在430HV0.2左右,低于未经回火处理的激光熔凝层硬度(473.1HV0.2)。回火过程中二次硬化始于450℃,此时熔凝层内仍存在孪晶及位错亚结构,细小M23C6碳化物的析出及少量马氏体的生成使熔凝层硬度略有增加(456HV0.2)。560℃回火后由于二次碳化物的析出、大量马氏体的生成及位错强化的共同作用,熔凝层硬度高达672HV0.2。经650℃回火基体完全转变为铁素体,析出的二次碳化物聚集长大、呈网状分布,硬度降低至400HV0.2。
     高温氧化试验表明,激光熔凝前后高铬铸钢在650℃时氧化缓慢,氧化动力学曲线近似呈对数规律,800℃时氧化速率剧增,氧化动力学曲线遵循抛物线规律。高铬铸钢基体的氧化膜由Fe和Fe2O3组成,高温下高铬铸钢氧化核心在基体与碳化物界面处优先生长,发生不均匀氧化,基体氧化严重,800℃时基体氧化膜开裂。激光熔凝层表面氧化膜由Fe、Fe2O3和(Fe0.6Cr0.4)2O3组成,由于熔凝层的组织细小,氧化初期表面近似均匀氧化,随后通过扩散控制氧化膜逐渐增厚。与未处理试样相比,激光熔凝试样的氧化膜较厚。
     高温磨损试验表明,激光熔凝处理后560℃和650℃的耐高温磨损性能明显提高,800℃时试样增重但增重量小于未处理试样。高铬铸钢560℃时发生磨粒磨损,磨损面出现大量细小的犁沟和碳化物颗粒。650℃时以粘着磨损为主,并伴随微观犁削。温度升高至800℃时,粘着严重,磨损面存在较深犁沟。激光熔凝处理后熔凝层具有较高的强韧性,560℃和650℃时的耐磨性明显提高,560℃的磨损机制为轻微的磨粒磨损,650℃时发生粘着磨损。激光熔凝试样高温下表面发生均匀氧化而形成连续致密的氧化膜,有效降低了激光熔凝层800℃时的粘着磨损倾向。
High chrome cast steels are used successfully for the production of hot rollers. These steels possess a high mechanical strength at the working temperature and a high wear resistance. However, the primary carbides along grain boundaries constitute a favorable propagation path for the mechanical and thermal fatigue cracks. Moreover, during rolling the poor cooperation of eutectic carbides and matrix cause oxidation wear, deteriorating the high-temperature wear resistance. In this paper laser surface melting (LSM) were performed on the surface of high chrome cast steels, and the microstructure of the melted layer was analysed as well as the influence of overlapping parameter on the structure and property. High-temperature oxidation, wear resistance and the internal relationship were studied.
     High chrome cast steel is composed of tempered martensite and primary eutectic M7C3 carbides. The surface layer obtained after LSM with a power of 2.7kW and a traverse speed of 300mm/min was relatively smooth, morphological homogenous without presence of porosity. The results after electrochemical test show that for high chrome cast steel, corrosion attack at the phase boundaries between the tempering martensite matrix and the carbides was observed. Moreover, LSM leads to the enhancement in the corrosion resistance due to the combined effects of dissolution and refinement of large carbides and the increase of the alloying elements in the ultrafine solid solution of austenite. Using the overlapped ratio of 33.3% gives a more uniform hardened-depth, and uniform corrosion was observed in the laser-melted steel.
     After LSM the structure of high chrome cast steel changed dramatically, the eutectic carbides were completely dissoluted, and the microstructure in the melted layer is obviously refined. The bottom and the central region show cellular/dendritic structures while the upper region consists of equiaxed dendrites.The microstructure is austenite and the interdendritic carbides of type M23C6, and the hardness of the austenite can reach 473.1HV0.2 due to the combined effects of solid solution, dislocations and ultrafine grains. The HAZ consists of cryptyo-crytal martensite, retained austenite and dispersed carbides, while the microhardness of the HAZ is higher than that of the substrate, and reaches 759HV0.2. The laser overlapped zone is divided into the overlapped melted zone and the overlapped HAZ, and the overlapped melted zone is composed of austenitic dendrites while the structure at the overlapped HAZ is same as that of HAZ by the single track.
     Heat resource model, which is agreement with the real laser spot, was built by SYSWELD software, and the temperature and stress fields were studied by numerical simulation. The results show that during LSM the heating rate and the cooling rate at the center of the laser spot can reach 3.2×104℃/s and 1.5×104℃/s, respectively. After the single-track LSM, the laser melted layer bears tensile stress, and at the HAZ which is 2.5mm away from the center of the beam spot, the Mises stress reaches the maximum value of 713MPa, resulting in the high cracking susceptibiltiy. The structure in the laser melted layer possesses high strength and ductility without cracks. However, the cracks initiate along the interface between the carbides and the matrix because of the tensile stress at the HAZ as well as the low ductility of the structures. Moreover, overlapping can effectively decrease the residual stress and the cracking sensitivity. Testing proved that preheating at 150℃for 1h can avoid cracking at the HAZ.
     The hardness of the laser melted layer changes little and keeps at about 430HV0.2 when tempering below 400℃, which is slightly lower than that of the untemperte laser melted layer. The secondary hardening phenomenon appears, beginning at 450℃, at this time a large amount of the dislocation and slip bands substructures still exist in the austenite tempered at 450℃, and the precipitation of fine M23C6 carbides and the formation of martensite contribute to the slight increase in the hardness. When tempering at 560℃, the secondary hardening resulted simultaneously from the martensite phase transformation and the precipitation of secondary carbides as well as the dislocation strengthening within a refined microstructure. The matrix transformed to ferrite completely after tempering at 650℃, and the decrease of hardness could be caused by the coagulation of carbides.
     High-temperature oxidation at 650℃of high chrome cast steel before and after LSM is slow, following an oxidation kinetic with a logarithmic trend, while the oxidation increases at 800℃with a parabolic trend. The oxide scale of high chrome cast steel is composed of Fe and Fe2O3, oxidation nucleates at the carbide-matrix interface, even cracks at 800℃giving rise to an uneven oxide scale. For the laser melted steel, the oxide scales consist of Fe, Fe2O3 and (Fe0.6Cr0.4)2O3 after LSM. The oxide scale covers the laser melted layer evenly due to the refined microstructure and grows as a result of the electrical transport of electrons or ions across the oxide film. Compared with the as-received steel, the oxide scales of the laser melted specimens is thicker.
     The high temperature wear resistance of high chrome cast steel at 560℃and 650℃has been improver obviously by LSM and the weight gains at 800℃, but the gain in weight is lower than that of the as-received high chrome cast steel. At 560℃wear mechanism of high chrome cast steel is abrasive wear, while grooves and carbide particles appear on the worn surface. Adhesive wear dominates at 650℃with some scoring marks on the worn surface, while at 800℃sever adhesion occurs accompanied by some deep grooves. The wear resistance of the laser melted steel is improved at 560℃and 650℃resuting from the high strength and ductility and the wear mechanism is mainly slight abrasive wear which is adhesive wear at 650℃. The improved adhesion resistance and 800℃is attributed to the formation of the oxide protective layer formed on the worn surface due to even oxidation by way of tribochemical reactions.
引文
[1]刘太斗.高铬铸钢轧辊应用分析[M].太原重型机械学院学报,2004,25:81-84.
    [2] P . Guigon , O . Simon .Roll press design-influence of force feed systems on compaction[J].Powder Technology,2003,130(1-3):41-48.
    [3] Rafael Colas,Jorge Ram?rez,Ignacio Sandoval,et al.Damage in hot rolling work rolls[J].Wear,1999,230:56-60.
    [4] F.J.Belzunce,A.Ziadi,C.Rodriguez.Structural integrity of hot strip mill rolling rolls[J].Engineering Failure Analysis,2004,11:789-797.
    [5]张建宇.型钢轧辊磨损规律及辊面激光强化研究[D].北京科技大学,2003.
    [6]宋亮,张晓丹,孙大乐,等.不同类型碳化物在基体中的分布对高速钢轧辊性能的影响[J].金属热处理,2006,31(9):1-4.
    [7] Kim Chang Kyu,Lee Sunghak,Jung Jae-Young,et al.Effects of complex carbide fraction on high-temperature wear properties of hardfacing alloys reinforced with complex carbides[J].Materials Science and Engineering A,2003,349:1-11.
    [8] Joon Wook Park,Lee Hui Choon,Lee Sunghak.Composition,microstructure,hardness and wear properties of high speed steel rolls[J].Metellurgical and Materials Transactions A,1999,30A:399-409.
    [9] Hwang Keun Chul,Lee Sunghak,Lee Hui Choon.Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls PartⅡ:Fracture behavior[J].Materials Science and Engineering A,1998,254:296-304.
    [10]戚正风,万安元,甘宅平,等.高速钢轧辊及其热处理[J].金属热处理,2008,33(8):6-9.
    [11]陈晓伟,王文青,赵金茹,等.激光处理对铸态钢的影响[J].电子显微学报,2002,21(5):701-702.
    [12]张来启,陈光南,杨王玥,等.激光熔凝和熔覆在热轧辊强化中的应用[J].天津工业大学学报,2003,22(5):69-71,75.
    [13]中国机械工程学会热处理专业分会《热处理手册》编委会编.热处理手册,第二卷:典型零件热处理[M].北京:机械工业出版社,2008.284.
    [14]完卫国.热轧轧辊的选材和材质研究进展[J].马钢科研,1995,(4):15-17.
    [15]黄学庆.轧机轴承与轧辊寿命的研究与选用[M].北京:冶金工业出版社,2003.
    [16]宫开令.半高速钢轧辊材料性能的研究[J].轧钢,2003,(2):13-20.
    [17]王天义,曹建芳,饶建华.轧辊材料及其热处理工艺发展的现状与趋势[J].南方金属,2005,142:4-7.
    [18]沈伟芳,陈光明.冷轧工作辊失效分析及其控制[J].上海金属,1999,21(1):52-56.
    [19]白万真,魏世忠,龙锐,等.冷轧辊典型失效形式分析综述[J].铸造技术,2006,27(9):1010-1014.
    [20]孙桂坊,刘常生,陈岁元,等.轧辊的失效及其修复技术[J].材料导报,2007,21(6):100-104.
    [21]夏国华,杨树蓉.现代热处理技术[M].北京:兵器工业出版社,1997.
    [22]姚宁娟,陆伟,陈铠,等.激光熔覆技术制造热轧辊的钴基合金层研究[J].中国激光,2003,30(8):759-762.
    [23] F.J.Perez,L.Martinez,M.P.Hierro,et al.Corrosion behaviour of different hot rolled steels[J].Corrosion Science,2006,48(2):472-480.
    [24]王春杰.浅析冷轧辊表面剥落原因及改善[J].江苏冶金,2001,(3):42-43.
    [25]王强,杨涤心,龙锐,等.高钒高速钢、高铬铸铁冷轧辊磨损试验研究[J].铸造,2005,54(6):570-574.
    [26] Hwang Keun Chul,Lee Sunghak,Lee Hui Choon.Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls Part.Fracture behavior[J].Materials Science and Engineering A,1998,(254):296-304.
    [27]赵新.高速钢复合轧辊[J].鞍钢技术,1997,(12):38-41.
    [28]桥本光生,川上保,小田高士,等.热带钢轧制技术中高速钢轧辊的应用和开发[J].国外钢铁,1997,(1):51-58.
    [29]刘海峰,刘耀辉.高速钢复合轧辊的研究现状及进展[J].钢铁研究学报,1999,11(5):67-71.
    [30]俞誓达,陈菡.我国轧辊业现状及发展中应重视的问题[J].钢铁,2007,42(7):1-6.
    [31]姚成武,黄坚,吴毅雄.轧辊表面激光强化与修复技术的应用现状[J].热加工工艺,2007,36(8):69-73.
    [32]丁洁,申茜辉.轧辊堆焊工艺[J].焊接技术, 2005,34(2):64-65.
    [33]汪选国,武永宇.45Cr4NiMoV轧辊堆焊焊条堆焊工艺及性能研究[J].武汉理工大学学报(交通科学与工程版),2006,30(2):272-274.
    [34]聂斌英.热轧工作辊堆焊修复选材与工艺[J].机械工程材料,2004,28(7):43.
    [35]王志义,柳长福.轧辊镀铬新技术在冷轧薄板生产中的应用[J].材料保护,1994,27(3):31-33.
    [36]李志忠.激光表面强化[M].北京:机械工业出版社,1992.
    [37]徐子文,黄正,阮中建.激光熔凝过程中低碳钢组织的形成及熔凝组织加热转变规律[J].金属热处理,2003,28(10):22-25.
    [38]赵玉珍,史耀武.Cr12激光表面熔凝处理的组织和性能研究[J].应用激光,2002,22(6):525-528.
    [39]肖福仁,乔桂英,廖波.50CrMoV钢激光表面熔融强化[J].金属热处理,2000,(5):13-14.
    [40] P.R.Strutt,H.Nowotny,M.Tuli,et al.Laser surface melting of high speed steel[J].Materials Science and Engineering,1978,36(2):217-222.
    [41] P.R.Strutt.A comparative study of electron beam and laser melting of M2 tool steel[J].Materials Science and Engineering,1980,44(2):239-250.
    [42] Ming-Jen Hsu,P.A.Molian.Cutting tool wear of laser-surface-melted high speed steels[J].Wear,1988,127(3):253-268.
    [43] S.Kac,J.Kusinski.SEM and TEM microstructural investigation of high-speed tool steel after laser melting[J].Materials Chemistry and Physics,2003,(8):510-512.
    [44] R.Colaco,R.Vilar.Stabilisation of retained austenite in laser surface melted tool steels[J].Materials Science and Engineering A,2004,385(1-2):123-127.
    [45] X.H.Fan,L.He,Q.D.Zhou.Proceedings of the International Conference on Wear of Materials,Denver,CO,ASME,NY,1989,pp.9-13.
    [46]吴海燕.残余奥氏体的摩擦诱发马氏体相变行为及其耐磨特性的研究[J].热加工工艺,2007,36(16):32-35,42.
    [47]赵玉珍,王维斌,史耀武,等.高碳高合金钢的激光表面熔凝处理的耐磨性研究[J].材料工程,2003,(2):37-40.
    [48] K.H.Lo,F.T.Cheng,C.T.Kwok,et al.Effects of laser treatments on cavitationerosion and corrosion of AISI440C martensitic stainless steel[J].Materials Letters,2004,58(1-2):88-93.
    [49] R.Colaco,C.Pina,R.Vilar.Influence of the processing conditions on the abrasive wear behaviour of a laser surface melted tool steel[J].Scripta Materialia,1999,41(7):715-721.
    [50]刘书平,葛继平,陈美玲,等.Fe-1.46C钢激光熔凝组织和性能的研究[J].大连铁道学院学报,1997,18(2):74-78.
    [51]林成富,牟克,王涛.45钢渗硼层的激光熔凝处理[J].佳木斯大学学报(自然科学版),1999,17(2):136-138.
    [52]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2000.
    [53] R.Colaco,R.Vilar.Effect of laser surface melting on the tempering behaviour of din X42Cr13 stainless tool steel[J].Scripta Materialia,1997,38(1):107-113.
    [54] Run Wu,Chang-sheng Xie,Mulin Hu,et al.Laser-melted surface layer of steel X165CrMoV12-1 and its tempering characteristics[J] . Materials Science and Engineering A,2000,278(1-2):1-4.
    [55] S.Kac,J.Kusinski.SEM structure and properties of ASP2060 steel after laser melting[J].Surface and Coatings Technology,2004,180-181:611-615.
    [56] Mei Xian-xiu,Hao Sheng-zhi,Ma Teng-cai,et al.Microstructure and wear resistance of high-speed steel treated with intense pulsed ion beam[J].Nuclear Instruments and Methods in Physics Research B,2005,239:152-158.
    [57]郑双七,王豫.45钢激光熔凝的组织与性能研究[J].金属热处理,2006.
    [58]韩培德,武小雷.H13激光熔凝组织及耐磨性研究[J].机械工程师,1999:52-53.
    [59]张春华,李春彦,张松,等.H13模具钢激光熔凝层的组织及性能[J].金属热处理,2004,29(10):14-16.
    [60]张庆茂,刘文今.激光熔凝层组织与摩擦学特性的研究[J].强激光与粒子束,2006,18(3):389-392.
    [61] R.Colaco,E.Gordo,E.M.Ruiz-Navas,et al.A comparative study of the wear behaviour of sintered and laser surface melted AISI M42 high speed steel diluted with iron[J].Wear,2006,260(9-10):949-956.
    [62] R.Colaco,R.Vilar.On the influence of retained austenite in the abrasive wear behaviourof a laser surface melted tool steel[J].Wear,2005,258:225-231.
    [63] A.Conde,R.Colaco,R.Vilar,et al.Corrosion behaviour of steels after laser surface melting[J].Materials & Design,2000,21(5):441-445.
    [64] C.T.Kwok,K.H.Lo,F.T.Cheng,et al.Effect of processing conditions on the corrosion performance of laser surface-melted AISI 440C martensitic stainless steel[J].Surface and Coatings Technology,2003,166(2-3):221-230.
    [65] C.T.Kwok,F.T.Cheng,H.C.Man.Microstructure and corrosion behavior of laser surface-melted high-speed steels[J].Surface and Coatings Technology,2007,202(2):336-348.
    [66] Yashikuni N.,Kazutoshi N.,Zhang W P.Effect of laser surface melting on corrosion resistance in weld metals of Mo containing austenitic stainless steels[J].Transactions of the JWS,1993,24(1):57-62.
    [67] Li R.,Ferreira MGS,Almeida A.Localized corrosion of laser surface melted 2024-T351 aluminium alloy[J].Surface and Coatings Technology,1996,81:290-296.
    [68] Mudali U K.,Daval R K.,Gnanamoorthy J.B.Localized corrosion studies on laser surface melted type 316 austenitic stainless steel[J].Materials Transactions,JIM,1991,33(9):845-853.
    [69] Ferreira MGS,Li R.,Fernandes J.S.Pitting corrosion of laser surface modification aluminium alloys[J].Materials Science Forum,1995,192-194(1):421-432.
    [70] McMahan M A.,Green A.,Watkin K G.Effect of residual stress on the corrosion properties of CO2 laser surface melted alloys[J].Materials Science Forum,1995,192-194(2):789-795.
    [71]许巧玉.NiCrMo半冷硬铸铁热轧辊激光表面强化研究[J].新疆农机化,1999,(1):34.
    [72]许巧玉,于青,李铸刚,等.70Mn2Mo铸钢热轧辊的激光表面强化[J].金属热处理,2002,27(8):32-34.
    [73]佗劲红,陈岁元,周利,等.激光表面改性对轧辊用高速钢组织与硬度的影响[J].金属热处理,2006,31(1):56-59.
    [74]欧阳安,黄安国,王玉涛,等.高碳高铬钢轧辊用钢激光相变硬化研究[J].激光杂志,2007,28(4):66-67.
    [75]关丛英,郎宗兴,李曼.轧辊激光相变硬化技术在热轧带肋钢筋分轧制生产中的应用研究[J].承钢技术,2004,(1):24-25.
    [76]王贵,周新初,麻永林,等.激光熔凝处理对轧辊钢组织及性能的影响[J].包头钢铁学院学报,2000,19(4):305-308.
    [77]王贵,王建国,麻永林,等.轧辊钢激光熔凝处理组织及性能研究[J].金属热处理,2001,(3):35-37.
    [78]王贵,周新初,顾永强,等.搭接参数对激光熔凝处理层显微组织和性能的研究[J].金属热处理,2001,(6):16-18.
    [79]王长贵,李志远,黄安国.75CrMnMo铸钢轧辊激光熔凝强化的组织及性能研究[J].钢铁,2004,39(9):61-63,68.
    [80]姜幼卿,黄安国,周早龙,等.冶金用铸钢轧辊激光熔凝强化的研究和应用[J].中国机械工程,2006,17(16):1756-1759.
    [81]王有铭.型钢生产理论与工艺[M].北京:冶金工业出版社,1959.
    [82]鲁建平,骆芳.激光合金化技术提高轧辊寿命的研究[J].浙江冶金,2007,(4):41-45.
    [83]孙桂芳,刘常升,陶兴启,等.高镍铬无限冷硬铸铁轧辊表面激光合金化的研究[J].东北大学学报(自然科学版),2008,29(6):845-848.
    [84]董秀花,郭俊良.激光强化处理参数对轧辊表面性能的影响[J].包头钢铁学院学报,2003,22(3):242-246.
    [85]蔺荣岩,汪家道,孔宪梅,等.激光合金化冷轧辊的技术研究[J].新技术新工艺,2002,(1):30-31.
    [86]郭丽环.材料表面的激光合金化[J].大连大学学报,2003,24(2):16-19.
    [87]梅运宏.用激光熔覆技术修复球墨铸铁轧辊[J].设备管理与维修,2004,(4):38-39.
    [88]杨胶溪,左铁钏,王喜兵,等.9Cr2Mo冷轧辊激光宽带熔覆修复强化[J].应用激光,2008,28(1):1-5.
    [89]刘文今.铸铁表面激光物理冶金强化的研究[D].清华大学,1989:6.
    [90] Juan de Damborenea.Surface modification of metals by high power lasers[J].Surface and Coatings Technology,1998,100-101:377-382.
    [91]徐庆鸿,郭伟,田锡唐.激光扫描速度对激光熔覆宏观质量的影响规律[J].航天工艺,1997,(4):1-4.
    [92]张三川,晁明举,姚建铨.白口铸铁磨辊表面的激光淬火强化工艺[J].电加工与模具,2001,(2):42-44.
    [93]李会山,杨洗陈,于滨.铸铁凸轮轴激光熔凝工艺和性能研究[J].表面技术.2003,32(6):48-50.
    [94]马琳,原津萍,张平,等.多道激光熔覆温度场的有限元数值模拟[J].焊接学报,2007,28(7):109-112.
    [95]李同道,韩涛,占焕校,等.搭接率对CK45钢激光熔凝硬度及应力分布的影响[J].中国石油大学学报(自然科学版),2007,31(6):152-155.
    [96] C.T.Kwok,K.I.Leong,F.T.Cheng,et al.Microstructural and corrosion characteristics of laser surface-melted plastics mold steels[J].Materials Science and Engineering A,2003,357(1-2):94-103.
    [97] J.H.Abboud,K.Y.Benyounis,A.G.Olabi,et al.Laser surface treatments of iron-based substrates for automotive application[J].Journal of Materials Processing Technology,2007,182(1-3):427-431.
    [98]孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [99] S.B.Lalvani,G.Zhang.The corrosion of carbon steel in a chloride environment due to periodic voltage modulation:Part I[J].Corrosion Science.1995,37(10):1567-1582.
    [100]胡静,刘江龙.激光作用下金属熔体的流动及其对凝固的影响[J].激光杂志,2000,21(3):2-3.
    [101]梅显秀,马腾才,王秀敏,等.强流脉冲粒子束辐照W6Mo5Cr4V2高速钢表面改性研究[J].金属学报,2003,39(9):926-931.
    [102] A.Conde,R.Cola?o,R.Vilar,et al.Corrosion behaviour of steels after laser surface melting[J].Materials & Design,2000,21(5):441-445.
    [103]张友寿,王巍,王勤国.1Cr18Ni9Ti不锈钢激光快速熔凝处理与表面合金[J].光电子·激光,2002,13(1):72-74,79.
    [104] X.X.Mei,W.F.Sun,S.Z.Hao,et al.Surface modification of high-speed steel by intense pulsed ion beam irradiation[J].Surface and Coatings Technology,2007,201(9-11):5072-5076.
    [105]王树奇,关庆丰,姜启川,等.莱氏体型高铬模具钢锻前碳化物形态改善的研究[J].钢铁,1999,34(7):46-49,53.
    [106]刘江龙.激光超快速加热淬火条件下晶粒超细化的探讨[J].金属热处理学报,1987,8(2):88-94.
    [107]陈传忠.高速钢激光相变硬化层中碳化物的溶解及碳的扩散[J].金属热处理,1995,(9):5-8.
    [108]陈传忠,孔翠荣,侯绪荣,等.W18Cr4V高速钢激光相变硬化层中碳化物的溶解及碳的扩散[J].金属热处理,1995,(9):5-8.
    [109]肖纪美,主编.合金相与相变[J].北京:冶金工业出版社,1987.
    [110]冯端,等.金属物理学.第二卷,第七篇,相变动力学;第八篇,接口稳定性与形态的演变,北京:科学出版社,1998.
    [111]王均,孙志平,沈保罗,等.一种高铬铸铁的亚临界处理的硬化动力学研究[J].铸造,2003,52(11):1065-1068.
    [112] Xiaolei Wu.Rapidly solidified nonequilibrium microstructure and phase transformation of laser-synthesized iron-based alloy coating[J].Surface and Coatings Technology,1999,115:153-162.
    [113] P.A.Molian,H.S.Rajasekhara.Journal of Materials Science Letters,1986(5):1292-1294.
    [114] Z.L.Xie,B.Sundqvist,H.H?nninen,et al.Isothermal martensitic transformation under hydrostatic pressure in an Fe-Ni-C alloy at low temperatures[J].Acta Metallurgica et Materialia,1993,41(8):2283-2290.
    [115] B.S.Yilbas,N.Al-Aqeeli.Analytical investigation into laser pulse heating and thermal stresses[J].Optics&Laser Technology,2009,41:132-139.
    [116] C.Hayzelden.Melt spinning of transformable steels[D].University of Sussex,1983.
    [117] Katerina E.Aifantis,Avraam A.Konstantinidis.Hall-Petch revisited at the nanoscale[J].Materials Science and Engineering B,2009,163(3):139-144.
    [118] M.T.Todinov,J.F.Knott,M.Strangwod.An assessment of the influence of complex stress states on martensite start temperature[J].Acta Materialia,1996,44(12):4909-4915.
    [119] B.H.Jiang(Jiang Bohong),Limin Sun,Ruchu Li,et al.Influence of austenite grain size onγ→εmartensitic transformation temperature in Fe-Mn-Si-Cr alloys[J].Scripta Metallurgica et Materialia,1995,33(1):63-68.
    [120]刘江龙,刘朝.激光作用下合金熔池内的熔体流动[J].重庆大学学报,1993,16(5):109-114.
    [121]胡汉起.金属凝固原理[M].北京:冶金工业出版社,1991,21-23.
    [122]罗庵.传热应用与分析[M].北京:清华大学出版社,1990,3-5.
    [123]高阳,佟百运,梁勇,等.不锈钢上激光熔覆涂层结构特征与质量研究[J].材料科学与工艺,2003,11(4):347-350.
    [124]章靖国.激光表面熔化工艺Ⅰ.热流计算和显微组织[J].上海金属,1989,11(4):1-9.
    [125] Yu.Ivanov,W.Matz,V.Rotshtein,et al.Pulsed electron-beam melting of high-speed steel: structural phase transformations and wear resistance[J].Surface and Coatings Technology,2002,150(2-3):188-198.
    [126]陈光,傅恒志,等着.非平衡凝固新型金属材料[J].北京:科学出版社,2004.
    [127] A.F.A.Hoadley,M.Rappaz.A thermal model of laser cladding by powder injection[J].Metallurgical and Materials Transactions B,1992,23(5):631-642.
    [128] E.V.Haranzhevskiy,D.A.Danilov,M.D.Krivilyov,et al.Structure and mechanical properties of structural steel in laser resolidification processing[J].Materials Science and Engineering A,2004,375-377:502-506.
    [129]钟士红.钢的回火工艺和回火方程[M].北京:机械工业出版社,1993,29-30.
    [130]胡光立,谢希文.钢的热处理(原理和工艺)[M].西安:西北工业大学出版社,1993,68.
    [131]刘江龙,韩志范,邹至荣.金属表面激光熔化后的表面开裂研究[J].中国激光,1990,17(11):66-70.
    [132] Park K T,Kim Y S,Lee J G,et al.Thermal Stability and Mechanical Properties of Ultrafine Grained Low Carbon Steel [J].Materials Science and Engineering A,2000,293:165-172.
    [133] Shin D H,Kim B C,Park K T,et al.Microstructural Changes in Equal Channel Angular Pressed Low Carbon Steel by Static Annealing[J].Acta Mater,2000,48:3245-3252.
    [134] Abe F.Evolution of Microstructure and Acceleration of Creep Rate in Tempered Martensitic 9Cr2W Steels [J].Materials Science and Engineering A,1997,234-236:1045-1048.
    [135] Hong S G,Lee W B,Park C G.The Effects of Tungsten Addition on the Microstructural Stability of 9Cr2Mo Steels [J].Journal of Nuclear Materials,2001,288:202-207.
    [136] Sakasegawa H,Hirose T,Kohyama A,et al.Microstructural Stability of Reduced Activation Ferritic/Matensitic Steels under High Temperature and Stress Cycling [J].Fusion Engineering and Design,2002,61-62:671-675.
    [137]温永红,唐荻,武会宾,等.F40级船板钢的热稳定性研究[J].金属热处理,2008,33(7):9-12.
    [138] A.Kokosza,J.Pacyna.Evaluation of retained austenite stability in heat treated cold work tool steel[J].Journal of Materials Processing Technology,2005,162-163:327-331.
    [139]邓永瑞,许洋,赵青.固态相变[M].北京:冶金工业出版社.1996.
    [140] G.Zajac,J.Pacyna.The kinetics of phase transformations during tempering in structural steels with nickel[J].Journal of Materials Processing Technology,2005,162-163:442-446.
    [141]刘宁,赵兴中,邓宗钢,等.钢和铸铁相变硬化层的残余应力研究[J].机械工程学报,1994,30(4):108-114.
    [142] Fei Yan,Haisheng Shi,Junfei Fan,et al.An investigation of secondary carbides in the spray-formed high alloyed Vanadis 4 steel during tempering[J] . Materials Characterization,2008,59:883-889.
    [143]刘宗昌.钢的整合系统及复杂性[J].钢铁研究学报,2002,14(5):35-40.
    [144] H.B.Wu,H.T.Jiang,S.W.Yang,et al.Thermal stability of non-equilibrius microstructure in microalloyed steel during reheating[J].Acta Metallurgica Sinica (English letters),2007,20(5):313-326.
    [145]王均,左汝林,孙志平,等.二次碳化物的析出和转变对15Cr-1Mo-1.5V高铬铸铁硬化行为的影响[J].四川大学学报(工程科学版),2005,37(3):77-81.
    [146] Radulovic M,Fiset M,Peev K,et al.The influence of vanadium on fracture toughness and abrasion resistance in high chromium white cast irons[J].Journal of Material Science,1994,29:5085-5094.
    [147]刘宗昌,任慧平,宋义全.金属固态相变教程[M].北京:冶金工业出版社,2003.
    [148]高占勇.H13钢退火软化机理的研究[D].包头:包头钢铁学院,1999.
    [149] B.H.Jiang,Limin Sun,Ruchun Li,et al.Influence of austenite grain size of r→εmartensitic transformation temperature in Fe-Mn-Si-Cr alloys[J].Scripta Metallurgica et Materialia,1995,33(1):63-68.
    [150]刘宗昌,等.金属固态相变教程[M].北京:冶金工业出版社,2003.
    [151] A.Molinari,G.Straffelini,A.Tomasi,et al.Oxidation behaviour of ledeburitic steels for hot rolls[J].Materials Science and Engineering A,2000,280(2):255-262.
    [152] R.D.Mercado-Solis,J.Talamantes-Silva,J.H.Beynon,et al.Modelling surface thermal damage to hot mill rolls[J].Wear,2007,263(7-12):1560-1567.
    [153]周利,刘常升,孙大乐.热轧高速钢轧辊氧化膜的剥落行为分析[J].轧钢,2005,22(2):10-12.
    [154]周利,刘芳,刘常升,等.高速钢轧辊工作层材料的高温氧化行为[J].钢铁研究学报,2005,17(2):60-63.
    [155]孙大乐,范群,姚利松,等.热轧铸造高速钢工作辊表面氧化膜研究[J].宝钢技术,2006,(1):38-42,55.
    [156]王孝建,董汉君,张晖.高铬铸铁轧辊表面氧化膜影响因素的研究[J].轧钢,2008,25(3):34-37.
    [157]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001.
    [158]佗劲红.高速钢轧辊材料的高温氧化行为和激光表面改性研究[D].东北大学,2005.
    [159]周利,刘芳,刘常升,等.高速钢轧辊工作层材料的高温氧化行为[J].钢铁研究学报[J],2005;17(2):60-63.
    [160]李铁藩.金属高温氧化和热腐蚀[J].北京:化学工业出版社,2003.
    [161]李美栓,辛丽,钱余海,等.氧化膜应力研究进展[J].腐蚀科学与防护技术,1999,11(5):300-305.
    [162]李铁藩.金属晶界在高温氧化中的作用[J].中国腐蚀与防护学报,2002,22(3):180-183.
    [163] G.C.Wood,J.A.Richardson,M.G.Hobby,et al.The identification of thin healing layers at the base of oxide scales on Fe-Cr base alloys[J].Corrosion Science,1969,9(9):659-671.
    [164] A.Molinari,M.Pellizzari,A.Biggi,et al.Proceedings of the 6th International Tooling Conference on Primary Carbides in Spincast HSS for Hot Rolls and Their Effect on the Oxidation Resistance Behaviour Karlstadt (Sweden) , 10-13 September (2002) ,pp.365-377.
    [165] O.Barrau,C.Boher,R.Gras,et al.Analysis of the friction and wear behaviour of hot work tool steel for forging[J].Wear,2003,255:1444–1454.
    [166]李云,尚海波,郭建亭,等.铸造镍基高温合金K35的高温氧化行为[J].金属学报,2003,39(7):749-754.
    [167] F.H.Stott,P.K.N.Bartlett,G.C.Wood.The influence of laser surface treatment on the high temperature oxidation of Cr2O3-forming alloys[J].Materials Science and Engineering,1987,88:163-169.
    [168] G.C.Wood,D.P.Whittle.The mechanism of breakthrough of protective chromium oxide scales on Fe-Cr alloys[J].Corrosion Science,1967,7(11):763-782.
    [169] G.C.Wood,D.P.Whittle.On the mechanism of oxidation of iron-16·4% chromium at high temperature[J].Corrosion Science,1964,4(1-4):263-292.
    [170] F.H.Stott,G.C.Wood,J.Stringer.The influence of alloying elements on the development and maintenance of protective scales [J].Oxidation of Metals,1995,44(1-2):113-145.
    [171]王树奇,崔向红,陈康敏,等.精铸热锻模具钢的合金成分设计及其高温磨损性能研究[J].摩擦学学报,2006,26(4):382-386.
    [172]朱子新,徐滨士,马世宁,等.高温电弧喷涂Fe-Al涂层的高温磨损特性[J].摩擦学学报,2004,24(3):106-110.
    [173] Dae Jin Ha,Chang-Young Son,Joon Wook Park,et al.Effects of high-temperature hardness and oxidation on sticking phenomena occurring during hot rolling of two 430J1L ferritic stainless steels [J].Materials Science and Engineering A,2008,492(1-2):49-59.
    [174] I.I.Garbar.Gradation of oxidational wear of metals[J].Tribology International,2002,35(11):749-755.
    [175] F.H.Stott,M.P.Jordan.The effects of load and substrate hardness on the developmentand maintenance of wear-protective layers during sliding at elevated temperatures [J].Wear,2001,250(1-12):391-400.
    [176] A.Pauschitz,Manish Roy,F.Franek.Mechanisms of sliding wear of metals and alloys at elevated temperatures[J].Tribology International,2008,41(7):584-602.
    [177] M.Pellizzari,A.Molinari,G.Straffelini.Tribological behaviour of hot rolling rolls[J].Wear,2005,259(7-12):1281-1289.
    [178]乔玉林,梁志杰,孙晓峰,等.热轧钢/热轧钢摩擦副干摩擦高温摩擦行为的研究[J].金属热处理,2006,31(1):30-30.
    [179] Alejandro Sanz.New coatings for continuous casting rolls[J].Surface and Coatings Technology,2004,177-178:1-11.
    [180]崔向红,王树奇.铸造热锻模具钢的高温磨损机理[J].金属学报,2005,41(10):1116-1120.
    [181]李长虹,何庆复.耐高温磨损的合金钢导辊及高温耐磨性能研究[J].机械工程学报,2001,37(4):86-88.
    [182] Soner Buytoz.Microstrctural properties of M7C3 eutectic carbides in a Fe-Cr-C alloy[J].Materials Letters,2006,60(5):605-608.
    [183]符寒光.复合变质处理高铬铸造导辊的研究和应用[J].上海金属,1998,20(3):43-46.
    [184] Ayers J D,Bolster R N.Abrasive wear with fine diamond particle of carbides containing aluminum and titanium alloy surface[J].Wear,1984,93(2):193-205.
    [185] Pagounis E,Talvitie,Lindros V K.Influence of reinforcement volume fraction and size on the microstructure and abrasion wear resistance of bit isostatic pressed white matrix composites[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1996,27(12):4171-4181.
    [186]崔向红,姜启川,王树奇.新型精铸热锻模具钢高温磨损性能同其显微组织的相关性[J].摩擦学学报,2005,25(3):211-215.
    [187]孟军虎,吕晋军,王静波,等.两种镍基合金的高温摩擦学性能研究[J].摩擦学学报,2002,22(3):184-188.
    [188]揭晓华,毛志远.5CrNiMo钢在高温磨损中的动态氧化行为[J].浙江大学学报,1998,32(6):769-776.
    [189] Stott F H,Glascott J,Wood G C.The sliding wear of commercial Fe-12% Cr alloys at high temperature[J].Wear,1985,101:311-324.
    [190] Jiang J R,Stott F H,Stack M M.Some frictional features associated with the sliding wear of the nickel based alloy N80A at temperatures to 250℃[J].Wear,1994,176:185-194.
    [191]郑世安,王顺兴,董企铭,等.激光熔敷Ni基合金层的高温干摩擦磨损性能研究[J].中国表面工程,1999,42(1):25-29.
    [192]赵民,丁津原,李建卫,等.激光处理合金辊表面20MnSiV钢磨损特性研究[J].润滑与密封,2002,(5):37-40.
    [193] A.Skopp,M.Woydt,K.H.Habig.Unlubricated sliding friction and wear of various Si3N4 pairs between 22 and 1000℃[J].Tribology International,1990,23(3):189-199.
    [194] M.R.Green,W.M.Rainforth,M.F.Frolish,J.H.Beynon.The effect of microstructure and composition on the rollingcontact fatigue behaviour of cast bainitic steels[J].Wear,2007,263:756-765.
    [195] C.Vergne,C.Boher,R.Gras,et al.Influence of oxides on friction in hot rolling:Experimental investigations and tribological modelling[J].Wear,2006,260(9-10):957-975.
    [196]王成彪,符党替,温诗铸.铸铁滑动摩擦副表面温度对其磨损机制的影响[J].摩擦学学报,1997,17(4):295-301.
    [197] S.Spuzic,K.N.Strafford,C.Subramanian,et al.Wear of hot rolling mill rolls: an overview[J].Wear,1994,176:261-271.
    [198] Weihua Sun,A.K.Tieu,Zhengyi Jiang,et al.High temperature oxide scale characteristics of low carbon steel in hot rolling[J].Journal of Materials Processing Technology,2004,155-156:1307-1312.
    [199] Per A Munther,John G Lenard.The effect of scaling on interfacial friction in hot rolling of steels[J].Journal of Materials Processing Technology,1999,88(1-3):105-113.
    [200] J.Tang,A.K.Tieu,Z.Y.Jiang.Modelling of oxide scale surface roughness in hot metal forming[J].Journal of Materials Processing Technology,2006,177(1-3):126-129.
    [201] D.N.Hanlon,W.M.Rainforth.The rolling sliding wear response of conventionally processed and spray formed high speed steel at ambient and elevated temperature[J].Wear,2003,255:956-966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700